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Abstract—In this paper, we develop a method, which using two-
dimensional Legendre wavelets, to solve linear PDEs. Based on 
the properties of shifted Legendre polynomials, we give a brief 
proof about the general procedure of two-dimensional 
operational matrices of integration, and then employ 
aforementioned matrices to find the solution of the PDEs. The 
proposed method is mathematically simple and fast. To 
demonstrate the efficiency of the method, two test problems 
(solution of the diffusion, Poisson) are discussed. The 
experimental results showed that the accuracy of the method is 
very high and only need a small number of collocation points. 

Keywords-two-dimensional, Legendre wavelets, operational matrix, 
integration, PDEs 

I. INTRODUCTION 

Wavelets theory, as a relatively new and an emerging area 
in mathematical research, has received considerable attention in 
dealing with PDEs [1]. Wavelets analysis possesses several 
useful properties, such as orthogonality, compact support, exact 
representation of polynomials to a certain degree, and multi-
resolution analysis (MRA) [2]. Moreover, wavelets establish a 
connection with fast numerical algorithms [3]. Therefore the 
wavelet is successfully used in many fields. So the wavelet 
analysis has application advantage on many fields such as 
signal analysis, data compression, image manipulation and 
numerical computing [4]. 

In most case the wavelet coefficients were calculated by 
Galerkin or collocation method, by it we have to evaluate 
integral of some combinations of wavelet functions (called also 
connection coefficients)[5]. The fundamental idea of Legendre 
wavelet method is, by using the operational matrices, the PDE 
problems which satisfies the boundary conditions and initial 
condition can be converted into a set of algebraic equations 
which involves a finite number of variables those of solving a 
system of algebraic equations, thus greatly simplify the 
problem and reduce the computation cost [6]. The Large 
systems of algebraic equations may lead to greater 
computational complexity and large storage requirements. 
However, the operational matrix of the Legendre wavelets is 
sparse, has lower dimension and most importantly is equal on 
every subinterval [7]. These features can decrease the saving 
and computational complexity when solving the system of 
algebraic equations converted by the computational operators. 

The main purpose of this work is to develop a effective 2-D 
Legendre wavelets method combing with collocation method 
for solving PEDs, which is fast, mathematically simple and 
only needs a small number of grid points to guarantees the 
necessary accuracy. The remainder of the paper is organized 
as follows. Section 2 introduces the two-dimensional Legendre 
wavelets and the properties of shifted Legendre polynomials. 
We give a proof of operational matrices of integration in 
Section 3. Section 4 presents the methods that utilize two 
dimensional Legendre wavelets operational matrices to solve 
second order linear PDEs. Two illustrative examples are also 
given to demonstrate the validity and applicability of proposed 
method. Finally, a brief summary is presented. 

II. PRELIMINARIES AND NOTATIONS 

A. The Properties of Shifted Legendre Polynomials 

Shifted Legendre polynomials and their properties are 
described in [8, 9]. In this article, we only pay close attention to 
two important properties of shifted Legendre polynomials. The 
relations between shifted Legendre wavelets and their 
integration and derivative have been derived in [8] and [9] 
respectively, which play an important role in deriving the 
Legendre wavelet operational matrix.  

The well-known Legendre differential equation is 

       21 1 0, 1 1n nx P x n n P x x          

here  nP x is Legendre polynomials of order n defined over the 

interval  1,1 . The so-called shifted Legendre differential 

equation is obtained directly from the above equation by 
letting 2 2 1kx n   .  

Theorem 1. Let  mP x be the Legendre polynomials shifted 

into  1,1 , then we have 

                    1 12 1 m m mm P x P x P x                        (1) 

Theorem 1 is a useful property of Legendre polynomials, 
which can be seen in [10].  
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Corollary 1. Let 2 2 1kx n   , and  mP   be the Legendre 

polynomials shifted into 1 1

1
,

2 2k k

n n
 

 
  

, then we have 

                    1 12 2 1k
m m mm P P P                        (2) 

Proof.  

