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Abstract—MBR (Minimum Bounding Rectangle) has been widely 
used to represent multimedia data objects in R*-Tree family 
indexing techniques. In this paper, in order to improve the 
performance of kNN searching over multimedia data, we propose 
an approach to reduce the computation cost of MINMAXDIST by 
using its approximate upper bound instead of its precise value, 
and then we use it to construct two stronger heuristics for kNN 
pruning, which are helpful to avoid visiting unnecessary data 
objects and MBRs. The experimental results show that the 
proposed approach can reduce the computation cost and boost 
the overall performance in R*-Tree based kNN searching tasks. 
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I.  INTRODUCTION 

The similarity queries on feature vector have been widely 
used to perform the content-based retrieval of multimedia data 
[1]. A set of multimedia data objects similar to the query 
objects can be retrieved by searching feature vectors which are 
close to the given query objects. To apply the similarity query 
technique to large-scale repositories, it is urgent to develop 
multidimensional index structure nearest neighbor queries. 

R*-Tree [2] and its variations use MBR (Minimum 
Bounding Rectangle) to represent multimedia data objects and 
conduct efficient similar search by efficiently organizing these 
MBRs. The MBR based index structures has been employed in 
various domains. In the MBR based similar queries task, 
especially kNN queries which return the most similar k objects, 
MINDIST and MINMAXDIST [3] remain the most popular 
pruning metrics. However, in multimedia database, when the 
dimensionality is high, the actual distance computations, 
distance-based pruning metrics, especially the MINMAXDIST, 
will become expensive. Then the I/O cost becomes a minor 
performance factor and the computations costs become the 
dominant component during the search.  

Previously works can be divided into two categories: The 
first type of work often employ MBR based objet 
approximation to accelerate the search performance. For 
example, rectangles are employed for approximating the 
complex spatial objects such as polygons or CAD models 
because operations on the exact complex object representation 
are usually much more expensive than on the object’s 
approximate representation. Their typical application scenarios 
for MBR approximations include GIS [4] and uncertain data 
retrieval [5]. The second type of rectangular approximations 

focuses on commonly integrated into spatial pruning methods 
to speed up the similar queries. In this scenario, the pruning 
techniques use similar searching over multi-dimensional vector 
spaces, time series data and spatial-temporal data [6-7]. 

In order to improve the performance of kNN search over 
multimedia data, we develop an approach to quickly determine 
a tightly approximate upper bound value of MINMAXDIST, 
and then we use this approximate upper bound instead of its 
precise value to prune and save the computation cost. The 
remainder of this paper is organized as follows. Section II 
details the definitions of MINDIST, MINMAXDIST and how 
to use them to conduct pruning in the kNN search tasks. We 
present our approach that how to quickly determine an upper 
bound of MINDMAXDIST in section III. Then we evaluate its 
performance in section IV.  

II. MINDIST AND MINMAXDIST BASED KNN SEARCH 

In R*-Tree like MBR based index structures, a rectangle R 
in n-dimensional Euclidean space E(n) will be defined by two 
end points S and T of its major diagonal. Thus a rectangle R 
often denotes as following: 

R=(S, T) 
Where S=[s1, s2, ... , sn], T=[t1, t2, ... , tn] and si ≤ ti for 1 ≤ i ≤ n. 

This definition of rectangle R will be referred in the 
definition of MINDIST and MINMAXDIST.  

