

Dynamic Binary Instrumentation Technology
Overview

Kunping Du
National Digital Switching System Engineering &

Technological Research Center
Zhengzhou, China, 0371-81632000

Hui Shu
National Digital Switching System Engineering &

Technological Research Center
Zhengzhou, China, 0371-81632000

hnzzdkp@163.com

Fei Kang
National Digital Switching System Engineering &

Technological Research Center
Zhengzhou, China, 0371-81632000

Li Dai
National Digital Switching System Engineering &

Technological Research Center
Zhengzhou, China, 0371-81632000

Abstract—The Dynamic Binary Analysis technology is a newly
emerged technology which can analysis program execution
dynamicly. Using this technology, the process of program
analysis became more simple and accurate. Foreign researchers
had put forward several Dynamic Binary Analysis Platform in
recent 10 years. Based on these platforms, users can easily build
useful analysis tools which satisfy their own needs. This paper
introduces five most representative Dynamic Binary Analysis
platforms first. Then, four significant fields and existing
applications closely related with Dynamic Binary Analysis
technology are explored. In the end of this paper, the feature
research hot spots are discussed.

Keywords- Dynamic Binary Analysis, program analysis
technology, Dynamic Binary Instrument

I. FOREWORD

Dynamic Binary Analysis[1](DBA) technology is a kind of
dynamic program analysis method which can analyze
program's memory structure and add specific instructions for
monitoring and testing program's execution.The DBA
technology enables users to monitor program's behavior under
the premise of not affecting the results of program execution
by inserting additional appropriate analysis code into the target
program, this procedure called Dynamic Binary
Instrument(DBI).In addition,using DBA technology,the
analysis can complete without source code, no need to
recompile and link,so that this technology can be used in many
cases.The research on DBA technology began in the 1990s,
initially applied to the dynamic optimization and testing of the
program.Due to its versatility and accuracy of the analysis
process,it has been used for memory testing,software behavior
monitoring,reverse engineering and some other research areas
recently..

This paper first introduces five most widely used DBA
platform,they are Shade, DynamoRIO, Valgrind, Pin and
Nirvana. On this basis, summarizes the application status and
popular tools build on DBA platform in the field of memory
testing and optimization, data flow tracking, software behavior

analysis, reverse engineering and parallel program analysis.
Finally, the application prospects of DBA technology are
discussed.

II. DYNAMIC BINARY ANALYSIS PLATFORM

So far, the foreign researchers had put forward a number of
DBA platform, such as Shade, DynamoRIO, Valgrind etc.
Based on these platforms, users can easily develop their own
Dynamic Binary Instrumentation(DBI) tool. Below, we will
detail the Shade, DynamoRIO, Valgrind, Pin, and Nirvana.

A. Shade[2]

It is the first the DBI platform which implements in Solaris
system. Shade uses binary translation and cache technology, it
has inner support of recording the register state and opcode
information..

B. DynamoRIO[3]

DynamoRIO is an open-source dynamic binary
optimization and analysis platform which evolves from
Dynamo. It is available both in Windows and Linux system,
and can record the execution instruction information efficiently,
but doesn't support data flow recording. This platform is
mainly used for the dynamic optimization of program in
instruction level.

C. Valgrind[4]

An open source DBI platform under Linux which can
efficiently record the instructions flow and data flow
information of executable file in Linux. But because of the
different operation mechanism of Linux and Windows system,
this platform is still difficult to transplant to Windows system.

D. Pin[5]

Pin is a dynamic binary instrumentation framework for the
IA-32 and x86-64 instruction-set architectures that enables the
creation of dynamic program analysis tools. The tools created

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press344

mailto:hnzzdkp@163.com

using Pin, called Pintools, can be used to perform program
analysis on user space applications in Linux and Windows. Pin
provides a rich API that abstracts away the underlying
instruction-set idiosyncrasies and allows context information
such as register contents to be passed to the injected code as
parameters. Pin automatically saves and restores the registers
that are overwritten by the injected code so the application
continues to work. Limited access to symbol and debug
information is available as well. Pin was originally created as a
tool for computer architecture analysis, but its flexible API and
an active community (called "Pinheads") have created a
diverse set of tools for security, emulation and parallel
program analysis. Pin is proprietary software developed and
supported by Intel and is supplied free of charge for non-
commercial use. Pin includes the source code for a large
number of example instrumentation tools like basic block
profilers, cache simulators, instruction trace generators, etc. It
is easy to derive new tools using the rich API it provides.

E. Nirvana[6]

Microsoft's latest development DBI platform, mainly
includes two key module: program simulation execution
module and JIT (just in time) binary translation module. But it
has not been to market, only for Microsoft internal use.
According to relevant data, the platform can well support
tracking and playback function of Windows executable files in
instruction level. There will be very good application prospects
especially in software reverse engineering.

