

Load Balancing Technology Based On Consistent
Hashing For Database Cluster Systems

Zhenguo Xuan
Dept. of Computer Science,

Beijing University of Posts and Telecommunications
Beijing, China

xuanzg@bupt.edu.cn

Abstract—The database cluster is an effective mechanism to
improve the throughput of database systems and reduce the
response time of the database. Generally, it is used to solve the
single-node bottleneck problem of data access in network services.
Load balancing technology is the key factor to determine the
performance and scalability of the entire database cluster. In this
paper, the authors introduce the concept of the database cluster
and several load balancing technologies, and then manage to
improve the consistent hashing algorithm by dividing the hash
ring equally and setting re-distributed node regularly to make it
more balanced and predictable, at last we proposal a new
database cluster model using the consistent hashing algorithm for
specific scenarios.

Keywords-database cluster; load balancing; consistent hashing

I. INTRODUCTION

With the rapid development of Internet, we are moving
into a new age called “data explosion”. The data which twitter
produced each day can be over 20 trillion bytes. Anybody
could get huge amounts of data with a personal computer or a
smart mobile.

The increasing of mass data access makes the database
nodes which provide data storage service the bottleneck of the
network service system. The database cluster is the commonly
used approach to solve the problem for its characteristics of
high availability, high performance and high scalability, and
load balancing technology is the key points and difficult points
of the database cluster study for load balancing technology
directly determines the architecture, efficiency and scalability
of the database cluster.

There are a lot of classification methods for load balancing
technology. According to the system architecture, it can be
divided into two types: having front-end nodes and having no
front-end nodes [1]. The former provide multiple IP addresses
for clients to access, it is easy to implement have little
bottleneck in the structure whereas it is unsatisfactory on
reliability. The latter makes the users have the illusion of a
single IP address which is responsible for receiving the
requests and forwarding it to the comparatively lightly loaded
destination nodes in the cluster. Additional security can be got
by this way, yet in the case of very large network traffic, the
front-end scheduling node may become the bottleneck of the
system. Load balancing technology can also be divided into

static scheduling and dynamic scheduling by the way of
setting the scheduling information. The former dispatches the
requests to different nodes in database cluster in accordance
with established scheduling rules. The latter will collect the
load information of each node in real time during scheduling
process, and then take the information into the scheduling
algorithm to choose the right node to which to distribute the
requests.

Server clustering technology LVS (Linux Virtual Server) is
currently the most popular cluster architecture, which is
widely used to build scalable Web, Media, Cache and Mail,
and other network services [2]. Meanwhile, the architecture
can be applied to the database cluster service. What is more,
the database cluster needs to consider the classification of the
requests and the consistency of data among different nodes.

Considering the application of massive data access,
especially when read requests constitute a big percentage of
the requests from clients such as the query of IP, personal IP
or train schedules etc, the database just handles query requests
and a little insert or update requests after being set up. In this
case, consistent hashing scheduling algorithm can provide
excellent performance on throughout and minimize the effects
of immigration and emigration of node.

The rest of this paper is organized as follows: section 2
introduces server cluster and then describe the characteristics of
database cluster. Section 3 introduces the concept of load
balancing, and then in section 4 different load balancing
schedule algorithms are discussed, especially the feature of
consistent hashing, and then we improve the algorithm for the
specific scenario. Section 5 proposes a prototype database
cluster system using load balancing policy of consistent
hashing algorithm. Section 6 gives the final conclusion of this
paper and the future work.

II. DATABASE CLUSTER

The computer cluster is a kind of computer system, it can
complete computing works by the closely collaboration of
computer software and/or hardware which are loosely coupled.
In a sense, the computer cluster can be regarded as a single
server. Every computer in the cluster system is often referred
to as node and the nodes usually connected by LAN or other
ways. The computer cluster is usually used to improve the
computing speed of a single computer and/or reliability.

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press396

Generally speaking, the computer cluster has a better
price/performance ratio than a single server or workstation.
The cluster system can be classified as follows: High
Availability Clusters (HAC), High Performance Clusters
(HPC), Load Balancing Clusters and Grid Computing [3].

LVS (Linux Virtual Server) take use of IP load balancing
technology and content-based request distribution technology.
There is a front-end scheduler in the architecture of LVS. The
scheduler has a good throughput and transfers the requests to
different servers, what is more, the scheduler automatically
masked the failure of the nodes, and then make a group of
nodes constitute a high-performance, high availability virtual
server[2]. The architecture of LVS is as figure 2.1 shows.

Figure 2.1 The architecture of LVS

The large-scale and high-performance database cluster
system can be achieved by using cluster technology to
database system. The difference is that the database system
should handle information processing and information storage,
so each node in the cluster need to ensure data consistency and
this can be achieved by shared data model or using a
synchronization mechanism. The models are shown in figure
2.2 and figure 2.3.