From the definition of shifted Legendre polynomials and 
using the law of derivate, we have 

         1

2
n n n

n nk

dP x dP dP d
P x P

dx dx d dx

   


     ,     (3) 

After substituting (3) in (1), we can get (2) directly. 

 

B. Two-Dimensional Legendre Wavelets 

Two-dimensional Legendre wavelets in  2L R over the 

interval    0,1 0,1 as the form [11]:  

 

   2

, , , 1 1 1 1

1 1
2 ,

2 2

1 1
, , ;

2 2 2 2
0, .

k k

m m

n m n m k k k k

m m P x P y

n n n n
x y x y

otherwise







      

         
   

       





,   (4) 

and 0,1,2, , 1, 0,1,2, , 1,m M m M      11,2, ,2 ,kn  
11,2, ,2kn    . 

where    2 2 1k
m mP x P x n   ,    2 2 1k

m mP y P y n
     , 

mP are Legendre functions of order m defined over the 

interval  1,1 . 

Two dimensions Legendre wavelets are an orthonormal set 
over    0,1 0,1  

   
1 1 1 1 1 1 1 1

1 1

, , , , , , , , , ,0 0
, ,n m n m n m n m n n m m n n m mx y x y dxdy               (5) 

The function    2,u x y L R defined over    0,1 0,1  may 

be expanded as 

        , , , , , ,
1 0 1 0

, ,n m n m n m n m
n m n m

u x y X x y c x y
   

   
    

     (6) 

If the infinite series in (6) is truncated, then (6) can be 
written as 

       
1 12 1 2 1

, , , , , ,
1 0 1 0

, ,
k kM M

n m n m n m n m
n m n m

u x y X x y c x y
   

   
    

    (7) 

where      
1 1

, , , , , ,0 0
,n m n m n m n mc X x Y y x y dxdy      .The Eq. (7) 

can be expressed as the form 

   , ,Tu x y C x y  .                           (8) 

where C and  ,x y  (more details see[11]) are coefficients 

matrix and wavelets vector matrix respectively. The number of 
dimensions of C and  ,x y  are 1 12 2 1k k MM   , and given 

by  

1 1

1 1

1,0,1,0 1,0,1, 1 1,0,2,0 1,0,2, 1 1,0,2 ,0 1,0,2 , 1

1, 1,1,0 1, 1,1, 1 1, 1,2,0 1, 1,2, 1 1, 1,2 0 1, 1,2 , 1

2,0,1,0 2,0,1, 1 2,

[ , , , , , , , , , ,

, , , , , , , , , ,

, , ,

k k

k k

M M M

M M M M M M M M M

M

C c c c c c c

c c c c c c

c c c

  

  

   

         



    

    

  1 1

1 1

1 1 1 1

0,2,0 2,0,2, 1 2,0,2 ,0 2,0,2 , 1

2, 1,1,0 2, 1,1, 1 2, 1,2,0 2, 1,2, 1 2, 1,2 ,0 2, 1,2 , 1

2 ,0,1,0 2 ,0,1, 1 2 ,0,2,0 2 ,0,2,

, , , , , , ,

, , , , , , , , , ,

, , , , ,

k k

k k

k k k k

M M

M M M M M M M M M

M

c c c

c c c c c c

c c c c

  

  

   

 

         

 

  

    

   1 1 1 11 2 ,0,2 ,0 2 , 1,2 , 1
, , , , ]k k k k

T

M M M
c c       

 

(9) 

1 1

1 1

1,0,1,0 1,0,1, 1 1,0,2,0 1,0,2, 1 1,0,2 ,0 1,0,2 , 1

1, 1,1,0 1, 1,1, 1 1, 1,2,0 1, 1,2, 1 1, , 1,2 ,0 1, 1,2 , 1

2,0,1,0 2,0,1, 1

[ , , , , , , , , , ,

, , , , , , , , , ,

, , ,

k k

k k

M M M

M M M M M M M M M

M

     

     