III. DBI APPLICATION FIELD

A. Memory testing and optimization

DBI framework developed up to now, the most widely
used application is for the building of memory monitoring
tools. DBI-based memory testing tools have obvious
advantages than the common memory detection tool in the
detection efficiency and detection accuracy, as well as the
support of the underlying system. Therefore, there have been a
lot of DBI based memory monitoring tools since DBI
technologies emerged. Most of those tools can not only detect
the memory using situation of a program, memory errors that
may exist in the program, illegal use of memory, memory leaks,
but also can detect buffer overflow accurately. The following
details on several of BDI-based memory monitoring tools and
related research.

a) Memcheck: Memcheck is a memory error detector
based on Valgrind. It can detect many common problems
appear in C and C++ programs, such as: accessing memory
you shouldn't, using undefined values, incorrect freeing of
heap memory, memory leaks etc.

b) Dr.Memory: Dr. Memory is built on the open-source
dynamic instrumentation platform DynamoRIO. It is an
excellent memory checking tool that supports both Windows
and Linux. Dr. Memory uses memory shadowing to track
properties of a target application’s data during execution. So
that it can detect memory error more accurately. In addition,
Dr. Memory provide two instrumentation paths: the fast-path
and the slow-path. The fast-path is implemented as a set of

carefully hand-crafted machine-code sequences or kernels
covering the most performance-critical actions. Fast-path
kernels are either directly inlined or use shared code with a
fast subroutine switch. Rarer operations are not worth the
effort and extra maintenance costs of using hand-coded
kernels and are handled in the slow-path in C code with a full
context switch used to call out to the C function. Through
using different path in different situation, the efficiency of
detection is increased greatly.

B. Dynamic Taint Analysis

The dynamic taint analysis technology is a common
technique in the field of application security detection. By
analysis of the data used in the program, the program's data is
marked as “contaminated”(Tainted), and “not contaminated”
(UnTainted) categories, while in the process of implementation
of the procedures to control the spread of contaminated
properties by analyzing the illegal use of the data propagation
path of the contaminated property to find the loopholes that
exist of the program. DBI based platform, you can build a
dynamic data flow tracking tools, such data flow tracking tool
with a wide tracking range, and analysis results are accurate.
Here are two methods based on DBI data flow tracking tool.

a) TaintCheck: TaintCheck is a dynamic taint analysis
tool based on Valgrind, for the automatic detection, analysis,
and signature generation of exploits on commodity software.
TaintCheck's default policy detects format string attacks, and
overwrite attacks that at-tempt to modify a pointer used as a
return address, function pointer,or function pointer offset. Its
policy can also be extended to detect other overwrite attacks,
such as those that attempt to overwrite data used in system
calls or security-sensitive variables. TaintCheck gave no false
positives in its default configuration. in many cases when a
false positive could occur, it is a symptom of a potentially
exploitable bug in the monitored program. For programs
where the default policy of TaintCheck could generate a false
positive. Once TaintCheck detects an overwrite attack, it can
automatically provide information about the vulnerability and
how the vulnerability is exploited. By back-tracing the chain
of tainted data structure rooted at the detection point,
TaintCheck automatically identifies which original flow and
which part of the original flow have caused the attack.

b) Dytan: A Generic dynamic taint analysis framework
based on Pin. The goal of this tool is to be a generalized
tainting framework that can be used to perform dataflow and
control-flow analysis on an x86 executable. The dynamic
tainting of Dytan consists of: (1)associating a taint label with
data values;(2)propagating taint labels as data values flow
through the program during execution.As long as user
provides XML configuration file, in which specify: taint
sources, propagation policy, and sinks.

C. Reverse engineering application

Dynamic tracking is one of the commonly used method in
reverse engineering. The procedure of dynamic tracking is like
this: using dynamic debugging software (eg: OllyDebug) load
the program, then follow the tracks of program execution

345

step-by-step. This approach can be summarized in a word:
analysis when tracking. And the analysis relies heavily on
manual, it is difficult to automate it. By means of DBI platform,
one can separate the analysis work to the tracking process by
using DBI tool recording the execution information of target
software, analyzing the recorded information by other
automatic tools. Such processing procedure can save a lot of
human labor. And the automatic analysis of the recorded
information also can greatly reduce the software reversing
cycle.

In 2008 blackhat Danny Quist. etc propose a DBI based
temporal reverse engineering. By DBI platform Pin, they get
the basic block execution sequence. By analyzing and
visualizing these block information, it help analyst understand
the program behavior quickly. In addition, in reference[7], the
author proposed a DBI based protocol reverse method, the
main idea of the paper is recording the data-flow of a software
with DynamoRIO, then parse the protocol field with their own
automatic tool.

