

Boosting MBR Based kNN Search Over Multimedia
Data by Approximate Pruning Metric

Yang Shuguo
School of Mathematics and Physics , Qingdao Science and

Technology University
Qingdao, China

Li Chunxia
School of Mathematics and Physics, Qingdao Science and

Technology University
Qingdao, China

Abstract—MBR (Minimum Bounding Rectangle) has been widely
used to represent multimedia data objects in R*-Tree family
indexing techniques. In this paper, in order to improve the
performance of kNN searching over multimedia data, we propose
an approach to reduce the computation cost of MINMAXDIST by
using its approximate upper bound instead of its precise value,
and then we use it to construct two stronger heuristics for kNN
pruning, which are helpful to avoid visiting unnecessary data
objects and MBRs. The experimental results show that the
proposed approach can reduce the computation cost and boost
the overall performance in R*-Tree based kNN searching tasks.

Keywords- MBR; kNN search; Multimedia indexing;
Multidimensional pruning

I. INTRODUCTION

The similarity queries on feature vector have been widely
used to perform the content-based retrieval of multimedia data
[1]. A set of multimedia data objects similar to the query
objects can be retrieved by searching feature vectors which are
close to the given query objects. To apply the similarity query
technique to large-scale repositories, it is urgent to develop
multidimensional index structure nearest neighbor queries.

R*-Tree [2] and its variations use MBR (Minimum
Bounding Rectangle) to represent multimedia data objects and
conduct efficient similar search by efficiently organizing these
MBRs. The MBR based index structures has been employed in
various domains. In the MBR based similar queries task,
especially kNN queries which return the most similar k objects,
MINDIST and MINMAXDIST [3] remain the most popular
pruning metrics. However, in multimedia database, when the
dimensionality is high, the actual distance computations,
distance-based pruning metrics, especially the MINMAXDIST,
will become expensive. Then the I/O cost becomes a minor
performance factor and the computations costs become the
dominant component during the search.

Previously works can be divided into two categories: The
first type of work often employ MBR based objet
approximation to accelerate the search performance. For
example, rectangles are employed for approximating the
complex spatial objects such as polygons or CAD models
because operations on the exact complex object representation
are usually much more expensive than on the object’s
approximate representation. Their typical application scenarios
for MBR approximations include GIS [4] and uncertain data
retrieval [5]. The second type of rectangular approximations

focuses on commonly integrated into spatial pruning methods
to speed up the similar queries. In this scenario, the pruning
techniques use similar searching over multi-dimensional vector
spaces, time series data and spatial-temporal data [6-7].

In order to improve the performance of kNN search over
multimedia data, we develop an approach to quickly determine
a tightly approximate upper bound value of MINMAXDIST,
and then we use this approximate upper bound instead of its
precise value to prune and save the computation cost. The
remainder of this paper is organized as follows. Section II
details the definitions of MINDIST, MINMAXDIST and how
to use them to conduct pruning in the kNN search tasks. We
present our approach that how to quickly determine an upper
bound of MINDMAXDIST in section III. Then we evaluate its
performance in section IV.

II. MINDIST AND MINMAXDIST BASED KNN SEARCH

In R*-Tree like MBR based index structures, a rectangle R
in n-dimensional Euclidean space E(n) will be defined by two
end points S and T of its major diagonal. Thus a rectangle R
often denotes as following:

R=(S, T)
Where S=[s1, s2, ... , sn], T=[t1, t2, ... , tn] and si ≤ ti for 1 ≤ i ≤ n.

This definition of rectangle R will be referred in the
definition of MINDIST and MINMAXDIST.

A. MINDIST and MINMAXDIST

MINDIST(Q, R)is the minimum distance between a query
point Q and a bounding rectangle R. It could be denoted as
following:

MINDIST(Q, R)= 2

1

| |
n

i i
i

q r


 (1)

Where
i i i

i i i i

i

s if q s

r t if q t

q otherwise


 



.

