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Abstract—In this paper, we develop a method, which using two-
dimensional Legendre wavelets, to solve linear PDEs. Based on
the properties of shifted Legendre polynomials, we give a brief
proof about the general procedure of two-dimensional
operational matrices of integration, and then employ
aforementioned matrices to find the solution of the PDEs. The
proposed method is mathematically simple and fast. To
demonstrate the efficiency of the method, two test problems
(solution of the diffusion, Poisson) are discussed. The
experimental results showed that the accuracy of the method is
very high and only need a small number of collocation points.
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l. INTRODUCTION

Wavelets theory, as a relatively new and an emerging area
in mathematical research, has received considerable attention in
dealing with PDEs [1]. Wavelets analysis possesses several
useful properties, such as orthogonality, compact support, exact
representation of polynomials to a certain degree, and multi-
resolution analysis (MRA) [2]. Moreover, wavelets establish a
connection with fast numerical algorithms [3]. Therefore the
wavelet is successfully used in many fields. So the wavelet
analysis has application advantage on many fields such as
signal analysis, data compression, image manipulation and
numerical computing [4].

In most case the wavelet coefficients were calculated by
Galerkin or collocation method, by it we have to evaluate
integral of some combinations of wavelet functions (called also
connection coefficients)[5]. The fundamental idea of Legendre
wavelet method is, by using the operational matrices, the PDE
problems which satisfies the boundary conditions and initial
condition can be converted into a set of algebraic equations
which involves a finite number of variables those of solving a
system of algebraic equations, thus greatly simplify the
problem and reduce the computation cost [6]. The Large
systems of algebraic equations may lead to greater
computational complexity and large storage requirements.
However, the operational matrix of the Legendre wavelets is
sparse, has lower dimension and most importantly is equal on
every subinterval [7]. These features can decrease the saving
and computational complexity when solving the system of
algebraic equations converted by the computational operators.

451

Jungiang Song
School of computer
National University of defense technology
Changsha China
jungiang@nudt.edu.cn

The main purpose of this work is to develop a effective 2-D
Legendre wavelets method combing with collocation method
for solving PEDs, which is fast, mathematically simple and
only needs a small number of grid points to guarantees the
necessary accuracy. The remainder of the paper is organized
as follows. Section 2 introduces the two-dimensional Legendre
wavelets and the properties of shifted Legendre polynomials.
We give a proof of operational matrices of integration in
Section 3. Section 4 presents the methods that utilize two
dimensional Legendre wavelets operational matrices to solve
second order linear PDEs. Two illustrative examples are also
given to demonstrate the validity and applicability of proposed
method. Finally, a brief summary is presented.

Il.  PRELIMINARIES AND NOTATIONS

A. The Properties of Shifted Legendre Polynomials

Shifted Legendre polynomials and their properties are
described in [8, 9]. In this article, we only pay close attention to
two important properties of shifted Legendre polynomials. The
relations between shifted Legendre wavelets and their
integration and derivative have been derived in [8] and [9]
respectively, which play an important role in deriving the
Legendre wavelet operational matrix.

The well-known Legendre differential equation is
[(1—x2)F_’n'(x)J' +n(n+1)P, (x)=0,-1<x<1

here P, (x) is Legendre polynomials of order n defined over the

interval [-1,1] . The so-called shifted Legendre differential
equation is obtained directly from the above equation by

lettingx = 2“7 —2n+1.
Theorem 1. Let P, (x)be the Legendre polynomials shifted
into[-1,1] , then we have

:5’

m+1

(2m+1)P, (x) (x)=Prs(x) )

Theorem 1 is a useful property of Legendre polynomials,
which can be seen in [10].
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Corollary 1. Letx=2“7—2n+1, and P, (7) be the Legendre

polynomials shifted mto{2k 11 2? 1} then we have

2“(2m+1)P, (r)=P;.(7)-Pi.(7) @
Proof.

From the definition of shifted Legendre polynomials and
using the law of derivate, we have

S G (x) _dR(7) dR(r)dr 1,
== = " a2 O

After substituting (3) in (1), we can get (2) directly.

B. Two-Dimensional Legendre Wavelets
Two-dimensional Legendre wavelets in LZ(R) over the

interval [0,1]x[0,1] as the form [11]:

k+k”
(m+£j(m'+—jz 2 P (x)P,(Y),
2 2

n-1 n n-1 !
'/’n,m,n',m'(x’ y): k-1 < XSF' ok = = okt ! (4)

0, otherwise.
and m=0,1,2,---,M -1m’'=0,1,2,---,M'=1, n=1,2,...,2¥*
n'=12,,--,2""

where P, (x)=P, (2*x-2n+1), P, (y) =P, (2y-2n"+1),
P are Legendre functions of order m defined over the
interval [-1,1] .