D. Parallel program analysis[8]

With the development of high performance computing
technology, the design of parallel programs is becoming
increasingly important. Parallel debugging and performance
evaluation of parallel programs are difficult problems in the
field. The traditional Parallel debugging and performance
evaluation tools are mostly based on source code
instrumentation, which makes the workload of analyzing
parallel programs very huge, and as the coding language and
software upgrade, testers need to do some modifications. The
most deadly is if you can’t get the source code of the parallel
program, the test can’t be conducted. DBA technology making
the analysis of parallel programs has nothing to do with the
source code, the analysis process is more transparent and more
efficient. The following is several parallel program analysis
tools based on DBI framework.

a) Intel Parallel Inspector: The Intel Parallel Inspector
analyzes the multithreaded programs’ execution to find
memory and threading errors, such as memory leaks,
references to uninitialized data, data races, and deadlocks.
Intel Parallel Inspector uses Pin to instrument the running
program and collect the information necessary to detect errors.
The instrumentation requires no special test builds or
compilers, so it’s easier to test code more often. Intel Parallel
Inspector combines threading and memory error checking into
one powerful error checking tool. It helps increase the
reliability, security, and accuracy of C/C++ applications from
within Microsoft Visual Studio.

b) CMP$im: Memory system behavior is critical to
parallel program performance. Computational bandwidth
increases faster than memory bandwidth, especially for multi-
core systems. Programmers must utilize as much bandwidth as
possible for programs to scale to many processors. Hardware-
based monitors can report summary statistics such as memory
references and cache misses; however, they are limited to the
existing cache hierarchy and are not well suited for collecting
more detailed information such as the degree of cache line

sharing or the frequency of cache misses because of false
sharing. CMP$im uses Pin to collect the memory addresses of
multithreaded and multiprocessor programs, then uses a
memory system’s software model to analyze program
behavior. It reports miss rates, cache line reuse and sharing,
and coherence traffic, and its versatile memory system model
configuration can predict future systems’ application
performance. While CMP$im is not publicly available, the Pin
distribution includes the source for a simple cache model,
dcache.cpp.

IV. FUTURE RESEARCH

DBA technology as a new program analysis method, have
not yet been widely used. As people get more comprehensive
understanding on its properties and advantages, it will play a
role in more areas in more fields. Future research on dynamic
binary analysis techniques are mainly concentrated in the
following aspects:

a) Improvement of performance for DBI platform:Based
on DBI build tools have a common weakness: a certain degree
of reduction on efficiency to instrumentation program. In
general, the use of DBI make the original program run rate 3-
5 times lower, in future studies, how to improve the
performance and efficiency of the DBI platform is an
important research direction.

b) The combination of static analysis methods:DBA
method has many advantages, but it is essentially a dynamic
analysis method that can not overcome the shortcoming of
only one execution path can be passed by a time. In the future,
how to combine the dynamic binary analysis with the static
analysis methods is a future research focus.

c) solve the problem of huge amount of record
information: Using DBI instrument a program ,weather in
instruction level or function level, the record set could be very
huge. How to reduce the volume of the record set in the
premise of ensure enough information, how to improve the
efficiency of information processing, how to visualize those
information are all the research spot in the future.

DBA technology, with the advantages of extensive
(needn't source code) and accuracy (run-time instrument),
has already come to the forefront in several areas, and
provides new idea to solve the problems in related field.
The DBA technology would bring more breakthrough for
more field in the future.

REFERENCES
[1] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation or

Building Tools is Easy [D]. PhD thesis. University of Cambridge, 2004.

[2] Bob Cmelik and David Keppel. Shade: a fast instruction-set simu lateor
for execution profiling [R]. In:ACM SIGMETRICS, 2004.

[3] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation [D]. PhD thesis, M.I.T, 2004. http://dynamorio.org/.

[4] N.Nethercote. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation [C]. In:Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and
implemention, San Diego,California,USA: 2007. 89-100.
http://www.valgrind.org.

346

[5] Chi-Keung Luk. Pin: building customized program analysis tools with

dynamic instrumentation [C]. In:Programming Language Design and
Implementation. 2005: 190-200.

[6] Sanjay Bhansali. Framework for Instruction-level Tracing and Analysis
of Program Executions [C]. Second International Conference on Virtual
Execution Environments VEE, 2006.

[7] HE Yong-jun, SHU Hui, XIONG Xiao-bing. Network Protocol Reverse
Parsing Based on Dynamic Binary Analysis.[J]. Computer Engineering.
2010.36(9):268-270

[8] Moshe Bach, Mark Charney, Robert Cohn, etc. Analyzing Parallel
Programs with Pin. [J]. IEEE Computer. 2010:34-41.

