

Characterizing Petri Nets with the Temporal Logic
CTL

Liu Zhifeng
School of Computer Science and Telecommunication

Engineering, Jiangsu University
Zhenjiang, China
liuzf@ujs.edu.cn

Xing Zhihu
School of Computer Science and Telecommunication

Engineering, Jiangsu University
Zhenjiang, China

Abstract—Model checking is a powerful technique for verifying
systems and detecting errors at early stages of the design process.
When model checking is used to check properties of Petri net, the
specification has to be expressed in temporal logics. In this paper
we will focus on how to characterize some important properties
of Petri net such as reachability, liveness et al. with the
computation tree logic CTL. Under the characterization Petri net
can be verified automatically with the help of a model checker.

Keywords-model checking; petri net; computation tree logic

I. INTRODUCTION

Model Checking [1, 2] is a powerful technique for verifying
systems and detecting errors at early stages of the design
process, which is obtaining wide acceptance in industrial
setting. In Model Checking, the specification is expressed in
temporal logic-either Computation Tree Logic(CTL)[3] or
Linear Temporal Logic(LTL)[4]-and the system is modeled as a
finite state machine(FSM). Petri net[5] is a state machine,
which is widely used for modeling reactive systems such as
communication protocols, workflow[6].

Petri nets are a graphical and mathematical modeling tool
applicable to many systems. They are a promising tool for
describing and studying information processing systems that
are characterized as being concurrent asynchronous, distributed,
parallel, nondeterministic, and stochastic. As a graphical tool,
Petri nets can be used as a visual communication aid similar to
flow charts, block diagrams, and networks. In addition, token
are used in these nets to simulate the dynamic and concurrent
activities of systems. As a mathematical tool, it is possible to
set up state equations, algebraic equations, and other
mathematical models governing the behavior of systems. Petri
nets can be used by both practitioners and theoreticians. Thus,
they provide a powerful medium of communication between
them: practitioners can learn from theoreticians how to make
their models more methodical, and theoreticians can learn from
practitioners how to make their models more realistic.

When model checking is applied to check Petri nets, the
properties are needed to be expressed with temporal logic.
Some important properties include reachability[7], liveness,
boundedness[8], reversibility, home state, coverability, and
persistence. In this paper we exploited how to describe these
properties with computation tree logic CTL. Under the

description, a model checker such as NuSMV can be used to
check Petri nets automatically.

II. PETRI NET

Historically speaking, Petri nets originate from the early
work of Carl Adam Petri. Since then the use and study of Petri
nets have increased considerably. The classical petri net is a
directed bipartite graph with two node types called places and
transitions. The nodes are connected via directed arcs.
Connections between two nodes of the same type are not
allowed.

Definition 2.1. A petri net is a four-tuple: 0(, , ,)PN P T F M
1) P is a finite set of places.

2) T is a finite set of transitions

3) ,P T P T

4))() (F P T T P is a set of arcs.

5) 0 :M P N is an initial state.

{ | () (,) }u v v P T v u F
{ | () (,) }u v v P T u v F

 is called the preset of , u

 is called the postset of u .

Definition 2.2. A transition t is enabled in the state M if and
only if , () 1p t M p .

If the transition t is enabled in the state M , it can be fired.
When t is fired, the new state M is computed as follows:

() 1:

'() () 1: (1)

() :

M p p t t

M p M p p t t

M p otherwise

Following is some notations used in the paper.

a) 'tM M : The transition t is fired at the state M
and a new state M is computed as (1).

b) 1 kM M : For the transition sequence

1 2 1... kt t t there exists states 2 3 1... kM M M such that

1
it

i iM M for 1 1i k . kM is reachable from 1M if

there exists a transition sequence 1 2 1... kt t t such that

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press278

1 kM M

1

. The empty transition is allowed, i.e., the state is

reachable from itself.

c) *
kM M : There exists a transition sequence

1 2 1... kt t t such that 1 kM M .

d) M is the set of states reachable from M.