Notice that if Q is inside rectangle R or Q is on the
perimeter of R, then MINDIST(Q, R) = 0. Otherwise, it is
equal to the square of the minimal Euclidean distance from Q
to any point on the perimeter of R. It is easy to know that the
computation complexity of MINDIST is linear to the number
of dimensionality, denoted as O(n). MINDIST (Q, R) is used
to determine the closest object to Q from all those enclosed in

This paper is fund by ShanDong Province Nature Science Found (Grants
No:ZR2009GM017)

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press32

R. During the kNN search, it can be employed to decide which
MBR to search first and produced a sorted queue of MBRs
waiting for further processing. In order to avoid visiting
unnecessary MBRs in the above sorted queue, we need an
upper bound of the (kth) nearest neighbor distance to any
object inside an MBR. This upper bound guarantees there is an
object within the MBR at a distance less than or equal to it. So
we call this upper bound as MINMAXDIST.

Given a query point and a rectangle R=(S, T), MINDIST(Q,
R) can be defined as following:

2 2

1
1 ,

(,) min(| | | |)k k i i
k n

i n i k

MINMAXDIST Q R q rm q rM
 

  

   

(2)

Where: 2
k k

k k
k

k

s t
s if q

rm
t otherwise

  


, 2
i i

i i
i

i

s t
s if q

rM
t otherwise

  


.

According to the definition of MINMAXDIST, we know
that MINMAXDIST is the minimum distance that guarantees
the presence of an object O in R whose distance from Q is
within this distance. MINMAXDIST (Q, R) is the distance
from Q to the closet corner of R that is adjacent (i.e.,
connected with an edge of R) to the corner that is farthest from
Q. A value larger than or equal to MINMAXDIST will be
bound to catch some objects inside an MBR, but a smaller
distance could miss some objects. Figure 1 is an example of
MINDIST and MINMAXDIST in 2-D space.

Figure 1. Example of MINDIST and MINMAXDIST in 2-D spaces

The construction of MINMAXDIST is more complicate
and costly than MINDIST, it could be described as follows:
for each k select the hyperplane Hk=rmk which contains the
closer of the tow surfaces of the MBR orthogonal to the kth
space axis. One of the surface could be represented as Hk=Sk,
while the other one is denoted as Hk=Tk. The point Vk=(rM1,
rM2, … , rMk-1, rmk, rMk+1, …, rMn), is the farthest vertex from
Q on this surface. Then MINMAXDIST could be
characterized as the minimum of the squares of the distance to
each of these vertexes. If we take the distance from Q to the
furthest vertex on the MBR as

1

| |i i
i n

F q rM
 

  , then the

MINMAXDIST will be obtained by iteratively selecting the
minimum of 2| | | |k k k lF q rM q rm    for l k n  .

B. Pruning heuristics based on MINDIST and MINMAXDIST

Since the MINDIST and MINMAXDIST provide the lower
bound and upper bound from the query point Q to the MBR,
the following 3 most popular heuristics [3] have been proposed
to prune the search based on R*-Tree like index structures. The
following description is target to nearest neighbor (1NN)
search. It is easy to extend it to kNN search by: (1) Keeping a
sorted buffer of at most k current nearest neighbors; (2)

Pruning is done according to the distance of the furthest nearest
neighbor in this buffer.

H1: An MBR M with MINDIST (Q, R), which is greater
than the MINMAXDIST(Q, R’) of another MBR R’, is
discarded because it cannot contain the NN. This is used in
downward pruning. An example of this heuristics is shown as
figure 2.

Figure 2. Example of Heuristics 1

H2: An actual distance from Q to a given object O, which is
greater than the MINMAXDIST(Q, R) for MBR R, can be
discarded because M contains an object O’ which is near to Q’
that is nearer to Q. This is also used in downward pruning. An
example is illustrated in figure 3.

Figure 3. Example of Heuristics 2

H3: Every MBR M with MINDIST(Q, R) which is greater
than the actual distance from Q to a given object O, is
discarded because it cannot enclose an object nearer than O.
This is used in upward pruning. An example is depicted in
figure 4.

Figure 4. Example of Heuristics 3

III. INMAXDISTUP AND ITS PRUNING HEURISTICS

A. Quickly Obtaining Approximate Upper Bound of
MINMAXDIST

According to the analysis in section II, we conclude that if a
distance from query point Q to the MBR is larger than or equal
to MINMAXDIST, then it will catch some objects inside an
MBR as the candidate results, but a smaller distance could miss
some objects. So if we want to approximate the
MINMAXDIST without the loss of effectiveness/precision of
kNN search, we must obtain and use its (tightly) approximate
upper bound in the pruning. Since the main reason that we use
an approximate MINMAXDIST to replace its original precise
value in heuristics H1 and H2 is to save the costly computation,
thus the required approximate upper bound of MINMAXDIST
can be quickly determined.