Two dimensions Legendre wavelets are an orthonormal set
over[0,1]x[0,1]

5. 5 8.5, (5)

n,n o m,my ﬂﬂ1 mm

1p1
.[0 .[0 Yo mnm (X' y)l//nl,ﬂhvn{:m{ (X’ y)dXdy

The functionu(x,y) e L*(R) defined over [0,1]x[0,1] may
be expanded as

© o0

E i iz z Cn,m,n’,m’lr//n,m,n’,m’ (X' y) (6)

=1 m=0n'=1m’'=0

u(xy)=

>

If the infinite series in (6) is truncated, then (6) can be
written as

u(xy) =X (x)(y)2 Y
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can be expressed as the form
u(x,y)=

where C and \P(x,y) (more details see[11]) are coefficients
matrix and wavelets vector matrix respectively. The number of
dimensions of Cand ¥(x,y) are2“'2“*MM'x1, and given

by

T P(xy). (8)

C =[Ciom0r "+ Croam11C0200 " Croam 1771 Crg et g7 1 g et oy

'”cl,Mfl,l,D"”'Cl‘M71‘1‘M’71'Cl‘Mfl‘Z‘D"”'cl,Mfl,Z‘M’fl'”"CLM,LQK”QYNI'CLM,LQ“"‘,M'A’ (9)

“Coon00 1 Copam1 Can2,00 1 Coa et 1 Cy g it g0 Gy et g

'HCZ,Mfl,LO"”'CZ,M—LLMLl'CZ,M—LZ,O'”'YcZ.M—l.Z,M’fl'”"CZVM,LZW"‘Q'”"cvasz“"‘,MLl’

...C . C c ... C ... C . C ]T
210100 T2 0aM-1t 2% 0200 T2 lo2M-1 Tkl 02K 0! Yok M1 2K M1

Y= ['//1,0,1,0 v Vioamn Vioor  Wioamn W g et g0 W g et g

CVimase  Wanaam-n Yame200 T Vametame-n T Wy g W vk e (10)

Vo010 Wa0um-11W200200  Wapo M W g g g W g okt iy

CVomare  Wamaam Wem-r200  Wamaamr W g i g0 0 W ma et e
l//zk",o.l,o’ ’l//zk”.l).l,M'—l’WZ“,O,ZO’ 'WZK”‘U,Z.M’—l’ "//2“”.0,2“"‘,0' ’l//zk’],M—l,Zk"],M'—l

The integration of the product of two Legendre wavelet
function vectors is obtained as

IJ (X, y)¥" (x,y)dxdy = I (11)

where | is identity matrix.
Il.  Two-DIMENSIONAL OPERATIONAL MATRIX OF
INTEGRATION

Although a general procedure for forming two-dimensional
operational matrix of integration has been presented in [11],
there is no detailed proof. In this section, we will give a brief
proof about the general procedure of two-dimensional
operational matrix of integration by applying corollary 1.

A. Operational matrix of integration for x variable

Theorem 2. Let¥(x,y)be the two-dimensional Legendre
wavelets vector defined in (10), we have

J.OX‘P(T,y)drsz‘P(X, y),

where P, is 272 TMM ' x 212 " MM’ operational matrix for
integration and is given as.

(12)

L F F F
1 O L F
PXzWO O L F
: F

0O 0O L



O is 2!MM'x2“!'MM’' matrix. F and L
are 2 MM’ x 251 MM ' matrices that define as follow
(2D O’ O’ 0] o1 1]
o O O o’ I I | |
F=|O 0O O o |D=|I 1 1 ],
: B o’ o I
00 0O - O I 11 ]
) L _
D —D o’ o'
J3
1 1
-—D ! o'
| NN
- ., ,
’ Of Of
NENS
: : : o’
o o) o) o'

0'is2 M’ x2*M" full zero matrix and | is M’ x M identity
matrix, and D is 2¥*M’x2X*M ' matrix given by

Proof.