Definition 2.3. A petri net is bounded iff

for each place there is a natural number n such that for every

reachable state the number of tokens in p is no more than n,

i.e. , for every

0(, , ,)PN P T F M

, ()

p

 0M M M p n .

Definition 2.4. A petri net is n-bounded iff

for every reachable state
0(, , ,)PN P T F M

, , ()M p P M p n .

III. THE COMPUTATION TREE LOGIC CTL

Definition 3.1. The Kripke structure of a petri net
 is a four-tuple , where S is the

set of states, R is the transition relation, and
0,)M(, ,PN P T F 0(, , ,)S R L s

0s is the initial
state. S and R are defined inductively as follows.

1) 0 0s M S
2) If M S then (,)M M R
3) If M S and t T , 'tM M then 'M S and

(, ')M M R
L S

PN

4) : 2AP is a function that labels each state with the

set of atomic propositions true in that state.
5) S and R have no other elements.

In the following of this section K is the Kripke structure of
a petri net and 0(, , ,)P T F M 1 2({ , ,..., })mP p p p 0s is
the initial state in K. Computation Tree Logic CTL are
composed of path quantifiers and temporal operators. The path
quantifiers are used to describe the branching structurein the
computation tree. There are two such quantifiers A(for all
computation paths) and E(for some computation path). The
temporal operators describe properties of a path through the
tree. There are four basic operators:

 • X (“next time”) requires that a property holds in the
second state of the path.

 • F (“eventually” or “in the future”) operator is used to
assert that a property will hold at some state on the path.

 • G (“always” or “globally”) specifies that a property
holds at every state on the path.

 • U operator is used to combine two properties. It holds
if there is a state on the path where the second property
holds, and at every preceding state on the path, the first
property holds.

The syntax of CTL formulas is given by the following rules:
1) If p AP , then p is a CTL formula,
2) If f is a CTL formula, then ,AX ,EX , AFf f f f ,

EF ,AG ,EGf f f are CTL formulas.
3) If f and g are CTL formulas, then f g , f g ,

A Uf g , E Uf g are CTL formulas.

We define the semantics of CTL with respect to a Kripke
structure. (1f , 2f are CTL formulas and p is an atomic
proposition.)

1) , | ()K s p p L s
, | , |

.
2) 1 1K s f K s f .
3) 2, |1 2 1, | , |K s f f K s f or K s f

, | , | , |
.

4) 21 2 1K s f f K s f and K s f .
5) 1, |K s EXf there is a path 0 1...s s from

0()s s s such that , |1 1K s f .
6) 1, |K s AXf for every path 0 1...s s from

()0s s s such that , |1 1K s f .
7) 1, |K s EFf there exists a path 0 1...s s from

0()s s s on which there exists a state (0)ks k such that

1, |kK s f .
8) 1, |K s AFf for every path 0 1...s s from

0()s s s , there exists a (0)ks k on the path such that

1, |kK s f .
9) 1, |K s EGf there exists a path 0 1...s s from

()0s s s such that 0,i 1i, |K s f .
10) 1, |K s AGf for every path 0 1...s s from

()0s s s such that 0,i 1i, |K s f .
11) 1 2, |K s Ef Uf there exists a path 0 1...s s from

0()s s s on which there exists a 0k such that 2, |kK s f
and 0 ,j k 1j, |K s f .

12) 1 2, |K s Af Uf for every path 0 1...s s from

0()s s s there exists a 0k on the path such that

2, |kK s f and 0 ,j k 1, |jK s f .

IV. CHARACTERIZING PETRI NET'S PROPERTIES WITH CTL

A. Reachability

Reachability is a fundamental basis for studying the
dynamic properties of any system. The firing of an enabled
transition will change the token distribution in a net according
to the transition rule described in Section 2. A sequence of
firing will result in a sequence of marking. The reachability
problem for petri nets is the problem of finding if M is
reachable from 0M for a given state M .We have the
following theorem.

