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Abstract—A new stream cipher algorithm based on one-way 
function of neural network is proposed. The nonlinear system 
comprised of such neural network is used to transform a group of 
LFSRs for key stream generation. As a result, the complexity of 
sequences is increased with period expanding. The produced 
cipher sequence has high randomness and has passed the 
standard tests of SP800-22. The experimental results show that 
the proposed encryption method is safe and has a higher 
performance of encryption and decryption speed by parallel 
computation structure. It can meet the need of stream cipher 
technology. The work has some values for deeper research on its 
theory and hardware application on secret communication. It is 
expected to attract more researchers in this field.  
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I.  INTRODUCTION  

Hastad et al. [1] pointed out that a necessary and sufficient 
condition for the existence of pseudo-random generators is the 
existence of one way function, which are easy to compute but 
hard to invert. Chaotic system is characterized by sensitive 
dependence on initial conditions, pseudo-randomness and 
ergodicity. In addition, it has a good feature of confusion and 
diffusion. So pseudo-random sequence is with good 
randomness, non-relevance and complexity provided by 
chaotic system is quite suitable for protecting information 
security [2-5]. Although one-dimensional chaotic maps are 
advantageous considering the high-level efficiency and 
simplicity aspects, but most existing chaotic cryptosystems still 
suffer from fundamental draw-backs such as small key space, 
slow performance speed and weak security function[6,7]. To 
solves the problem of short cycle and low precision of one-
dimensional chaotic function, many researchers have used 
higher-dimensional chaotic systems, coupled chaotic map to 
enhance the cryptosystem security [8-10] at a cost of speed.  

Cryptography employing neural network especially discrete 
Hopfield Neural Network (HNN) becomes a new research field 
recently because its nonlinearity is very fit to the requirement 
of complex computing in cryptography [11-13].The chaotic 
dynamics of recurrent HNN is regarded as the extremely 
complex and unpredictable nonlinearity that can be used to 
generate unpredictable stream [14, 15]. Moreover, discrete 
HNN is a kind of network that can be carried out by high speed 
parallel calculation networks and suits for parallel hardware in 
real-time applications [16]. As a combination of neural 
networks and chaos, chaotic neural networks (CNN) are 
expected to be more suitable for data encryption. A new 
symmetric probabilistic encryption scheme based on chaotic 

attractors of neural networks is proposed in [12]. In [17] it 
showed that some weak keys exist in the scheme from [12]. 
The cipher is vulnerable to cipher text-only and chosen-cipher 
text attack. Due to three problems found in Guo et al.’s scheme, 
Leung et al. proposed a modified cryptographic scheme based 
on Clipped HNN [13]. Their scheme solves the problems in the 
original scheme [12]. However, the memory size is huge when 
the network size is reasonably large because the coding matrix 
in the scheme [13] is the same as that in [12]. The 
mathematical proof whether the counter value is unique is 
difficult, not to mention an adequate solution. Thus, we 
propose a new fast scheme which uses one-way function of 
HNN without coding matrix and data expansion.  

The rest of the paper is organized as follows. Section 2 
gives a description of cryptographic scheme. The security and 
performance are analyzed in Section 3 and the conclusion is 
given in the last section. 

II. STREAM CIPHER ALGORITHM FROM ONE-WAY 

FUNCTION 

A. Hopfield Neural Network Model 

Assume a fully interconnected synchronous neural network 
of N neurons labeled from 0 to N-1. The state of a neuron i at 

the time t is denoted  )(tSi , which is either 0 or 1. The next 

state of neuron i , i.e. )1( tSi depends on the current states of 

all neurons as follows: 
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Where ijT  is the synaptic strength between neurons i and j, 

i  is the threshold value of the neuron i; )(x is any non-

linear function, can be realized by a sign function: 
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The HNN can be a neural network with zero neuron 

threshold and  a symmetric matrix ijT . Hopfield proved that the 

energy function of such network is monotonically decreasing 
during state evolution [18]. Therefore, any initial state of the 
network will converge to a stable state, i.e., chaotic attractor. 
The relationship between message states in the domain for each 
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attractor are unpredictable. If the neural synaptic matrix T is 
changed, these attractors and their attraction domain will be 
also altered. After a random permutation matrix H is selected, 

the original initial state S  and corresponding attractor S  

turns into new initial state Ŝ  and attractor Ŝ , which can be 

calculated by HSS ˆ  and  HSS ˆ  [12]. 

B. Convergent Property of HNN 

Chan first presented a modified HNN named clipped HNN 
[19]. Under some conditions, the clipped HNN is capable of 
storing a set of desired patterns as stable points of the network. 
In the parallel updating mode, the network will always 
converge to these 2n stable points for most of the state vectors. 
These stable points can be further divided into two groups, 
group   and  , each with n stable points. It is shown that the 

attraction basins of the stable points in group   and   are 
uniformly distributed. 

