
 

Generalized Regression Neural Network Based 
Quantitative Structure-Property Relationship for the 

Prediction of Absorption Energy 

Hui Li 
School of Computer Science and Information Technology  

Northeast Normal University 
Changchun, Jilin, China 

lihui@nenu.edu.cn 

Yinghua Lu 
School of Computer Science and Information Technology  

Northeast Normal University 
Changchun, Jilin, China 

luyh@nenu.edu.cn 

Ting Gao 
School of Computer Science and 

Information Technology 
Northeast Normal University 

Changchun, Jilin, China 

Hongzhi Li 
School of Computer Science and 

Information Technology 
Northeast Normal University 

Changchun, Jilin, China 

Lihong Hu 
School of Computer Science and 

Information Technology 
Northeast Normal University 

Changchun, Jilin, China 
 
 

Abstract—Generalized Regression Neural Network (GRNN) was 
used to develop a quantitative structure-property relationship 
(QSPR) model to improve the calculation accuracy of density 
functional theory (DFT). The model has been applied to evaluate 
optical absorption energies of 150 organic molecules based on the 
molecular descriptors. The entire dataset was divided into a 
training set of 120 molecules and a test set of 30 molecules 
according to the method, termed SPXY (Sample set Partitioning 
based on joint x–y distances), extended Kennard and Stones (KS) 
algorithm according to their differences in both x (instrumental 
responses) and y (predicted parameter) spaces in the calculation 
of inter-sample distances. Back-propagation neural network with 
SPXY partitioning algorithm (BPNN-SPXY) and GRNN with KS 
algorithm (GRNN-KS) were also utilized to construct model to 
compare with the results obtained by GRNN with SPXY 
algorithm (GRNN-SPXY). The root-mean-square errors in 
absorption energy predictions for the whole data set given by 
DFT, BPNN-SPXY , GRNN-KS and GRNN-SPXY were 0.47, 
0.21, 0.17 and 0.13, respectively. The GRNN-SPXY prediction 
results are in good agreement with the experimental value of 
absorption energy. 
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I.  INTRODUCTION  

The main task of modern quantum chemistry (QC) is the 
generation of approximate solutions to the Schrödinger 
equation for molecular systems [1-3]. This task is performed 
almost exclusively by expanding the molecular orbitals in a 
Gaussian basis set located on the nuclei. The representation of 
the molecular electron density and, as a consequence, all 
molecular properties is improved as the basis set is enlarged. In 
practical calculations, however, the basis set is usually far from 
complete, meaning that modern QC calculations are greatly 

influenced by the incompleteness of the chosen basis set. In 
fact, Becke’s three-parameter hybrid method (B3LYP) [4-6] 
has been widely recognized as a cost-effective method and has 
been successfully applied to many chemically interesting 
systems. However, the calculation results are not accurate 
enough for all systems, especially for large systems [7]. This 
limitation is caused by the electron correlation inclusion 
obtained and finite basis sets chosen in practical computations. 
To resolve this, simple yet efficient way to correct such errors 
is desired.    

Quantitative structure–property relationship (QSPR) 
provides an alternative method for the prediction of impact 
sensitivity using descriptors derived solely from the molecular 
structure to fit experimental data. The QSPR method is based 
on the assumption that the variation of the behavior of the 
compounds, as expressed by any measured physicochemical   
properties, can be correlated with numerical changes in 
structural features of all  compounds, termed “molecular 
descriptors” [8, 9]. The advantage of this method lies in   the 
fact that it requires only the knowledge of the chemical 
structure and is not dependent on any experimental properties. 
Once a correlation is established and validated, it can be 
applicable for the prediction of the property of new compounds 
that have not been synthesized or found. Thus the QSPR 
method can expedite the process of development of   new 
molecules and materials with desired properties [10]. Artificial 
neural network (ANN) techniques have recently been used with 
success to map the problem of solving complex physical 
differential equations to statistical models. In recent years, 
Chen and co-workers have developed a NN-based approach to 
improve the B3LYP heats of formation of 180 organic 
molecules [11] and Gibbs energy of formation [12, 13], etc., 
Wu and Xu [14, 15] recently introduced a similar NN-based 
method called X1.The latter was shown to drastically improve 
the prediction of B3LYP heats of formation. Our group 
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developed a genetic algorithm and neural network approach to 
improve the calculation accuracy of absorption energies for 
organic molecules [16, 17]. The result is quite promising.  