A. MINDIST and MINMAXDIST 

MINDIST(Q, R)is the minimum distance between a query 
point Q and a bounding rectangle R. It could be denoted as 
following: 

MINDIST(Q, R)= 2
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Notice that if Q is inside rectangle R or Q is on the 
perimeter of R, then MINDIST(Q, R) = 0. Otherwise, it is 
equal to the square of the minimal Euclidean distance from Q 
to any point on the perimeter of R. It is easy to know that the 
computation complexity of MINDIST is linear to the number 
of dimensionality, denoted as O(n). MINDIST (Q, R) is used 
to determine the closest object to Q from all those enclosed in 
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R. During the kNN search, it can be employed to decide which 
MBR to search first and produced a sorted queue of MBRs 
waiting for further processing. In order to avoid visiting 
unnecessary MBRs in the above sorted queue, we need an 
upper bound of the (kth) nearest neighbor distance to any 
object inside an MBR. This upper bound guarantees there is an 
object within the MBR at a distance less than or equal to it. So 
we call this upper bound as MINMAXDIST.  

Given a query point and a rectangle R=(S, T), MINDIST(Q, 
R) can be defined as following: 
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According to the definition of MINMAXDIST, we know 
that MINMAXDIST is the minimum distance that guarantees 
the presence of an object O in R whose distance from Q is 
within this distance. MINMAXDIST (Q, R) is the distance 
from Q to the closet corner of R that is adjacent (i.e., 
connected with an edge of R) to the corner that is farthest from 
Q. A value larger than or equal to MINMAXDIST will be 
bound to catch some objects inside an MBR, but a smaller 
distance could miss some objects. Figure 1 is an example of 
MINDIST and MINMAXDIST in 2-D space. 

 
Figure 1. Example of MINDIST and MINMAXDIST in 2-D spaces 

The construction of MINMAXDIST is more complicate 
and costly than MINDIST, it could be described as follows: 
for each k select the hyperplane Hk=rmk which contains the 
closer of the tow surfaces of the MBR orthogonal to the kth 
space axis. One of the surface could be represented as Hk=Sk, 
while the other one is denoted as Hk=Tk. The point Vk=(rM1, 
rM2, … , rMk-1, rmk, rMk+1, …, rMn), is the farthest vertex from 
Q on this surface. Then MINMAXDIST could be 
characterized as the minimum of the squares of the distance to 
each of these vertexes. If we take the distance from Q to the 
furthest vertex on the MBR as

1
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MINMAXDIST will be obtained by iteratively selecting the 
minimum of 2| | | |k k k lF q rM q rm    for l k n  .  

B. Pruning heuristics based on MINDIST and MINMAXDIST 

Since the MINDIST and MINMAXDIST provide the lower 
bound and upper bound from the query point Q to the MBR, 
the following 3 most popular heuristics [3] have been proposed 
to prune the search based on R*-Tree like index structures. The 
following description is target to nearest neighbor (1NN) 
search. It is easy to extend it to kNN search by: (1) Keeping a 
sorted buffer of at most k current nearest neighbors; (2) 

Pruning is done according to the distance of the furthest nearest 
neighbor in this buffer. 

H1: An MBR M with MINDIST (Q, R), which is greater 
than the MINMAXDIST(Q, R’) of another MBR R’, is 
discarded because it cannot contain the NN. This is used in 
downward pruning. An example of this heuristics is shown as 
figure 2. 

 

Figure 2. Example of Heuristics 1 

H2: An actual distance from Q to a given object O, which is 
greater than the MINMAXDIST(Q, R) for MBR R, can be 
discarded because M contains an object O’ which is near to Q’ 
that is nearer to Q. This is also used in downward pruning. An 
example is illustrated in figure 3. 

 
Figure 3. Example of Heuristics 2 

H3: Every MBR M with MINDIST(Q, R) which is greater 
than the actual distance from Q to a given object O, is 
discarded because it cannot enclose an object nearer than O. 
This is used in upward pruning. An example is depicted in 
figure 4. 