347

	I. foreword
	II. Dynamic Binary Analysis Platform
	A. Shade[2]
	B. DynamoRIO[3]
	C. Valgrind[4]
	D. Pin[5]
	E. Nirvana[6]

	III. DBI Application field
	A. Memory testing and optimization
	a) Memcheck: Memcheck is a memory error detector based on Valgrind. It can detect many common problems appear in C and C++ programs, such as: accessing memory you shouldn't, using undefined values, incorrect freeing of heap memory, memory leaks etc.
	b) Dr.Memory: Dr. Memory is built on the open-source dynamic instrumentation platform DynamoRIO. It is an excellent memory checking tool that supports both Windows and Linux. Dr. Memory uses memory shadowing to track properties of a target application’s data during execution. So that it can detect memory error more accurately. In addition, Dr. Memory provide two instrumentation paths: the fast-path and the slow-path. The fast-path is implemented as a set of carefully hand-crafted machine-code sequences or kernels covering the most performance-critical actions. Fast-path kernels are either directly inlined or use shared code with a fast subroutine switch. Rarer operations are not worth the effort and extra maintenance costs of using hand-coded kernels and are handled in the slow-path in C code with a full context switch used to call out to the C function. Through using different path in different situation, the efficiency of detection is increased greatly.

	B. Dynamic Taint Analysis
	a) TaintCheck: TaintCheck is a dynamic taint analysis tool based on Valgrind, for the automatic detection, analysis, and signature generation of exploits on commodity software. TaintCheck's default policy detects format string attacks, and overwrite attacks that at-tempt to modify a pointer used as a return address, function pointer,or function pointer offset. Its policy can also be extended to detect other overwrite attacks, such as those that attempt to overwrite data used in system calls or security-sensitive variables. TaintCheck gave no false positives in its default configuration. in many cases when a false positive could occur, it is a symptom of a potentially exploitable bug in the monitored program. For programs where the default policy of TaintCheck could generate a false positive. Once TaintCheck detects an overwrite attack, it can automatically provide information about the vulnerability and how the vulnerability is exploited. By back-tracing the chain of tainted data structure rooted at the detection point, TaintCheck automatically identifies which original flow and which part of the original flow have caused the attack.
	b) Dytan: A Generic dynamic taint analysis framework based on Pin. The goal of this tool is to be a generalized tainting framework that can be used to perform dataflow and control-flow analysis on an x86 executable. The dynamic tainting of Dytan consists of: (1)associating a taint label with data values;(2)propagating taint labels as data values flow through the program during execution.As long as user provides XML configuration file, in which specify: taint sources, propagation policy, and sinks.

	C. Reverse engineering application
	D. Parallel program analysis[8]
	a) Intel Parallel Inspector: The Intel Parallel Inspector analyzes the multithreaded programs’ execution to find memory and threading errors, such as memory leaks, references to uninitialized data, data races, and deadlocks. Intel Parallel Inspector uses Pin to instrument the running program and collect the information necessary to detect errors. The instrumentation requires no special test builds or compilers, so it’s easier to test code more often. Intel Parallel Inspector combines threading and memory error checking into one powerful error checking tool. It helps increase the reliability, security, and accuracy of C/C++ applications from within Microsoft Visual Studio.
	b) CMP$im: Memory system behavior is critical to parallel program performance. Computational bandwidth increases faster than memory bandwidth, especially for multi-core systems. Programmers must utilize as much bandwidth as possible for programs to scale to many processors. Hardware-based monitors can report summary statistics such as memory references and cache misses; however, they are limited to the existing cache hierarchy and are not well suited for collecting more detailed information such as the degree of cache line sharing or the frequency of cache misses because of false sharing. CMP$im uses Pin to collect the memory addresses of multithreaded and multiprocessor programs, then uses a memory system’s software model to analyze program behavior. It reports miss rates, cache line reuse and sharing, and coherence traffic, and its versatile memory system model configuration can predict future systems’ application performance. While CMP$im is not publicly available, the Pin distribution includes the source for a simple cache model, dcache.cpp.

	IV. Future research
	a) Improvement of performance for DBI platform:Based on DBI build tools have a common weakness: a certain degree of reduction on efficiency to instrumentation program. In general, the use of DBI make the original program run rate 3-5 times lower, in future studies, how to improve the performance and efficiency of the DBI platform is an important research direction.
	b) The combination of static analysis methods:DBA method has many advantages, but it is essentially a dynamic analysis method that can not overcome the shortcoming of only one execution path can be passed by a time. In the future, how to combine the dynamic binary analysis with the static analysis methods is a future research focus.
	c) solve the problem of huge amount of record information: Using DBI instrument a program ,weather in instruction level or function level, the record set could be very huge. How to reduce the volume of the record set in the premise of ensure enough information, how to improve the efficiency of information processing, how to visualize those information are all the research spot in the future.
	References

