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Abstract—This paper provides an overview of the capacity of 
multi-antenna channel in Shannon theoretic sense, and gives 
analysis results and the upper bound expressions of Shannon 
MIMO channel capacity when transmit and receive antennas have 
the same beam pattern and are aligned, or one has wider beam 
than (or the other), or their beams are unaligned. It also has been 
proved that when transmit and receive antennas have aligned 
beams, the capacity of multi-antenna channel will obtain its 
maximum. In the end, the simulation results show the theory 
analysis is valid. 

Keywords-Shannon capacity of multiantenna channels, antenna 
beampatterns, beam align or disjoint. 

I. INTRODUCTION 

Wireless systems continue to strive for ever higher data rates. 
This goal is particularly challenging for systems that have power, 
bandwidth, and complexity limitations. However, another 
domain can be exploited to significantly enlarge channel 
capacity: the use of multiple transmit and receive antennas. The 
pioneering work by Telatar [1] and Foschini [2] ignited much 
interest in this area by predicting remarkable spectral 
efficiencies for wireless systems with multiple antennas when 
the channel exhibits rich scattering and its variations can be 
accurately tracked. Here, we focus on MIMO channel capacity 
in the Shannon theoretic sense that multi-antenna beams on both 
sides are aligned or shifted with a certain deviation. 

Utilizing beamforming technique to increase the capacity of 
multi-antenna channels is an optimal transmission strategy. 
Jorswieck [3] on the assumption that transmitter knows the 
transmit and receive correlation matrices showed that 
transmitting in the directions of the eigenvectors of the transmit 
correlation matrix is the optimal transmission strategy. Sadek [4] 
extended the transmit beamforming in space-frequency coded 
MIMO-OFDM systems and proposed three design criteria for 
beamforming; among the algorithms the eigenvalue selection 
scheme, which locates the subspace associated with the largest 
eigenvalues in the eigenspace of the covariance matrices of the 
channels, provided the best performance. Lashkarian [5] derived 
an upper bound on the ergodic capacity of MIMO beamforming 
channels, and investigated the parameters such as cluster/ray 
arrival rates and power decay profiles on this upper bound.  

In this paper, we go on utilizing the covariance matrices of 
receive and transmit antenna, assume that receiver knows the 
information of channel state and updates the beam to aim at 
transmit. We adopt Bartlett spatial spectrum [6] to make sense of 
adjusting receive beam to align it to the transmit antenna and 
vice versa. 

We assume a wireless communication system 
employing TN transmit and RN receive antennas. We adopt the 
beamforming methods proposed in [7] to get the array antennas 
beampattern on transmit or receive side or both. In the case when 
the beam is formed only on one side, the other side will be 
considered omnidirectionally. It is assumed that wireless MIMO 
channel is formed by array antenna beam on one or both sides. 
Based on this premise, we discuss MIMO channel capacity in 
the Shannon theoretic sense: this capacity is identical to the 
ability of the wireless channel transmitting information in bits 
per second per frequency bandwidth. We show the impacts of 
the antenna beams on the performance of the channel capacity 
with respect to that receive and transmit beams are aligned, 
overlapped, or non-overlapped. We formulate the capacity of 
multiantenna channels in all cases. With theoretical analysis and 
simulation confirmation, we can grasp the characteristics of 
multiantenna channels established by transmit and receive 
beamforming. 

The remainder of this paper is organized as follows. In 
section II, we describe the MIMO channel model and establish 
the formulas of MIMO channel capacity. The effect of the 
spatial correlation on the channel capacity is analyzed in section 
III. The analytical results obtained in section III will be 
compared with simulation results in section IV. Finally, the 
conclusions are drawn in section V. 