 
Figure 4. Example of Heuristics 3 

III. INMAXDISTUP AND ITS PRUNING HEURISTICS 

A. Quickly Obtaining Approximate Upper Bound of 
MINMAXDIST 

According to the analysis in section II, we conclude that if a 
distance from query point Q to the MBR is larger than or equal 
to MINMAXDIST, then it will catch some objects inside an 
MBR as the candidate results, but a smaller distance could miss 
some objects. So if we want to approximate the 
MINMAXDIST without the loss of effectiveness/precision of 
kNN search, we must obtain and use its (tightly) approximate 
upper bound in the pruning. Since the main reason that we use 
an approximate MINMAXDIST to replace its original precise 
value in heuristics H1 and H2 is to save the costly computation, 
thus the required approximate upper bound of MINMAXDIST 
can be quickly determined.  

In section II, we know that MINMAXDIST is obtained by 
iteratively selecting the minimum of 
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if we maximize the Euclidean distance computation component 
of | |i iq r  in every dimension, we will get an approximate 
upper bound of MINMAXDIST. Based on this idea, we denote 
this upper bound of MINMAXDIST as MINMAXDISTup , its 
definition is as following: 
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Recall the definition of MINDIST, its computation requires 
comparing qi with si or ti, and | |i iq r  (where ri is either equal 
to si or ti) is also computed. Since they are common 
computation costs in MINMAXDISTup, thus we can cache the 
needed intermediate results when we compute MINDIST, and 
then reuse it when computing MINMAXDISTup.  

For example, when computing the | |i iq r for MINDIST 

in ith dimension, we can know | | | |i i i iq s q t    

or | | | |i i i iq t q s   , if | | | |i i i iq s q t    are true, then 

| |i iq r will be computed for MINDIST, this intermediate 
result is also required by  MINMAXDISTup, thus we store it in 
a buffer array and then reuse it when computing 
MINMAXDISTup. 

The new obtained approximate upper bound 
MINMAXDISTup forms two strong heuristics H1’ and H2’, 
which could be used to replace H1 and H2 to achieve faster 
pruning.  

H1’: A rectangle R is discarded if there is another R’ and 
MINDIST(Q, R) is greater than an approximate upper bound 
of MINMAXDISTup (Q, R). 

H2’: An object O is discarded if there exists an R such that 
ACTUAL-DIST(Q, O) is greater than MINIMAXDISTup (Q, 
R). 

B. MINMAXDISTup based kNN Search Algorithm 

The (k) nearest neighbor search algorithm is described as 
follows: 

 Initializing the nearest distance as infinite distance. 

 Traversing down the tree from the root. At each newly 
visited non-leaf node, we sort its MBR into an Active 
Branch List (ABL) by the MBR’s ordering metric 
(MINDIST or MINMAXDISTup). 

 Applying pruning heuristics H1’ and H2’ to the ABL 
to remove unnecessary branches. In this step, 
MINMAXDISTup is quickly obtained by reusing part 
of intermediate computations of MINDIST. 

 Iterating on this ABL until it is empty. For each 
iteration, we apply the step 3 recursively to its children 
node. 

 At a leaf node, we compute each object’s distance from 
the query point, compare it with the distance of the (kth) 
nearest distance so far, and update it if necessary. 

 At the return from recursion, we apply pruning 
heuristics H3 to remove unnecessary branches. 

 When the ABL is empty, (kth) the nearest neighbor is 
returned. 

IV. EXPERIMENTAL RESULTS 

A.  Implementation and Experimental Settings 

We implement the proposed MINMAXDISTup based 
pruning heuristics into SR-Tree to conduct efficient kNN 
search for high-dimensional multimedia data, we name this 
revised index structure as ASR-Tree (Approximate SR-Tree). 
Its performance is evaluated on the large-scale MSRA-MM 2.0 
multimedia data set and compared with R*-Tree and SR-Tree. 

MSRA-MM 2.0 data set contains both images and video 
shot data. In this study, we use part of image data set to 
estimate the kNN search efficiency of our proposed ASR-Tree. 
The size of the involved data set is from 100k to 400k, the 
number of its dimensional varied from 16 to 256. In all the 
results, the page sizes of the three index structures are fixed to 
8KB. We use two metrics to measure the kNN search 
performance. They are CPU time and number of page access. 
In the kNN search evaluation, the queries objects is 100 images 
including animals, tools, sports and landscapes, etc. They have 
been depicted in figure 5. In each experiment, we issue all the 
100 query images to conduct kNN search tasks, and repeated it 
5 times to get the average value as the final results. 

