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Abstract—Model checking is a powerful technique for verifying 
systems and detecting errors at early stages of the design process. 
When model checking is used to check properties of Petri net, the 
specification has to be expressed in temporal logics. In this paper 
we will focus on how to characterize some important properties 
of Petri net such as reachability, liveness et al. with the 
computation tree logic CTL. Under the characterization Petri net 
can be verified automatically with the help of a model checker. 
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I.  INTRODUCTION 

Model Checking [1, 2] is a powerful technique for verifying 
systems and detecting errors at early stages of the design 
process, which is obtaining wide acceptance in industrial 
setting. In Model Checking, the specification is expressed in 
temporal logic-either Computation Tree Logic(CTL)[3] or 
Linear Temporal Logic(LTL)[4]-and the system is modeled as a 
finite state machine(FSM). Petri net[5] is a state machine, 
which is widely used for modeling reactive systems such as 
communication protocols, workflow[6]. 

Petri nets are a graphical and mathematical modeling tool 
applicable to many systems. They are a promising tool for 
describing and studying information processing systems that 
are characterized as being concurrent asynchronous, distributed, 
parallel, nondeterministic, and stochastic. As a graphical tool, 
Petri nets can be used as a visual communication aid similar to 
flow charts, block diagrams, and networks. In addition, token 
are used in these nets to simulate the dynamic and concurrent 
activities of systems. As a mathematical tool, it is possible to 
set up state equations, algebraic equations, and other 
mathematical models governing the behavior of systems. Petri 
nets can be used by both practitioners and theoreticians. Thus, 
they provide a powerful medium of communication between 
them: practitioners can learn from theoreticians how to make 
their models more methodical, and theoreticians can learn from 
practitioners how to make their models more realistic. 

When model checking is applied to check Petri nets, the 
properties are needed to be expressed with temporal logic. 
Some important properties include reachability[7], liveness, 
boundedness[8], reversibility, home state, coverability, and 
persistence. In this paper we exploited how to describe these 
properties with computation tree logic CTL. Under the 

description, a model checker such as NuSMV can be used to 
check Petri nets automatically. 

II. PETRI NET 

Historically speaking, Petri nets originate from the early 
work of Carl Adam Petri. Since then the use and study of Petri 
nets have increased considerably. The classical petri net is a 
directed bipartite graph with two node types called places and 
transitions. The nodes are connected via directed arcs. 
Connections between two nodes of the same type are not 
allowed. 

Definition 2.1. A petri net is a four-tuple: 0( , , , )PN P T F M   
1) P  is a finite set of places.  

2) T is a finite set of transitions 

3) ,P T P T       

4) )( ) (F P T T P    is a set of arcs. 

5) 0 :M P N  is an initial state. 

{ | ( ) ( , ) }u v v P T v u F    
{ | ( ) ( , ) }u v v P T u v F

  is called the preset of , u

       is called the postset of u . 

Definition 2.2. A transition t  is enabled in the state M  if and 
only if , ( ) 1p t M p   . 

If the transition t  is enabled in the state M , it can be fired. 
When t  is fired, the new state M   is computed as follows: 

( ) 1:

'( ) ( ) 1: (1)

( ) :

M p p t t

M p M p p t t

M p otherwise

   
   

  

Following is some notations used in the paper. 

a) 'tM M  : The transition t  is fired at the state M  
and a new state M  is computed as (1). 

b) 1 kM M  : For the transition sequence 

1 2 1... kt t t   there exists states 2 3 1... kM M M   such that 

1
it

i iM M   for 1 1i k   . kM  is reachable from 1M  if 

there exists a transition sequence 1 2 1... kt t t   such that 
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1 kM M

1

. The empty transition is allowed, i.e., the state is 

reachable from itself. 

c) *
kM M : There exists a transition sequence 

1 2 1... kt t t   such that 1 kM M . 

d)  M  is the set of states reachable from M. 

Definition 2.3. A petri net  is bounded iff 

for each place  there is a natural number n such that for every 

reachable state the number of tokens in p  is no more than n, 

i.e. , for every 

0( , , , )PN P T F M

, ( )

p

 0M M M p n  . 

Definition 2.4. A petri net  is n-bounded iff 

for every reachable state 
0( , , , )PN P T F M

, , ( )M p P M p n   . 

III. THE COMPUTATION TREE LOGIC CTL 

Definition 3.1. The Kripke structure of a petri net 
 is a four-tuple , where S is the 

set of states, R is the transition relation, and 
0, )M( , ,PN P T F 0( , , , )S R L s

0s  is the initial 
state. S and R are defined inductively as follows. 