II. THE CAPACITY OF MULTIANTENNA CHANNELS 

First, we give the expression of differential entropy of 
random variables. Let nξ  be circularly symmetric complex 
Gaussian random vector with mean value μ and covariance 

matrix Q , then ξ ’s probability density function can be 
expressed as[1] 
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1 1
, ( ) det( ) exp{ ( ) ( )}H      μ Q x Q x μ Q x μ           (1) 

where det( )A  denotes the determinant of matrix A . Here, 
only the stationary processes are considered; therefore, the 
random variable vector ξ could be assumed with zero mean and 
covariance matrix Q . Then the differential entropy of the 

complex Gaussian random vector ξ with covariance matrix Q is 

given by[1]
, ,( ) [ log ( )]  

μ Q μ Qξ x  . By some simple 

derivation, we have the following results on ( )ξ , 

( )ξ 1log det( ) (log ) He     Q x Q x  

 1log det( ) (log )tr He     Q xx Q  

 log det( ) (log )tre Q I  

log det( )e Q                                              (2) 
According to the above formulation, we have the conclusion 

of that circularly symmetric complex Gaussian random variables 
are differential entropy maximizers, the maximum value is 
expressed in (2) 

In this paper, the MIMO channel signal model is adopted as 
follows, 

 r Hs n                                   (3) 
where 1TN s  is the transmitted signal vector and 

1RN r  is the receive signal vector, R TN NH  is the channel 
matrix, 1RN n  is the circularly symmetric complex Gaussian 
random additive noise vector with zero mean and covariance 
matrix 2 n I , that is, 2( , ) nn 0 I  .  

Given the definite channel coefficients H and constraint 
total transmit power  , the ability of channel transmit the 
information data s is denoted as the mutual information of the 
received signal r and transmitted signal s , which can be 
expressed as 

( , ) ( ) ( | ) ( ) ( )   r s r r s r n                  (4) 

where ( | )r s denotes the conditional differential entropy 
of r when s is known, which equals to the differential entropy of 
additive noise vector n when the channel coefficients H  are 
determined.  

Based on the above formulations and conclusions, the 
mutual information of r and s , ( , )r s , would reach its 
maximum value if and only if r and n in (3) subject to circularly 
symmetric complex Gaussian distribution, under the 
assumptions of the channel coefficients H are definite, and the 
transmit signal s and additive noise n are subject to circularly 
symmetric complex Gaussian distribution, all of which can be 
assured. On the other hand, the quantity of ( , )r s expresses the 
uncertainty of the transmitted signal s : if the probability 
distribution density function of s  is denoted as ( )p s , then the 
channel capacity can be expressed as designing the transmitted 
signal s under the constraint of total power to maximize the 
mutual information ( , )r s , which could be represented as, 

( ),tr[ { }]
max ( , )Hp s ss

r s

                         (5) 

Denoting the maximum value as ( , )C H  , it can be taken in 
that the channel capacity relies on the channel 
coefficients H and the total transmitted signal power . With 
some manipulations, the capacity of the channel ( , )C H  can 
be formulated as follows, 

2
tr{ }

( , ) max log det[ ]
R

H
NC


 

Q
H HQH I


  

Here, we have utilized the assumption of tr[ { }] tr[ ]H ss Q . 

Let 2( / ) / TN  n� denote the transmitted signal power 

uniformly distributed on each sensor, and constrain tr[ ] TNQ , 

then the channel capacity ( , )C H  can be expressed as 

2
tr{ } 1

( , ) max log det[ ]
R

H
NC 


 

Q
H HQH I . 

The channel capacity ( , )C H  is also called error-free 
spectral efficiency or the transmit rate in bits per second per 
hertz (b/s/Hz). By using the determinant identity 
det[ ] det[ ]N M  AB I BA I for matrices N MA   and 

M NB  , we also have 

2
tr{ } 1

( , ) max log det[ ]
T

H
NC 


 

Q
H QH H I  

Furthermore, we have the ergodic MIMO capacity as 
followings[1], 

 
tr{ } 1

( ) max ( , )C C


 H
Q

H   

2
2

tr{ } 1
= max log det[( / ) ]

TN


n H
Q

QR I�       (6) 

where /H
TNHR H H is the correlation matrix of the MIMO 

channel H . In (6), we have used the assumption of constraint 
tr{ } TNHR . And in the following, matrices Q and HR are 

considered as spatial correlation matrices of transmit and receive 
array, they have some specified spatial response characteristic 
respectively.  