Whenm =0, we obtain

IOX l//n,O,n’,m’ (T’ y) d v

;Po(x)dx, Xe[nk_,ll,L}
Zkfl 2 2 (13)
~ A-1 A
= AP (y) 0 N=l-n-lxel — 575 |
2 2
EPO(x)dx,ﬁ=n+1,---,2k’1,xe[2;11,%}.
Zkl

From (13) and completing the integration, then one has

_[OX l//n,O,n',m’ (T’ y) d T

1[1(// (6 Y) 4 Vg (X y)}x;”_l n
Akl T Paanm \ N n,on',m \ ' k-1 ' ok-1 |’
2Lys ST
=<0, A=1---,n-1 Xxe o1 ’F ;

1 R ~ [A-1 A ]

S Vaowa (XY), A=n+l 27 xe| S o

Whenm = 0, by integrating with respect to x in (4) we have

[ Vo (z.¥)d7

X n-1 n
Epm(f)drl Xelizk—l T ok-L :|
2 (15)
N Ai-1 A
P, (¥)40, fi=1--,n-1, Xe[zkfl '2“};
2P (r)dr.A=nil 2t Ai-1 A
Jnl ) (7)dr,i=n+ X ST |
zkl
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Using Corollary 1, and integrating with respect to xin (2)

fromg lt 2Pl,then
J‘Oxl//n,m‘n"m' (T' Y)dT
1 ) n-1 n |,
m( Poa (7) = Poa(7)) . X€|:2k—1'2k1:i'
zkfl
A (16)
0 f=1-,n-1, XE|:2kj-,2{ll:‘;
Pm(y) =N
L (p(e)-Pa(e))] | A=nele, 2
Zk(2m+1) m+l m-1 [:LA‘ - o
Xe{ﬁ—l ﬁ}
2k71 ’2k71 )
Because (P, (7)- P, (7)) w1 =P, (-1)-P,,(-1)=0,
2k—1
and (P, (7)=P,4 (7)) » =Pns(1)-P,,(1)=0, thus we
have
JOX (//n,m,n',m’ (T’ y)dT
1 { 1, ., }
22m+1[V2m+3 " fom-1 M ) (17)
n-1 n |
VS| ek |
0, otherwise.
Writing IOV\P(X,T)dr as a vector whose element
is wanmn,m,(r,y)dr , we could get matrix form

r,x)dr=P¥(x,y).

asJ.

B. Operational matrix of integration for y variable

Theorem 3. Let W(x,y) be the two dimensions Legendre
wavelets vector defined in (10), then we have

y
IO ¥ (x,7)dr= Py‘{’(x,y), (18)
in which
P P P L F F
P P P O L F
P: . . . !P:
y S : O O . F
P P P O 0 O L
P is a 22'MM’'x22'MM’ matrix. P

y
is2*M x 2"*M" matrix, L, F and O is M x M’ matrix.



a o0 0
110 O 0 2,k>1
F=2rl. . =
2 : 0,k=1
0 0 0
_ L _
1 — 0 - 0
NE)
—i 0 1 0
AR NN
2 L 0 -0 -
V35
: : : .0
| 0 0 0 < 0]

Proof.
Whenm' =0, by integrating with respect to Y in (4), then

on Wn,m,n’,O (X’ Z-) d T

y n-1 n'
JL;l R (T)dT' y e|: k-1 ’2k’71:|
oK (19)
., , -1 A
=A,oP, (X)40, Ai'=1--,n +l,ye[ i '2“"1}
JEPO(T)dT,ﬁ'Zn'+1,~~-,2k'71,y€|:r;k,_711,2371:|
Pr

J‘Oy l//n,m,n’,o (X’ Z-) dT

171 ol o
? ﬁl//n,m,n’,l-'—l//ﬂvmv”’vo ! yE ZkLl ,2k’71

1w @)
|:2k'l

~J

=40, n"=1---,n"-1ye

1 IR "~ n-1 n'
Fl//n,m,ﬁ',o’n =n +1v"'12k l’yE[F,F}'

Whenm' # 0, by integrating with respect to y in (4), then

joy ‘//n,m,n',m’ (X’ T)dz-

1 1 1
2k’\/2mv+l |:\/2m, 13 l//n,m,n’,m'+l \/m l//n,m,n’,m'l:|’
n-1 n" | (21)
= y € 2k'*1 1F y

0, otherwise.

.. y
writing _[0 ¥(x,7)dr as a vector whose element
Y ,
is J.O Vomwm (X7)d7 . we could get matrix form

as [ W (x,7)dr =P,¥(x,y).