C. Proposed Stream Cipher Algorithm 

There exists a One-way function in the HNN. When neural 
synaptic matrix T is an nn  singular matrix, the singular 

matrix HTHT ˆ  can be easily obtained under the 
condition that H  is an nn  random diagonalizable matrix 
and kept secretly. But it is hard to obtain the secret key H  
directly, especially for a sufficiently large number of n [4]. 

Based on the nonlinear dynamics and the convergence 
properties of the HNN, a new design of key stream generator is 
proposed, which is able to produce sequences with large period 
and linear complexity. In Fig.1, several m-sequences are 
chosen as the driven source of the sequence generator, and 
discrete HNN as the nonlinear function to select the output. 

 
Fig. 1 Keystream sequence generator (n=8) 

In the parallel updating mode, the network will always 
converge to two attractor groups for most of the state vectors, 
each with n attractors [19]. Because n attractors are evenly 

distributed in both groups, we can randomly map iD  to LFSRi 

for each group. Therefore, the fine statistics property of m-

sequence is reserved, and its complexity and period are also 
improved in this way. 

Based on the above analysis, the operation of the nonlinear 
filter generator can be summarized as follows: 

STEP1: Both sides of the communication should randomly 
select the same nn  diagonalizable matrix H  and the same 
initial values of LFSRs, which must be set secret keys.  

STEP2: At each time unit, the states of m-LFSRs are input 
the network for iteration. Due to the convergence property of 
the HNN, the input probe will eventually converge to one of 
the attractors of the network.  

STEP3: The generated attractors can be divided into two 
groups. In one group, the number of '0' and '1' is equal; whereas, 
the number of '1' is more than '0' in another group. Since the 
numbers of attractors in both groups are equal to n and every 
attractor happens in the same possibility, the attractors in both 
groups can be ordered from 1 to n according to their appeared 
sequence. As is shown in Fig.1, the attractors generated from 
HNN are used as address signal of the multiplexer to select one 
of the n LFSRs to connect to output. To avoid the coding 
matrix, we consecutively encode LFSRi, rather than use Table 
1 in [13] for encoding the input stream.  

The key stream obtained from the above procedure is used 
to exclusive-or (XOR) text message for encryption. On the 
other hand, decryption can be done by XORing the ciphered 
text with key stream. This scheme can generate stream ciphers 
in a simple way, which is easy to be implemented by hardware 
and leads to high-speed encryption and decryption. 

III. SECURITY ANALYSIS 

A. Proof  of One-way Property 

For a nonsingular matrix A , there exists one and only one 

inverse 1A . Therefore, bAx 1  is the unique solution of 
the linear equation bAx  . Usually, A  is a singular or 
rectangular matrix, so the linear equation has no solution, or 
multiple solutions. However, with the theorem of generalized 
inverse matrix, Gbx  is denoted as one of solutions of the 
linear equation bAx  . For every finite matrix A  (square or 
rectangular) of real or complex elements, there exists a unique 
matrix X  satisfying the Penrose equations: 

AAXA                                           (3) 

AXAX                                          (4) 

AXAX )(                                     (5) 

XAXA )(                                      (6) 

where A  denotes the conjugate transpose of A . The unique 
solution is commonly called Moore-Penrose inverses, denoted 

by A . The generalized inverse matrices are still uncertain for 

one or several formulas. Let nmC  denotes the class of nm  
complex matrices, definition is given as follows:  
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Definition: For any nmCA  , let ),,,( kjiA   denote 

the set of matrices nmCX   which satisfy 
equations )(,),(),( kji   from (1)–(4). A matrix 

),,,( kjiAX  is called an ),,,( kji  –inverse of A,  

denoted by ),,,( kjiA  . 

So a matrix X  satisfying (1) is called the equation solving 
generalized inverse for AAXA   or }1{  inverse of A , and 

is denoted by )1(AX   or }1{AX  , where }1{A  denotes 

the set of all }1{  inverses of A . }1{ -inverse is one of the most 
basic and important generalized inverses. One of its significant 
applications is about expressing the solutions when solving the 
matrix equations and linear equations, and plays a similar role 
as the common inverse. 

Theorem:  For nmCA  , qpCB  , if and only if there 

exist )1(A and )1(B satisfying 
equation )( )1()1( BBIYBABX   where Y  is any pn  

matrix, then solutions of XXAB   are consistent. 