Theorem 4.1. M is reachable from the initial state M0 iff

0 1 1 2 2, | ('() () '() () ... '()mK s EF M p M p M p M p M p
())mM p .

B. Boundedness

Boundedness is a very important property for Petri nets. By
verifying that the net is bounded or safe, it is guaranteed that
there will be no overflows in the buffers or registers, no matter
what firing sequence is taken.

Theorem 4.2. A petri net is n−bounded iff 0(, , ,)PN P T F M

)0
1

, | (()
m

i
i

K s AG M p

n .

279

Theorem 4.3. A petri net 0 is bounded iff
there is a positive integer k such that

(, , ,)PN P T F M

)0
1

, | (()
m

i
i

K s AG M p

 k .

C. Liveness

The concept of liveness is closely related to the complete
absence of deadlocks in operating systems. A Petri net

 is said to be live if no matter what states

has been reached from
0(, , ,)PN P T F M

0M , it is possible to ultimately fire any
transition of the net by progressing through some further firing
sequence.This means that a live Petri net guarantees deadlock-
free operation, no matter what firing sequence is chosen.

Theorem 4.4. A petri net is live iff for all t,

.
0(, , ,)PN P T F M

) 1) 0, | ((
p t

K s AGEF M p

Liveness is an ideal property for many systems. However it
is impractical and too costly to verify this strong property for
some systems such as the operating systems of a large
computer. Thus we relax the liveness condition and define
different levels of liveness as follows[5][8].

Definition 4.5. A transition t in a petri net

is said to be dead (L0-live) if t can never be fired in any firing
sequence.

0(, , ,)PN P T F M

Theorem 4.6. A transition t in a petri net is

dead (L0-live) iff .
0(, , ,)PN P T F M

() 1))p 0, | ((
p t

K s AG M

Definition 4.7. A transition t in a petri net

is said to be L1-live if t can be fired at least once in some firing
sequence.

0(, , ,)PN P T F M

Theorem 4.8. A transition t in a petri net is

said to be L1-live iff .
0(, , ,)PN P T F M

() 1)p 0, | (
p t

K s EF M

Definition 4.9. A transition t in a petri net

is said to be L3-live if t can be fired infinitely often in some
firing sequence.

0(, , ,)PN P T F M

Theorem 4.10. A transition t in a petri net

is said to be L3-live iff .
0(, , ,)PN P T F M

() 1)M p 0, | (
p t

K s EGF

D. Reversibility and Home State

Definition 4.11. A Petri net is said to be

reversible if for each state M in
0(, , ,)PN P T F M

0M , M0 is reachable from M.

Thus in a reversible net one can always get back to the initial
state.
Theorem 4.12. A Petri net is reversible

iff

0(, , ,)PN P T F M

0 0() ())i i
1

, | (
m

i

K s AGEF M

 p M p .

In many applications , it is not necessary to get back to the
initial state as along as one can get back to some state.

Therefore, we relax the reversibility condition and define a
home state.
Definition 4.13. A state 'M is said to be a home state if for
each state M in 0M , 'M is reachable from M .

Theorem 4.14. A state 'M is a home state iff

0
1

, | (()))
m

i

'(i iK s AGEF M p

 M p .

E. Coverability

Coverability is closely related to L1−liveness. Let M be the
minimum marking needed to enable a transition t. Then t is
dead if and only if M is not coverable.That is, t is L1−live if
and only if M is coverable.

Definition 4.15. A state M in a petri net 0(, , ,)PN P T F M is

said to be coverable if there exists a state M′ in 0M such

that M′(p) ≥ M(p) for each p in the petri net.
Theorem 4.16. A state M in a petri net PN = (P, T, F,M0) is

said to becoverable iff 0
1

, | ('() ())
m

i i
i

K s EF M p M p

 .

F. Persistence

Definition 4.17. A Petri net is said to be
persistent if for any two enabled transitions, the firing of one
transition will not disable the other.