Figure 2.2 The architecture of cluster using shared data

Figure 2.3 The architecture of cluster using synchronization mechanism

Usually the load balancer has a backup server to replace
itself when it is crashed. The backup server can get all the
information of the load balancer by hot copy technology and it
can be seen as the shadow of the load balancer. By this way,
the high availability of the cluster is ensured.

III. LOAD BALANCE

A. Description of Load Balance

In order to improve the performance of the system, the
load should be distributed reasonably to different nodes in the
cluster, and this form of sharing computing capacity is referred
to as load balancing or load sharing [4].

Load balancing techniques involve five basic policies:
information policy, job selection policy, location policy,
transfer policy and initiation policy. The basic policies have
covered the main technical concerns of load balancing for
distributed systems [5].

The following 10 kinds of scheduling algorithms have
been achieved in LVS:

a) Round-Robin Scheduling

b) Weighted Round-Robin Scheduling

c) Least-Connection Scheduling

d) Weighted Least-Connection Scheduling

e) Locality-Based Least Connections Scheduling

f) Locality-Based Least Connections with Replication
Scheduling

g) Destination Hashing Scheduling

h) Source Hashing Scheduling

i) Never Queue scheduling

j) Shortest Expected Delay scheduling

In addition, there are many new dynamic scheduling
algorithms for specific scenarios. [1] proposed a new
scheduling algorithm based on virtual router cluster, [5]
achieved load balance in RFID middleware system using
multiple load balancing strategies, [6] achieved a dynamic
scheduling algorithm which can monitor node performance in

397

real time, [7] achieved load balancing in the stock trading
application using dynamic load balancing strategy, [8]
proposed an load balancing algorithm without load balancer
by doing packet filtering on the switch.

B. Consistent Hashing Algorithm

Consistent Hashing algorithm is widely used in load
balancing for its characteristics of availability, scalability and
avoiding hotspots easily. Consistent Hashing is proposed in [9]
aiming at solving the problem caused by the number of nodes
changed in cache system using classical hash algorithm.
Consider what happens when the set of active caching
machines changes, or when each client is aware of a different
set of caches. (Such situations are very plausible on the
Internet.) If the distribution was done with a classical hash
function (for example， the linear congruential function：
x→ (ax + b) (mod p)), such inconsistencies would be
catastrophic. When the range of the hash function (p in the
example) changed, almost every item would be hashed to a
new location. Suddenly, all cached data is useless because
clients are looking for it in a different location [9].

To understand how consistent hashing works, imagine
wrapping the unit interval [0,1）onto a circle, as shown in
figure 3.1.

Figure 3.1 Hash ring

Suppose we number the machines [0 … n-1]. If the hash
function has range [0, R), then we rescale the hash function via
x→hash(x)/R, so that the hash function maps into the range
[0,1） , i.e., effectively onto the circle. Then we can hash
machine number j to a point hash(j) on the circle, for each
machine in the range j=[0 … n-1]. Figure 3.2 is what it might
look like for an n=3 machine cluster.

Figure 3.2 Set machines point by number

The points will be randomly distributed around the circle.
Now suppose we have a key-value pair we want to store in the
distributed dictionary. We simply hash the key onto the circle,
and then store the key-value pair on the first machine that
appears clockwise of the hash point of the key. As shown in
figure 3.3, for the key shown here, the key-value pair is stored
on machine1.

Figure 3.3 How to find cache node

Because of the uniformity of the hash function, a fraction
roughly 1/n of the key-value pairs will get stored on any single
machine. Now imagine we add an extra machine into the
cluster. It goes to the point hash(n), see figure 3.4.

Figure 3.4 Add node

Most of the key-value pairs are completely unaffected by
this change. But we can see that some of the key-value pairs
that were formerly stored on machine 1 (including our
example key-value pair) will need to be moved to the new
machine. But the fraction that needs to be moved will typically
be 1/(n+1) of the total, a much smaller fraction than was the
case for classical hashing [10].

There is a problem that when a machine is added to the
cluster, all the keys redistributed to that machine come from
just one other machine. Ideally, the keys would come in a
more balanced way from several other machines. So take use
of a new strategy based on Amazon Dynamo [11]. This
strategy divides the hash space into Q equally sized partitions
and the placement of partition is decoupled from the
partitioning scheme. Moreover, each node is assigned Q/S
tokens where S is the number of nodes in the system. The
figure 3.5 gives an example with 12 partitions and 3 nodes
(Q=12, S=3). N should be a very big integer like 220

 and the
hash function should be like x → (hash(x) mod N) by which
the requests are assigned to the tokens owned by nodes.