III. THE EFFECT OF SPATIAL CORRELATION ON CHANNEL 

CAPACITY 

In the following, we analysis the channel capacity of (6) with 
respect to the spatial responses of the transmit and receive array. 
We show that all of the impact factors on the channel 
capacity ( )C  that could be attributed to the relationship of the 
spatial response of transmit and receive antenna, or the 
relationship of principle eigenvector of matrix Q and HR . 

Assume that there are eigen-decompositions of 
H s s sQ U Σ U and HH H H HR U Σ U , where the eigenvalues of 

matrix Q and HR are arranged in descendant order. Then the 
impacts of transmit and receive array beams on the channel 
capacity ( )C  are determined by the factors of H

s s H HΣ U U Σ  

or H
H H s sΣ U U Σ . In the simulations, we see that 

matrix H
s HU U or H

H sU U are diagonal, therefore, the number and 

location of nonzero diagonal entries of matrix H
s HU U or H

H sU U is 
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the key factors for determining the channel capacity ( )C  . 

In the following, we only consider the case of T RN N (the 

case of T RN N can be discussed in same way). General 
speaking, if transmit or receive beams have specified pattern, 
then the spatial response of transmit and receive 
matrix Q and HR are rank deficiency. Therefore, there 

are rank( ) TNQ , and rank( ) TNHR , then for (6) we have, 

 2det ( / )
TN   n HI Q R�  

 2det ( / )
T

H H
N    n s s s H H HI U Σ U U Σ U�  

 2det ( / ) ( ) ( )
T

H H
N   n s s H H H sI Σ U U Σ U U�  

It is seen obviously from above expressions that the 
relationships of principle eigenvector of matrix Q  

and HR absolutely determine the channel capacity ( )C  . These 
relationships are that transmit and receive antenna beams being 
aligned, or one overlapped other, or one diverged from other, 
ultimately. These attribute to the relationships of 
matrices HU and sU , there are three cases, which are, 

1) 1diag{ , , ,0, ,0}H H
N     s H H sU U U U Λ I   ; 

2) 
01diag{ , , ,0, ,0}H H

N     s H H s0 U U U U Λ Λ    �  , 

that is 0N N , and i i  for 01,2, ,i N  ; 

3) H H   s H H sU U U U 0 . 

where min{rank( ), rank( )}N  HQ R and A B means 
matrix B A  is non-negative definite.  

In case 1), we have the channel capacity ( , )C H  equals to 

 2det ( / )
TN   n HI Q R�  

 2det ( / )
T

H H
N    n s s s H H HI U Σ U U Σ U�  

 2det ( / )
TN   n s HI ΛΣ ΛΣ�                      (7) 

2 2

1

[1 ( / ) ( ) ( )]
N

i i i
i

   


   n s HΣ Σ�  

In case 2), we have the channel capacity ( )C  equals to 

 2det ( / )
TN   n HI Q R�

 2det ( / )
T

H H
N    n s s s H H HI U Σ U U Σ U�  

 2det ( / )
TN   n s HI ΛΣ ΛΣ �                        (8) 

0
2 2

1

[1 ( / ) ( ) ( )]
N

i i i
i

   


    n s HΣ Σ�  

0
2 2

1

[1 ( / ) ( ) ( )]
N

i i i
i

   


   n s HΣ Σ�  

2 2

1

[1 ( / ) ( ) ( )]
N

i i i
i

   


   n s HΣ Σ�  

In case 3), we have the channel capacity ( , )C H  equals to 

 2det ( / )
TN   n HI Q R�  

 2det ( / )
T

H H
N    n s s s H H HI U Σ U U Σ U�  

 det 1
TN I                                          (9) 

From the expressions (7)-(9), it can be seen that as the 
correlation of spatial response of transmit and receive decrease, 
declines the channel capacity ( )C  . 