In the present work, we develop a nonlinear generalized 
regression neural network (GRNN) model for computing 
molecular absorption energies in chemical compound space. 
The accurate calculation for the electronic absorption energy is 
one of the important topics in computational chemistry. The 
entire dataset including 150 organic molecules was divided into 
a training set of 120 organic molecules and a test set of 30 
organic molecules according to the method, termed SPXY 
(Sample set Partitioning based on joint x–y distances), 
extended Kennard and Stones (KS) algorithm according to their 
differences in both x (instrumental responses) and y (predicted 
parameter) spaces in the calculation of inter-sample distances 
[18]. The raw calculated absorption energies are evaluated by 
TDDFT/B3LYP method. In addition, the contributions of the 
involved descriptors to the models were discussed in detail. 

II. MATERIALS AND METHOD  

A. Dataset Partitioning  

In this work, a set of 150 organic molecules collected is 
investigated. Their experimental absorption energies are 
accurately known [16]. Kennard and Stones algorithm [19] has 
been widely used for splitting datasets into two subsets. This 
algorithm starts by finding two samples, based on the input 
variables that are the farthest apart from each other. For this 
purpose, the algorithm employs the Euclidean distances dx(p, q) 
between the x-vectors of each pair ( p, q) of samples calculated 
as  
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where xp(j) and xq(j) are the responses at the jth output for 
samples p and q, respectively. 

These two samples are removed from the original dataset 
and put into the training set. Then, the remaining sample 
farthest away from the selected two samples is again included 
in training set. This step is repeated until the desired number of 
samples has been selected in the training set. 

A shortcoming of KS in the multivariate calibration context 
lies in the fact that the statistics of the dependent variable (y) 
are not taken into account. It could be argued that the inclusion 
of y-information in the selection process might result in a more 
effective distribution of calibration samples in the 
multidimensional space, thus improving the predictive ability 
and robustness of the resulting model. The SPXY method 
extends the KS algorithm by encompassing both x- and y-
differences in the calculation of inter-sample distances [18]. 
Such a distance dy(p, q) can be calculated for each pair of 
samples p and q as 
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In order to assign equal importance to the distribution of the 
samples in the x and y spaces, distances dx(p, q) and dy(p,q) are 
divided by their maximum values in the data set. In this manner, 
a normalized xy distance is calculated as 
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A stepwise selection procedure similar to the KS algorithm 
can then be applied with dxy(p, q) instead of dx(p, q) alone [18]. 

Using SPXY algorithm, the entire dataset was divided into 
two subsets: a training set of 120 organic molecules, and a test 
set including the remaining organic molecules. 

B. Descriptors Selection 

The most important issue is to select the proper physical 
descriptors, which are to be used as the input for the GRNN 
model. As stated in our previous work [16], the calculated 
value of excited-state electronic energy contains the essence of 
exact values of absorption energy, and is an obvious choice of 
the primary descriptor. Other physical descriptors are selected 
according to their correlation to absorption energies. The 
physical properties, such as the number of electrons, the 
oscillator strength, the dipole moment, the number of double 
bonds, the HOMO-LUMO energy gap, the orbital energy gap 
corresponding the dominant configuration of the excited state, 
the corresponding transitional coefficient, the number of 
aromatic rings, have been chosen as the other physical 
descriptors. The physical parameters are calculated using the 
quantum chemistry program package. The parameters are 
optimized geometrically for all degrees of freedom with the 
DFT-B3LYP method in the polarization basis set 6-31G (d) 
level and the frequency calculations are used to confirm the 
stable structure. 