454

IV. PROBLEM STATEMENT AND METHOD OF SOLUTION
Consider the following form PDEs

o g 2u Fu
ax 1 ay ’ axz !ayz .
with the Dirichlet boundary conditions

In this section, we let - and ' denotes differentiation with
respect to x and vy, respectively. According to the Legendre

wavelet method, it generally assumes that L'j"(x, y) can be
expanded in terms of Legendre wavelets as formula

(22)

u"=C"¥(xy), (23)

Integrating formula Eq. (23) with respect to x twice from 0
to x and with respect to y once from 0 to y, we obtain

u"(x,y)=C'P¥(xy)+u"(0,y), (24)
u”(x,y)=C'P?¥(x,y)+xu"(0,y)+u"(0,y), (25)
u'(x,y)=C"R?P,¥(x,y)+x[u'(0,y)-u'(0,0)]
+u'(0,y)-u’(0,0)+u’(x,0),
Putting x =1in the Eqg. (25) and (26), we have
u"(0,y)=-C"R?¥(1,y)+u"(Ly)-u"(0,y), (27)
u'(0,y)-u'(0,0)=-C"PP,¥ (L y)+9g,(y). (28)

where g, (y)=u'(1,y)-u’(0,y)+u’(0,0)-u’(1,0).
Substituting Eq. (27) into (25) and Eq. (28) into (26), we
have

(26)

u"(x,y)=CTP[¥(x,y)-x¥(Ly)]

#x[u'(Ly)-u"(0.y)]J+u(0,y), ”
T
o (0) w(00)ru(x0)

where
g, (% y)=x[u'(Ly)-u(0,y)+u'(0,0)-u'(1,0) ]+u’(0,y).

Integrating formula Eq. (23) with respect to x from 0 to x
we obtain

u(x,y)=CTPZP[ W (x,y)-x¥(Ly)]+g;(x.y)

(31)
+y[u'(x,0)-u’(0,0)]+u(x,0),
in which
95 (x,¥)=x[u(Ly)-u(L0)-u(0,y)+u(0,0)]
+x[ yu’(0,0)— yu'(1,0) ]+u(o0, y)-u(0,0)
Putting y =1in the Eq. (30), we have
u'(x,0)—u’(0,0)=-CTP?P?[ W (x,1) - x¥(11)] 32

-9;(x,1)+u(x1)-u(x,0),
Substituting Eq. (32) into (30) and (31), we have



u'(x,y)=C'PR,[¥(xy)-x¥(Ly)]

+CTR2P7 [ - (x,1)+x¥ (L1)] (33)

+0,(%Y)-9;(x1)+u(x,1)—-u(x,0),
u(x,y)=CTPZP}[W(x,y)-x¥(Ly)]

~CTPRIP?[ y¥ (x.1)+xy¥(L1)] (34)

+93 (% Y) = y0; (x.1) + 9, (x),
where g, (x) = y[ u(x,1)—u(x,0)]+u(x,0).

Integrating Eq. (23) with respect to y from 0 to y and with
respect to x from 0 to x, we obtain

'(x,y)=C"P,¥(x,y)+u'(x0), (35)
U(x,y)=C P W(x,y)+yi'(x,0)+t(x,0), (36)

U(x,y)=C'PRW¥(xy)+y[u'(x,0)-u(0,0)]
(37)

+U(x,0)-u(0,0)+u(0,y),
Putting y =1in the Eq. (36) and (37), we have

i'(x,0) =—C"PW (x,1)+U(x,1)—ti(x,0), (38)
u'(x,0)-u'(0,0)=-C"R’RP¥ (x,1)+ g, (x), (39)

where g5 (x) =u(x,1)-u(x,0)+u(0,0)-u(0,1).
Substituting Eqg. (38) into (36) and (39) into (37), we have
U(x,y)=C'P[¥(x,y)-y¥(x1)]
+y[U(x1)-t(x,0)]+t(x,0),
u(x,y)=C"P’P[¥(x,y)-y¥(x1)]

+Y0s (X)+u(x,0)-u(0,0)+u(0,y),
Then, integrating formula (41) with respect to x from 0 to X,
we obtain

u(x,y)=C'PPZ[W(x,y)-y¥(x1)]
+95 (x, y)+x[u(0,y)-u(0,0)]+u(0,y),

(40)

(41)

(42)

where
9 (%, ¥)=y[u(x,1)-u(0,2)~u(x,0)+u(0,0)]
+xy[1(0,0)-u(0,1)]+u(x,0)-u(0,0)
At x =1in the Eg. (42), we have
u(0,y)-u(0,0)=-C"P’P}[W(Ly)-y¥(L1)]
~ 05 (LY)+u(Ly)-u(0,y),
Substituting Eqg. (43) into (41), we have
0(x,y) = ygs (x)+0(x,0)=gs (L) +u(Ly)-u(0.y)
+CTP’P,[ W (x.y)-y¥(x.1)-P¥(Ly)+yP¥(11)], (44)
Substituting Eq. (29), (33), (34), (40) and (44) into Eq. (22),

and collocate Eq. (22) at 2**2¥"*MM ' points, we can get a set
of algebraic equations which can be solved for C.