Proof: If A  is a singular matrix, and X  satisfy (1), 
then XXAB   can be transformed to 

XAXAXAAB                    (7) 

Make a transposition simultaneously on both sides 

ABAX  ,                                   (8) 

Rewrite (8) into a common form:  

=AXB D ,                                (9) 

Where 
m nA C  , 

p qB C  , 
m qD C  ，if and only if 

there exists some 
(1)A  and 

(1)B  satisfying  

(1) (1) =AA DB B D                      (10) 

Equation (9) is consistent [19] and for arbitrary qpCY  , 
its general solution is given by 

(1) (1) (1) (1)= + -X A DB Y A AYBB .              (11) 

Let ABDIA  , . According to (11), for arbitrary 
qpCY  , the general solution of (8) is  

)( )1()1( BBIYBABX  .                         (12) 

Since equation 'XAXB   has infinite solutions, which is 

corresponding to HTHT  0
ˆ  in stream cipher algorithm. 

Therefore, it is easy to calculate T̂  by 0T  and H , but it is 

nearly impossible to get H by T̂ . So we can make a 
conclusion that the transformation function of neural synaptic 
matrix is a trapdoor one-way function.   

B. Complexity Analysis 

HNN with 8N  is used for analysis. Assuming that 
cipher circuit contains eight LFSR, chaotic sequence generator 
and data MUX, the order of the LFSR is denoted by 

)8,,2,1( iD , which are different from each other. The output 

of LFSR is )8,,2,1( id ; a0a1a2 is the output of chaotic 

sequence generator. Then the output of MUX is given by: 

0128012701260125

0124012301220121

       aaadaaadaaadaaad

aaadaaadaaadaaadC



   (13) 

According to the complexity principles, the linear 
complexity,  L, is given by: 

∑
2

1

n

i
i

n DAL


                                   (14) 

where A and )8,,2,1( iD  are the complexity of every 

chaotic sequence output and each LFSR respectively; the 

number of LFSRs are n2 . It can be seen that the complexity of 
the circuit is dominated by the number of LFSR, and shows an 
exponential relation with n. 

C. Random Test 

In this paper, the randomness test for secret-key sequences 
generated by the proposed algorithm is carried out according to 
SP800-22 set by the National Institute of Standards and 
Technology (NIST) [20]. SP800 contains 100 groups of test 
samples, each group having 106 data in our experiment data. 
Test results in Table 1 show that the random-bit sequences 
generated by the algorithm are quite stochastic. 

TABLE 1.  CORRELATION TEST USING SP800-22 

Test Pass % Results 

Frequency 

Block Frequency 

Cumulative Sums 

Runs 

Longest Run 

Rank 

FFT 

Non Overlapping Template 

Overlapping Template 

Universal 

Approximate Entropy 

Random Excursions 

Random Excursions Variant 

Serial 

Linear Complexity 

1.0000 

0.9505 

0.9134 

0.1364 

0.7948 

0.9772 

0.9458 

0.9917 

0.3753 

0.3508 

0.0392 

0.9123 

0.9037 

0.9736 

0.2163 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 

Successful 
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D. Correlation Test 

Chosen 2k repeated plaintext for encoding, the self-
correlation function of the cipher text sequence is shown in 
Fig.2, which presents as a function of  without any repeated 
periods. The self-correlation is virtually impulse like. This 
figure clearly indicates that the cipher text will not respond to 
the repeated plaintext. When any element in the permutation 
matrix H is altered, the cross-correlation function of the former 
and the latter cipher text is shown in Fig.3. It shows that any 
slight alterations in secret-key can make the cipher text 
completely change, which meets the Avalanche Effect. 

 
Fig.2.Secret-key sequence self-correlation function 

 
 Fig.3. Cipher text cross-correlation function 

E. Analysis of Speed and Information Rate 

In practical program, we adopt the LFSRs with n=16 as 

input, and iD =11, 13, 17, 19, 21, 25, 29, 31, 37, 39, 41, 43, 47, 

53, 59, 61 for i=1, 2… 16.  Primitive plynomials are listed as 
following: (11,2,0), (13, 4,3,1,0), (17,6,0), (19,5,2,1,0), (21,2,0), 
(25,3,0), (29,2,0), (31,13,0), (37,6,4,1,0), (39,4,0), (41,3,0), 
(43,6,4,3,0), (47,5,0), (53,6,2,1,0), (59,7,4,2,0), (61,5,2,1,0) . 

The algorithm proposed in [12] is improved by symmetrical 
encryption algorithm which avoids the exhaustive search and 
data expansion. If we use the algorithm in [13] to encrypt 4-bit 
information, the chaotic attractors should compute 9 times on 
average. However, encrypting 1-bit information only needs 
once for our algorithm. Test shows that the average speed is 
over 7 times faster than that of [13]. With such a speed, the 
proposed encryption scheme is suitable for internet applications 
over broadband networks, where the encryption and decryption 
time should be short relative to the transmission time. 

IV. CONCLUSION 

A new scheme is proposed to generate pseudorandom 
number from one-way function of neural networks that 
provides high security and high speed. The new scheme has no 
exhaustive search, thus improves the efficiency of producing 
pseudorandom numbers. Moreover, our scheme keeps no data 
expansion so that it is suitable for large file transfer. 
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