In section II, we know that MINMAXDIST is obtained by
iteratively selecting the minimum of

2 2

1 ,

| | | |k k i i
i n i k

q rm q rM
  

   . When the dimension is high,

33

if we maximize the Euclidean distance computation component
of | |i iq r in every dimension, we will get an approximate
upper bound of MINMAXDIST. Based on this idea, we denote
this upper bound of MINMAXDIST as MINMAXDISTup , its
definition is as following:

2

1

(,) | |up i i
i n

MINMAXDIST Q R q r
 

  (3)

Where:
| | | |

| | | |
i i i i i

i
i i i i i

s q s q t
r

t q t q s

  
    

.

Recall the definition of MINDIST, its computation requires
comparing qi with si or ti, and | |i iq r (where ri is either equal
to si or ti) is also computed. Since they are common
computation costs in MINMAXDISTup, thus we can cache the
needed intermediate results when we compute MINDIST, and
then reuse it when computing MINMAXDISTup.

For example, when computing the | |i iq r for MINDIST

in ith dimension, we can know | | | |i i i iq s q t  

or | | | |i i i iq t q s   , if | | | |i i i iq s q t   are true, then

| |i iq r will be computed for MINDIST, this intermediate
result is also required by MINMAXDISTup, thus we store it in
a buffer array and then reuse it when computing
MINMAXDISTup.

The new obtained approximate upper bound
MINMAXDISTup forms two strong heuristics H1’ and H2’,
which could be used to replace H1 and H2 to achieve faster
pruning.

H1’: A rectangle R is discarded if there is another R’ and
MINDIST(Q, R) is greater than an approximate upper bound
of MINMAXDISTup (Q, R).

H2’: An object O is discarded if there exists an R such that
ACTUAL-DIST(Q, O) is greater than MINIMAXDISTup (Q,
R).

B. MINMAXDISTup based kNN Search Algorithm

The (k) nearest neighbor search algorithm is described as
follows:

 Initializing the nearest distance as infinite distance.

 Traversing down the tree from the root. At each newly
visited non-leaf node, we sort its MBR into an Active
Branch List (ABL) by the MBR’s ordering metric
(MINDIST or MINMAXDISTup).

 Applying pruning heuristics H1’ and H2’ to the ABL
to remove unnecessary branches. In this step,
MINMAXDISTup is quickly obtained by reusing part
of intermediate computations of MINDIST.

 Iterating on this ABL until it is empty. For each
iteration, we apply the step 3 recursively to its children
node.

 At a leaf node, we compute each object’s distance from
the query point, compare it with the distance of the (kth)
nearest distance so far, and update it if necessary.

 At the return from recursion, we apply pruning
heuristics H3 to remove unnecessary branches.

 When the ABL is empty, (kth) the nearest neighbor is
returned.

IV. EXPERIMENTAL RESULTS

A. Implementation and Experimental Settings

We implement the proposed MINMAXDISTup based
pruning heuristics into SR-Tree to conduct efficient kNN
search for high-dimensional multimedia data, we name this
revised index structure as ASR-Tree (Approximate SR-Tree).
Its performance is evaluated on the large-scale MSRA-MM 2.0
multimedia data set and compared with R*-Tree and SR-Tree.

MSRA-MM 2.0 data set contains both images and video
shot data. In this study, we use part of image data set to
estimate the kNN search efficiency of our proposed ASR-Tree.
The size of the involved data set is from 100k to 400k, the
number of its dimensional varied from 16 to 256. In all the
results, the page sizes of the three index structures are fixed to
8KB. We use two metrics to measure the kNN search
performance. They are CPU time and number of page access.
In the kNN search evaluation, the queries objects is 100 images
including animals, tools, sports and landscapes, etc. They have
been depicted in figure 5. In each experiment, we issue all the
100 query images to conduct kNN search tasks, and repeated it
5 times to get the average value as the final results.

Figure 5. 100 Queries Images for kNN Search Task

The experiments are conducted on a computer with Ubuntu
Linux 10.04. Its CPU is Intel i3 M330 CPU (2.13 GHz), it has
2GB memory and equipped with a HITACHI SATA 5400rpm
disk.