(43)
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V.

In this section, we will demonstrate the effectiveness of the
proposed two-dimensional Legendre wavelets method with
two illustrative examples.

ILLUSTRATIVE EXAMPLES

A. Diffusion equation
Consider the following diffusion equation
au ou o%u

—-0.1—=0.01—, (x,t)e]|0,1 45

Subject to the Dirichlet boundary conditions as
u(x,0)=e",u(x,1)=e""%, (46)
u(0,t)=e* u(Lt)=e*, (47)

and the exact solution isu(x,t) =e™**".

We solve the above problem by applying the technique
described in Section Il and have

U(x,t)=C"RY¥(x,t)+U(x,0)

U(xt)=C'RP[¥(xt)-R¥(Lt)]+g,(xt), (48)
u'(x,t)=C R [ W(xt)-x¥(Lt)]+g,(x.t)
u(x,t)=C"RP?[W(xt)-x¥(Lt)]+u(x,0)-u(0,0) )

+x[u(Lt)-u(L0)+u(0,0)-u(0,t)]+u(0,t);
inwhich g, (x,t) =u(x,0)-u(,0)-u(0,t)+u(Lt)+1 and
g, (xt) =x[u'(Lt)-u(0,t) ]+u'(0,t).
Substituting (48) and (49) into (45), we obtain
CTA=g(xt) (50)
A= (P?-01RP,-0.01R)¥(x,t)
+(x1 -0.1R ) P?¥ (Lt) '

where

From formula (50) the wavelet coefficients C™ can be
calculated. When M =M'=12 and k =k’=1, the absolute
error is plotted in figure 1.

Figure 1. the absolute error of diffusion equation



From figure 1, we can see that numerical solution obtained
by our method is good agrees with the exact solution and the
accuracy of the method is very high.

Figure 2.

the absolute error of Poisson equation

B. Poisson equation
Consider the following Poisson equation

ou du
y—FW:—ZU,(X, y)e[O,l]x[O,l] (51)
with the Dirichlet boundary conditions
u(0,y)=0,u(Ly)=sin(1)sin(y), 52)

u(x,0)=0,u(x,1)=sin(x)sin(1)
has the exact solution isu =sin(x)sin(y).

We solve the above problem by applying the technique
described in Section 111 and have

(xy)=C P [¥(xy)-y¥(x1)]
+y[u(x2)-t(x0)]+u(x0),

u"(x,y)=CTP}[¥(xy)-x¥(Ly)] 3)
+x[u"(Ly)-u"(0,y)]+u"(0,y),
u(x,y)=C'RP[W(x,y)-x¥(Ly)-y¥(x1)] -

—xyC'R’P ¥ (L1)+ g, (X, Y)— Y9, (x.1)+ 9, (x.Y),
g; (x.y) =x[u(Ly)-u(L0)-u(0,y)+u(0,0)]
+xy[u’(0,0)-u’(1,0) ]+u(0,y)-u(0,0)
9, (% y) =y[u(x1)-u(x,0)]+u(x0).
Substituting (53) and (54) into (51), we obtain

where
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C'A=g(xY) (55)

A=P[¥(xy)-y¥(x1)]+P[¥(xy)-x¥(Ly)]

where
+2PR7P7[ W (X, y) - X¥ (Ly)-y¥(x.1)-xy¥ (L1)]

g(xy)=-x[u"(Ly)-u"(0.y)]-u"(0.y)
—y[i(x1)-ti(x,0)]-ti(x,0)
=2[g5(% )~ 85 (1) + 9, (x) ]

From figure 2, we can see that numerical solution obtained
by our method is full agrees with the exact solution.

and

CONCLUSION

In this paper, we give a brief proof about the general
procedure of two-dimensional operational matrices of
integration, and then develop a solution of PDEs by using the
two-dimensional operational matrices of integration. The main
benefits of the proposed method are its computation-effective
(only need a small number of collocation points guarantees the
necessary accuracy) and universality (the same approach is
applicable for a wide class of linear PDES).
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