 
Figure 5. 100 Queries Images for kNN Search Task 

The experiments are conducted on a computer with Ubuntu 
Linux 10.04. Its CPU is Intel i3 M330 CPU (2.13 GHz), it has 
2GB memory and equipped with a HITACHI SATA 5400rpm 
disk. 

B. Effect of Data Size 

In the first experiment, we study the performance of kNN 
search over R*-Tree, SR-Tree and ASR-Tree when data size 
increases from 100k to 400k. The figure 6 shows the 
performance of query processing in terms of CPU cost and disk 
read cost. In the experiment, the k of kNN is set to be 10 and 
the three indexes are constructed in the same optimal bulk load 
manner. 

 
(a) CPU cost vs. Dimensionality 
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(b) Disk read cost vs. Data size 

Figure 6. Effect of Data Size 

From above figures, it is evident that ASR-Tree 
outperforms the other two methods in terms of the response 
time for the three datasets. The graph shows when data size is 
less than 400k, the page access overhead of SR-Tree and ASR-
Tree hold a big gap but their total CPU costs nearly are the 
same. This phenomenon is considered as the evidence that the 
CPU cost become the dominant component in the overall query 
processing cost in MBR based index structures when 
dimensionality increases. 

C. Effect of Dimensionality 

In our second experiment, we measure the impacts of the 
dimensionality in MBR based kNN search task. The detailed 
experimental results are presented in figure 7. As the 
experiments in last section, k is also set to be 10 and indexes 
are constructed in the optimal bulk load manner. In this 
experiment, data size is 100k. 

 
(a) CPU cost vs. Dimensionality 

 
(b) Disk read cost vs. Dimensionality 

Figure 7. Effect of Dimensionality 

From the experimental results, we can see that although 
ASR-Tree has more page access than other two approaches, it 
still have less response time than VSR-Tree and SR-Tree. 
Because of the only difference between the SR-Tree and ASR-
Tree is its pruning strategies, they are same in index 
construction and maintenance, thus we can owe the superiority 
of ASR-Tree to the MINMAXDISTup metric and the two 
enhanced pruning strategies H1’ and H2’. 

D. Effectiveness of Enhanced Pruning Heuristics 

To evaluate the effectiveness of enhanced pruning 
heuristics H1’ and H2’, we devise this experiment to evaluate 
the ration of (visited leaves node / all the leaves nodes). The 

experimental settings are: k of kNN is 1000, data size is 400k 
and the dimensionality is up to 256. The results are plot into 
figure 8. 

 
Figure 8. Effect of Enhanced Pruning Heuristics 

From section C, we conclude that the differences between 
ASR-Tree and SR-Tree are the pruning heuristics H1’ and H2’ 
during query processing. The results are clearly shown in figure 
8. When dimensional is less than 64, the effectiveness of H1’ 
and H2’ is evident, and many nodes visited in SR-Tree will be 
filtered in ASR-Tree. That is why ASR-Tree outperform R*-
Tree and SR-Tree in the first two measurements. However, 
with the increase of dimensionality, the intrinsic of R*-Tree 
family techniques make them suffered and visit almost all the 
leaves node, then the performance decrease rapidly, this is the 
so-called curse of dimensionality. In this case, traditionally R-
Tree based pruning techniques only aims to reduce the I/O cost 
may become impractical, the high-dimensional kNN search 
pruning techniques should consider reduce both computation 
cost and I/O cost to improve the overall performance. 

In this paper, we propose an approach to quickly obtain a 
tightly approximate upper bound value of MINMAXDIST, and 
then we use this approximate upper bound instead of its precise 
value to improve the search performance.  
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