B. Effect of Data Size

In the first experiment, we study the performance of kNN
search over R*-Tree, SR-Tree and ASR-Tree when data size
increases from 100k to 400k. The figure 6 shows the
performance of query processing in terms of CPU cost and disk
read cost. In the experiment, the k of kNN is set to be 10 and
the three indexes are constructed in the same optimal bulk load
manner.

(a) CPU cost vs. Dimensionality

34

(b) Disk read cost vs. Data size

Figure 6. Effect of Data Size

From above figures, it is evident that ASR-Tree
outperforms the other two methods in terms of the response
time for the three datasets. The graph shows when data size is
less than 400k, the page access overhead of SR-Tree and ASR-
Tree hold a big gap but their total CPU costs nearly are the
same. This phenomenon is considered as the evidence that the
CPU cost become the dominant component in the overall query
processing cost in MBR based index structures when
dimensionality increases.

C. Effect of Dimensionality

In our second experiment, we measure the impacts of the
dimensionality in MBR based kNN search task. The detailed
experimental results are presented in figure 7. As the
experiments in last section, k is also set to be 10 and indexes
are constructed in the optimal bulk load manner. In this
experiment, data size is 100k.

(a) CPU cost vs. Dimensionality

(b) Disk read cost vs. Dimensionality

Figure 7. Effect of Dimensionality

From the experimental results, we can see that although
ASR-Tree has more page access than other two approaches, it
still have less response time than VSR-Tree and SR-Tree.
Because of the only difference between the SR-Tree and ASR-
Tree is its pruning strategies, they are same in index
construction and maintenance, thus we can owe the superiority
of ASR-Tree to the MINMAXDISTup metric and the two
enhanced pruning strategies H1’ and H2’.

D. Effectiveness of Enhanced Pruning Heuristics

To evaluate the effectiveness of enhanced pruning
heuristics H1’ and H2’, we devise this experiment to evaluate
the ration of (visited leaves node / all the leaves nodes). The

experimental settings are: k of kNN is 1000, data size is 400k
and the dimensionality is up to 256. The results are plot into
figure 8.

Figure 8. Effect of Enhanced Pruning Heuristics

From section C, we conclude that the differences between
ASR-Tree and SR-Tree are the pruning heuristics H1’ and H2’
during query processing. The results are clearly shown in figure
8. When dimensional is less than 64, the effectiveness of H1’
and H2’ is evident, and many nodes visited in SR-Tree will be
filtered in ASR-Tree. That is why ASR-Tree outperform R*-
Tree and SR-Tree in the first two measurements. However,
with the increase of dimensionality, the intrinsic of R*-Tree
family techniques make them suffered and visit almost all the
leaves node, then the performance decrease rapidly, this is the
so-called curse of dimensionality. In this case, traditionally R-
Tree based pruning techniques only aims to reduce the I/O cost
may become impractical, the high-dimensional kNN search
pruning techniques should consider reduce both computation
cost and I/O cost to improve the overall performance.

In this paper, we propose an approach to quickly obtain a
tightly approximate upper bound value of MINMAXDIST, and
then we use this approximate upper bound instead of its precise
value to improve the search performance.

REFERENCES
[1] Christian Böhm, Stefan Berchtold, Daniel A. Keim: Searching in high-

dimensional spaces: Index structures for improving the performance of
multimedia databases. ACM Comput. Surv. (CSUR) 2001.33(3), pp.
322-373.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, Bernhard
Seeger, The R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles. SIGMOD 1990, pp. 322-331.

[3] Nick Roussopoulos, Stephen Kelley, Frédéic Vincent. Nearest Neighbor
Queries. SIGMOD 1995, pp. 71-79.

[4] Jinchuan Chen, Reynold Cheng. Efficient Evaluation of Imprecise
Location-Dependent Queries. ICDE 2007, pp. 586-595.

[5] George Beskales, Mohamed A. Soliman, Ihab F. Ilyas. Efficient search
for the top-k probable nearest neighbors in uncertain databases. PVLDB,
2008, 1(1), pp. 326-339.

[6] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, Dimitrios
Gunopulos: Indexing spatiotemporal archives. VLDB J. (VLDB), 2006,
15(2), pp. 143-164.

[7] Yufei Tao, Dimitris Papadias, Qiongmao Shen. Continuous Nearest
Neighbor Search. VLDB 2002, pp. 287-298.

35