0(, , ,)PN P T F M

A transition in a persistent net, once it is enabled, will stay
enabled until it fires. The notion of persistence is useful in the
context of parallel program schemata and speed-independent
asynchronous circuits. Persistency is closely related to conflict
free nets, and a safe persistent net can be transformed into a
marked graph by duplicating some transitions and places. Note
that all marked graphs are persistent, but not all persistent nets
are marked graphs.

Theorem 4.18. A Petri net is persistent if

and only if for any two transitions t1, t2,
0(, , ,)PN P T F M

1 2

) () 1)
p t

M p

1 2

0, | ((() 1 () 2).
p t tp t

K s AG M p M p

V. CONCLUSIONS AND FUTURE WORK

Model checking is an automatical technique and widely
used in industries. When model checking is applied to check
properties of Petri net, the specification has to be expressed in
temporal logic such as CTL, LTL. In this paper we focused on
how to characterize some important properties of Petri net such
as reachability, liveness et al. with the computation tree logic
CTL. The characterization makes Petri net be verified
automatically with the help of a model checker such as
NuSMV. There are several directions in which further work is
needed. Firstly we will explore how to express more properties
with CTL. Second work is to characterize other models with
CTL.

280

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 60773049, 61003288), the
People with Ability Foundation of Jiangsu University
(07JDG014), the Fundamental Research Project of the Natural
Science in Colleges of Jiangsu Province (08KJD520015), and
the Ph.D. Programs Foundation of Ministry of Education of
China (20093227110005).

REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking, MIT Press,

1999.

[2] Christel Baier,Joost-Pieter Katoen, Principles of Model Checking, MIT
Press,2008.

[3] M. Ben-Ari. Z. Manna. and A. Pnueli, The temporal logic of branching
time. Acta Information, 20(1983), 207-226.

[4] A. Pnueli. A temporal logic of concurrent programs. Theoretical
Computer Science, 13, 45-60.

[5] T. Murata. Petri Nets: Properties, analysis and application. Proc of the
IEEE, Vol. 77(4):541-574, April 1989.

[6] W.M. P. van der Aalst. Verification of Workflow Nets. In P. Azema and
G. Balbo, editors, Application and Theory of Petri Nets 1997, volume
1248 of LNCS, pages 407-426. 1997.

[7] M. Praveen, K. Lodaya, Analyzing Reachability for Some Petri Nets
With Fast Growing Markings. Electronic Notes in Theoretical Computer
Science, Volume 223, 26 December 2008, Pages 215-237.

[8] Li Jiaoa, To-Yat Cheunga, Weiming Lu. On liveness and boundedness
of asymmetric choice nets. Theoretical Computer Science, Volume 311,
Issues 1-3, 23 January 2004, Pages 165-197.

281

	I. Introduction
	II. Petri Net
	a) : The transition is fired at the state and a new state is computed as (1).
	b) : For the transition sequence there exists states such that for . is reachable from if there exists a transition sequence such that . The empty transition is allowed, i.e., the state is reachable from itself.
	c) : There exists a transition sequence such that .
	d) is the set of states reachable from M.

	III. The Computation Tree Logic CTL
	2) If then
	3) If and , then and
	4) is a function that labels each state with the set of atomic propositions true in that state.
	5) S and R have no other elements.
	1) If , then is a CTL formula,
	2) If is a CTL formula, then , are CTL formulas.
	3) If and g are CTL formulas, then , , , are CTL formulas.
	1) .
	2) .
	3) .
	4) .
	5) there is a path from such that .
	6) for every path from such that .
	7) there exists a path from on which there exists a state such that .
	8) for every path from , there exists a on the path such that .
	9) there exists a path from such that .
	10) for every path from such that .
	11) there exists a path from on which there exists a such that and .
	12) for every path from there exists a on the path such that and .

	IV. Characterizing Petri Net's Properties with CTL
	A. Reachability
	B. Boundedness
	C. Liveness
	D. Reversibility and Home State
	E. Coverability
	F. Persistence

	V. Conclusions and Future work