C. GRNN Method  

Generalized regression neural network is proposed by the 
American scholar DF Specht [20]. The method uses vertical 
basis function as the basis of the hidden units to form the 
hidden layers. The hidden layer transforms the input vectors 
from the low-dimensional input data into a high dimensional 
space so that the problem can be separated linearly in the high 
dimensional space. It is good at function approximation and the 
network finally converges to the optimized regression plane 
which contains the most samples. It can predict well even with 
very few sample data and can handle the instability in the data. 

Nonlinear models are then developed by submitting the 
selected descriptors to a GRNN model. The number of input 
neurons is nine descriptors. One output neuron is used to 
represent the experimental absorption energies. To avoid 
overtraining, 5-fold cross-validation was applied to train the 
GRNN model. 
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III. RESULTS AND DISCUSSION  

In order to evaluate the effectiveness of the GRNN model 
for evaluating the optical absorption energies of 150 organic 
molecule problem, it was compared with the 
TDDFT/B3LYP/6-31G (d) calculation and Back-propagation 
neural network (BPNN) on the same problems. We find that 
the best value of spread for GRNN set 0.21 results in the best 
output by 5-fold cross validation. The entire dataset was 
divided into a training set of 120 organic molecules and a test 
set of 30 organic molecules according to KS and SPXY 
algorithm, respectively. 

The raw calculated absorption energies values versus their 
experimental data are shown in Fig.1 (a). The vertical 
coordinate is the experimental absorption energies, and the 
horizontal coordinate is the calculated values by DFT. The 
dashed line is where the vertical and horizontal values are equal. 
In Fig.1 (b), the horizontal coordinates are for the BPNN 
corrected absorption energies by SPXY partitioning algorithm 
(BPNN-SPXY). In Fig.1 (c) and 1 (d), the horizontal 
coordinates are for the GRNN corrected absorption energies by 
KS (GRNN-KS) and SPXY partitioning algorithm (GRNN-
SPXY), respectively. Compared to the raw calculated values, 
the GRNN-SPXY corrected results are much closer to the 
experimental values. This can be shown clearly by the error 
analysis performed for all 150 organic molecules. 

The root-mean-square (rms) errors in absorption energy 
predictions for the whole dataset given by DFT, BPNN-SPXY, 
GRNN-KS and GRNN-SPXY were 0.47, 0.21, 0.17 and 0.13, 
respectively (see table 1).  

TABLE I.  RMS DEVIATION OF TDDFT/ B3LYP/6-31G (D), BPNN-
SPXY, GRNN-KS AND GRNN-SPXY CORRECTIONS (IN EV) 

 

As regards the comparison of BPNN-SPXY, GRNN-KS, 
and GRNN-SPXY performances, it can be seen that GRNN-
SPXY yielded the smallest rms errors for absorption energies. 
The prediction results are in good agreement with the 
experimental value of absorption energy; also, the results reveal 
the superiority of the GRNN-SPXY over BPNN-SPXY and 
GRNN-KS models. The GRNN approach improved DFT 
calculation results. 

IV. CONCLUSIONS  

To summarize, GRNN was used to develop a QSPR model 
for the prediction of absorption energies of 150 organic 
molecules. BPNN was also utilized to construct model to 
compare with the results obtained by GRNN. The GRNN 
approach improved DFT calculation results and reduced the 
RMS deviations from 0.47 to 0.17 and 0.13 eV by KS and 
SPXY partitioning algorithm, respectively, while BPNN-SPXY 
is 0.21 eV. Very satisfactory results were obtained with the 

proposed methods. Additionally, models using GRNN with 
SPXY partitioning algorithm based on the same set of 
descriptors produced even better models with a good predictive 
ability than GRNN with KS partitioning algorithm models. 
This study of the QSPR model shows that the GRNN-SPXY is 
a very promising tool in the prediction of absorption energy 
when compared with BPNN-SPXY. The approach can be used 
as the approximation of experimental results where the 
experimental results are unavailable or uncertain. Furthermore, 
the proposed approach can also be extended to other QSPR 
investigations. 
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Figure 1.  Calculated absorption energies versus experimental absorption 

energies for all 150 molecules. 
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