1)   0 0s M S   
2)   If M S  then ( , )M M R  
3)   If M S  and t T  , 'tM M  then 'M S  and         

( , ')M M R
L S 

PN

 
4)  : 2AP  is a function that labels each state with the 

set of atomic propositions true in that state. 
5)  S and R have no other elements. 

In the following of this section K is the Kripke structure of 
a petri net   and 0( , , , )P T F M 1 2( { , ,..., })mP p p p 0s  is 
the initial state in K. Computation Tree Logic CTL are 
composed of path quantifiers and temporal operators. The path 
quantifiers are used to describe the branching structurein the 
computation tree. There are two such quantifiers A(for all 
computation paths) and E( for some computation path). The 
temporal operators describe properties of a path through the 
tree. There are four basic operators: 

 • X (“next time”) requires that a property holds in the 
second state of the path. 

 • F (“eventually” or “in the future”) operator is used to 
assert that a property will hold at some state on the path. 

 • G (“always” or “globally”) specifies that a property 
holds at every state on the path. 

 • U operator is used to combine two properties. It holds 
if there is a state on the path where the second property 
holds, and at every preceding state on the path, the first 
property holds. 

The syntax of CTL formulas is given by the following rules: 
1)  If p AP , then p  is a CTL formula, 
2)  If f  is a CTL formula, then ,AX ,EX , AFf f f f , 

EF ,AG ,EGf f f  are CTL formulas. 
3)  If f  and g are CTL formulas, then f g , f g , 

A Uf g , E Uf g  are CTL formulas. 

We define the semantics of CTL with respect to a Kripke 
structure. ( 1f , 2f  are CTL formulas and p  is an atomic 
proposition.) 

1) , | ( )K s p p L s  
, | , |

. 
2) 1 1K s f K s f    . 
3) 2, |1 2 1, | , |K s f f K s f or K s f    

, | , | , |
. 

4) 21 2 1K s f f K s f and K s f     . 
5) 1, |K s EXf   there is a path 0 1...s s   from 

0( )s s s  such that , |1 1K s f . 
6) 1, |K s AXf   for every path 0 1...s s   from 

( )0s s s  such that , |1 1K s f . 
7) 1, |K s EFf   there exists a path 0 1...s s   from 

0( )s s s  on which there exists a state ( 0)ks k   such that 

1, |kK s f . 
8) 1, |K s AFf   for every path 0 1...s s   from 

0( )s s s , there exists a ( 0)ks k   on the path   such that 

1, |kK s f . 
9) 1, |K s EGf   there exists a path 0 1...s s   from 

( )0s s s  such that 0,i  1i, |K s f . 
10) 1, |K s AGf   for every path 0 1...s s   from 

( )0s s s  such that 0,i  1i, |K s f . 
11) 1 2, |K s Ef Uf   there exists a path 0 1...s s   from 

0( )s s s on which there exists a 0k  such that 2, |kK s f  
and 0 ,j k   1j, |K s f . 

12) 1 2, |K s Af Uf   for every path 0 1...s s   from 

0( )s s s  there exists a 0k   on the path   such that 

2, |kK s f  and 0 ,j k   1, |jK s f . 

IV. CHARACTERIZING PETRI NET'S PROPERTIES WITH CTL 

A. Reachability 

Reachability is a fundamental basis for studying the 
dynamic properties of any system. The firing of an enabled 
transition will change the token distribution in a net according 
to the transition rule described in Section 2. A sequence of 
firing will result in a sequence of marking. The reachability 
problem for petri nets is the problem of finding if M  is 
reachable from 0M  for a given state M .We have the 
following theorem. 

Theorem 4.1. M is reachable from the initial state M0 iff 

0 1 1 2 2, | ( '( ) ( ) '( ) ( ) ... '( )mK s EF M p M p M p M p M p     
( ))mM p . 

B. Boundedness 

Boundedness is a very important property for Petri nets. By 
verifying that the net is bounded or safe, it is guaranteed that 
there will be no overflows in the buffers or registers, no matter 
what firing sequence is taken. 

Theorem 4.2. A petri net  is n−bounded iff 0( , , , )PN P T F M

)0
1

, | ( ( )
m

i
i

K s AG M p


n  . 
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Theorem 4.3. A petri net 0  is bounded iff 
there is a positive integer k such that  

( , , , )PN P T F M

)0
1

, | ( ( )
m

i
i

K s AG M p


  k . 