398

Figure 3.5 Improve hashing by equally divided ring

When a node leaves the system, its tokens are distributed
to the remaining nodes next to it in the clockwise direction
such that these properties are preserved and the load is
predictable. Similarly, when a node joins the system it "steals"
tokens from nodes in the system in a way that preserves these
properties. Figure 3.6 can simulate this process. To keep it
simple, the value of N is set to be equal to Partitions (N=12).

Node_num = 3;

Partitions = 12;

Node [Partitions] = {A,B,C, A,B,C, A,B,C, A,B,C};

//load balance

N = hash(request_id)/ Partitions;

If Node[N] = 0; N++;

Send request to Node[N];

//add node D

Node [Partitions] = {A,B,C, D,B,C, A,D,C, A,B,D};

//remove node B

Node [Partitions] = {A,0,C, D,0,C, A,D,C, A,0,D};

Figure 3.6 Process simulation

When a machine is added to the cluster, the keys
redistributed to that machine come from the other machines
and so it is a more balanced way.

IV. DESIGN THE PROTOTYPE SYSTEM

This section will draw on the common architecture of LVS,
using the model with front-end scheduling node on which load
balancing strategy is employed. In order to ensure consistency
of data, read/write splitting strategy is adopted. For the reason
that read requests account for the very great proportion in all
requests in the scenarios, the design is to forward read requests
to a node determined by load balancing strategy and distribute
write requests to each node directly in order to guarantee data
consistency without synchronization strategy, and the

efficiency is improved. The specific implementation can refer
to [3]. The model can be shown in figure 4.1.

Figure 4.1 The architecture of the model

In this model, the load balancer and the splitter is the same
server and it has a backup for itself to ensure high availability
and security of the cluster. The splitter sends write requests to
all the nodes in the cluster to ensure the consistency of the data.
When a read request comes, it is sent to the node chosen by
load balancing algorithm to achieve high throughput.
Consistent hashing is the key to ensure the scalability of the
cluster. Sending write requests to all the nodes influences the
performance but the lucky is there is little write requests in our
scenarios. The whole cluster can be seen as one virtual server
for the users.

V. CONCLUSIONS

The paper introduces the concept of database clustering
and load balancing, improves consistent hashing algorithm and
applies it to the scene of high concurrent queries. In the
following, the paper designs a model of a database cluster
based on the general architecture of the LVS using a front-end
load balancer node and R/W slitting technology in order to
ensure the high availability, reliability and scalability of the
cluster. In addition, data consistency can be resolved by this
architecture and so the model is of high reference value when
building distributed database cluster system. Also there are
some shortcoming in the improved algorithm, for instance, it
does not take the performance of each node into account, so it
can be further optimize.

REFERENCES
[1] Cheng Wei, Lu Ze-xin, Wang Hong. A New Kind of Load Balancing

Technology for Server Cluster Systems. COMPUTER ENGI NEERI NG
& SCIENCE, Vol. 28 No. 2 2006

[2] Zhang Wen-song. Linux Virtual Server Clusters. IBM developerWorks
Magazine 2002.

[3] Yan Xian-you, Zhang Xiao-ling. Study and Realization of dynamic load
balancing based on Linux virtual server cluster. Beijing University of
Technology. 2009

[4] Liu Tong, Yang Shu-qiang. Study and Realization of load balancing
Technology in Database cluster. National University of Defense
Technology. 2009

399

[5] Heung Seok Chae, Jae Geol Park, Cui Jian-feng, Joon Sang Lee.

www.interscience.wiley.com,. 2010-3-23

[6] He Jun, Xiong Wei, Chen Luo, YinJia-xin. Study and implementation of
dynamic load balancing based on database cluster. Network and
Communication. 2011

[7] Yang Xiao-hu, Zhao Li-ping, Wang Xin-yu, Wang Ye, Jie Sun and
Albert Jerry Cristoforo. Satisfying quality requirements in the design of
a partition-based, distributed stock trading system. Wiley InterScience,
www.interscience.wiley.com. 2011-1-27

[8] Xie Zuo-gui, Qi Xiao-ya. High-availability and Load-balance Cluster
System without Load balancer. Computer Engineering, VOL.33, No.3
2007

[9] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel
Lewin, Rina Panigrahy. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. 1997.

[10] Michael Nielsen. Consistent hashing.
http://michaelnielsen.org/blog/consistent-hashing/. 2009

[11] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. www.Amazon.com. 2007

400

	I. Introduction
	II. database cluster
	III. load balance
	A. Description of Load Balance
	B. Consistent Hashing Algorithm

	IV. design the prototype system
	V. conclusions
	References