IV. SIMULATION RESULTS 

In all the simulations, it is assumed that there are 10 transmit 
sensors and 10 receive sensors (the simulations could be 
implemented in the same way for the cases there are different 
number sensor in transmit and receive). In the figures, it is 
shown that spatial correlation matrix of transmit or receive 
antenna having specified beampattern which is generated based 
on the principle proposed in [7], and the spatial correlation 
matrices are produced by the software vcx[8]. Then the spatial 
covariance matrices are employed in the simulations of 
computation of multiantenna channels capacity.  
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(a) The designed beampattern in transmitter and receiver 
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 (b) The capacity of multiantenna channels 

Figure 1. The capacity in aligned beam and omnibearing cases 

In the figure 1(a), it is shown that the designed and desired 
array beampattern of the transmit antenna, and in the figure 1(b), 
it is shown that the MIMO channel capacity in the case of 
receive array antenna have same beampattern as the transmit or 
it is omnidirectional. It could be seen that the channel capacity of 
the former case is super than the latter one. These reveal that 
when transmit and receive spatial response beam are aligned, the 
transmission is more efficiency. In the viewpoint of Shannon, 
the former case corresponds to HR Q and latter to HR I in 
(7). 
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 (b) The capacity of multiantenna channels 

Figure 2. The capacity of aligned, overlapped and omnibearing beam 

In figure 2(a), it is shown two cases of beampattern, one is 
wider than another. It is assumed that one is transmit array beam 
and another is receive, the capacity of the MIMO channel in the 
case of:1) receive array antenna beampattern same as that of the 
transmit; 2) receive array antenna beampattern is 
omnidirectional in both cases, 3) making the wider or narrower 
beam one as transmit beam and other as receive beam. The 
multiantenna channel capacity about all cases are plotted in 
figure 2(b). It is seen that the performance of the narrower beam 
is super than the wider one in the lower signal-to-noise ratio 
region, and inferior to the wider beam in the relatively higher 
signal-to-noise ratio region, but the beampattern aligned cases 
proved best after all. In the viewpoint of Shannon, this 
corresponds to the case of rank( ) rank( ) HQ R as in (8). 
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(b) The capacity of multiantenna channels 

Figure 3. The capacity of diverge beam 

In figure 3(a), the case of spatial response of transmitter and 
receiver array beampattern that diverge as if become disjoint are 
plotted. And in figure 3(b), the capacity of the MIMO channel in 
the case of: 1) receive array antenna beampattern same as the 
transmit, 2) the divergence beams one as transmit other as 
receive, are plotted. It is seen that in the divergence beampattern 
case, the transmission efficiency degenerated very seriously 
compares to the aligned cases. In the viewpoint of Shannon, this 
corresponds to (9) in our analysis. 

It could be seen that all implemented cases are satisfied with 
requirement of theory analysis, and that all the experiment 
results are consistent with the theory analysis. 

V. CONCLUSION 

In general principle, when the array antenna beampattern has 
special directional, its covariance matrix is rank deficiency. This 
reveals that some of the antenna sensors are strongly correlated. 
The correlation between the antenna sensors has negative impact 
on the capacity of multiantenna channels [9]. In the viewpoint of 
diversity, as array antenna beam become narrow, increase the 
correlation between the antenna sensors, reduce the rank of the 
covariance matrix, and decrease the order of diversity, finally, 
degenerate the performance of the systems [10]. All of these 
seem contradict to our theory analysis and simulation results. In 
fact, our conclusion could be explained with the algorithm of 
water-filling [11]. When transmit beam is aligned to that of 
receive array, then the principle components of the covariance 
matrices of both side are matched each other, this is equivalent 
to the water-filling algorithm in transmit. This also could be 
explained with matched filter, when receive adjusts its beam 
aiming at transmit, a matched filter is established between 
transmit and receive, it is an optimal transmission strategy. 

With the above discussion, we conclude that transmit and 
receive array antenna beam aligning is positive for system 
performance. This could be realized by feedback the information 
of covariance matrix of receive [3] or the coverage of beam of 
receive, or receive adjusts its beam aiming at transmit and 
matching the beampattern of transmit actively. The research is 
support under Grant 2012K06-27.  
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