C. Liveness 

The concept of liveness is closely related to the complete 
absence of deadlocks in operating systems. A Petri net 

 is said to be live if no matter what states 

has been reached from 
0( , , , )PN P T F M

0M , it is possible to ultimately fire any 
transition of the net by progressing through some further firing 
sequence.This means that a live Petri net guarantees deadlock-
free operation, no matter what firing sequence is chosen. 

Theorem 4.4. A petri net is live iff for all t, 

. 
0( , , , )PN P T F M

) 1) 0, | ( (
p t

K s AGEF M p



Liveness is an ideal property for many systems. However it 
is impractical and too costly to verify this strong property for 
some systems such as the operating systems of a large 
computer. Thus we relax the liveness condition and define 
different levels of liveness as follows[5][8]. 

Definition 4.5. A transition t in a petri net  

is said to be dead (L0-live) if t can never be fired in any firing 
sequence. 

0( , , , )PN P T F M

Theorem 4.6. A transition t in a petri net is 

dead (L0-live) iff . 
0( , , , )PN P T F M

( ) 1))p 0, | ( (
p t

K s AG M


  
Definition 4.7. A transition t in a petri net  

is said to be L1-live if t can be fired at least once in some firing 
sequence. 

0( , , , )PN P T F M

Theorem 4.8. A transition t in a petri net is 

said to be L1-live iff . 
0( , , , )PN P T F M

( ) 1)p 0, | (
p t

K s EF M



Definition 4.9. A transition t in a petri net  

is said to be L3-live if t can be fired infinitely often in some 
firing sequence. 

0( , , , )PN P T F M

Theorem 4.10. A transition t in a petri net  

is said to be L3-live iff . 
0( , , , )PN P T F M

( ) 1)M p 0, | (
p t

K s EGF



D. Reversibility and Home State 

Definition 4.11. A Petri net is said to be 

reversible if for each state M in 
0( , , , )PN P T F M

0M , M0 is reachable from M. 

Thus in a reversible net one can always get back to the initial 
state. 
Theorem 4.12. A Petri net is reversible 

iff

0( , , , )PN P T F M

0 0( ) ( ))i i
1

, | (
m

i

K s AGEF M

 p M p  . 

In many applications , it is not necessary to get back to the 
initial state as along as one can get back to some state. 

Therefore, we relax the reversibility condition and define a 
home state. 
Definition 4.13. A state 'M is said to be a home state if for 
each state M  in  0M , 'M  is reachable from M . 

Theorem 4.14. A state 'M is a home state iff 

0
1

, | ( ( ) ))
m

i

'(i iK s AGEF M p


  M p . 

E. Coverability 

Coverability is closely related to L1−liveness. Let M be the 
minimum marking needed to enable a transition t. Then t is 
dead if and only if M  is not coverable.That is, t is L1−live if 
and only if M  is coverable. 

Definition 4.15. A state M in a petri net 0( , , , )PN P T F M is 

said to be coverable if there exists a state M′ in  0M  such 

that M′(p) ≥ M(p) for each p in the petri net. 
Theorem 4.16. A state M in a petri net PN = (P, T, F,M0) is 

said to becoverable iff 0
1

, | ( '( ) ( ))
m

i i
i

K s EF M p M p


  . 

F. Persistence 

Definition 4.17. A Petri net  is said to be 
persistent if for any two enabled transitions, the firing of one 
transition will not disable the other. 

0( , , , )PN P T F M

A transition in a persistent net, once it is enabled, will stay 
enabled until it fires. The notion of persistence is useful in the 
context of parallel program schemata and speed-independent 
asynchronous circuits. Persistency is closely related to conflict 
free nets, and a safe persistent net can be transformed into a 
marked graph by duplicating some transitions and places. Note 
that all marked graphs are persistent, but not all persistent nets 
are marked graphs. 

Theorem 4.18. A Petri net  is persistent if 

and only if for any two transitions t1, t2, 
0( , , , )PN P T F M

1 2

) ( ) 1)
p t

M p



1 2

0, | (( ( ) 1 ( ) 2).
p t tp t

K s AG M p M p
 

     


 

V. CONCLUSIONS AND FUTURE WORK 

Model checking is an automatical technique and widely 
used in industries. When model checking is applied to check 
properties of Petri net, the specification has to be expressed in 
temporal logic such as CTL, LTL. In this paper we focused on 
how to characterize some important properties of Petri net such 
as reachability, liveness et al. with the computation tree logic 
CTL. The characterization makes Petri net be verified 
automatically with the help of a model checker such as 
NuSMV. There are several directions in which further work is 
needed. Firstly we will explore how to express more properties 
with CTL. Second work is to characterize other models with 
CTL. 
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