  

  

  

   

         



     

    

  1 1

1 1

1 1 1 1

2,0,2,0 2,0,2, 1 2,0,2 ,0 2,0,2 , 1

2, 1,1,0 2, 1,1, 1 2, 1,2,0 2, 1,2, 1 2, 1,2 ,0 2, 1,2 , 1

2 ,0,1,0 2 ,0,1, 1 2 ,0,2,0 2 ,0,2

, , , , , , ,

, , , , , , , , , ,

, , , , ,

k k

k k

k k k k

M M

M M M M M M M M M

M

  

     

   

  

  

   

 

         



  

    

   1 1 1 1, 1 2 ,0,2 ,0 2 , 1,2 , 1
, , , , ]k k k k

T

M M M
        

 
 

(10) 

The integration of the product of two Legendre wavelet 
function vectors is obtained as 

   
1 1

0 0
, ,Tx y x y dxdy I                          (11) 

where I is identity matrix. 

III. TWO-DIMENSIONAL OPERATIONAL MATRIX OF 

INTEGRATION 

Although a general procedure for forming two-dimensional 
operational matrix of integration has been presented in [11], 
there is no detailed proof. In this section, we will give a brief 
proof about the general procedure of two-dimensional 
operational matrix of integration by applying corollary 1. 

A. Operational matrix of integration for x variable 

Theorem 2. Let  ,x y be the two-dimensional Legendre 

wavelets vector defined in (10), we have 

   
0

, ,
x

xy d P x y    ,                          (12) 

where xP is 1 1 1 12 2 2 2k k k kMM MM      operational matrix for 
integration and is given as. 

1

1

2x k k

L F F F

O L F F

P O O L F
M

F

O O O L
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O is 1 12 2k kMM MM   matrix. F and L 
are 1 12 2k kMM MM   matrices that define as follow 

2D O O O

O O O O

F O O O O

O

O O O O

   
     

    
  
     







   



I I I I

I I I I

D I I I I

I

I I I I

 
 
 
 
 
 
  







   



,

1

3
1 1

3 3 5
1

3 5

D D O O

D O D O

L
O D O O

O

O O O O

   
 
   
 

    
 

 
     







   



, 

O is 1 12 2k kM M     full zero matrix and I is M M  identity 
matrix, and D is 1 12 2k kM M    matrix given by 

Proof.  

When 0m  , we obtain 

 

 

 

 

1

1

1

,0, ,0

1 0 1 1
2

0, 1 1

12
1 0 1 1

2

,

1
, , ;

2 2

ˆ ˆ1
ˆ0, 1, , 1, , ;

2 2

ˆ ˆ1
ˆ, 1, , 2 , , .

2 2

k

k

k

x

n n m

x

n k k

m m k k

n
k

n k k

y d

n n
P x dx x

n n
A P y n n x

n n
P x dx n n x

  







 

  

   


  

     
         
       











(13) 

From (13) and completing the integration, then one has 

 

   

 

,0, ,0

,1, , ,0, , 1 1

1 1

1
ˆ,0, ,1 1 1

,

1 1 1
, , , , ;

2 2 23

ˆ ˆ1
ˆ0, 1, , 1, , ;

2 2

ˆ ˆ1 1
ˆ, , 1, ,2 , , .

2 2 2

x

n n m

n n m n n mk k k

k k

k
n n mk k k

y d

n n
x y x y x

n n
n n x

n n
x y n n x

  

 



 

     

 


   

           
        
       







(14) 

When 0m  , by integrating with respect to x in (4) we have 

 

 

 

 

1

1

1

, , ,0

1 1 1
2

, 1 1

12
1 1 1

2

,

1
, , ;

2 2

ˆ ˆ1
ˆ0, 1, , 1, , ;

2 2

ˆ ˆ1
ˆ, 1, ,2 , , .

2 2

k

k

k

x

n m n m

x

n m k k

m m m k k

n
k

n m k k

y d

n n
P d x

n n
A P y n n x

n n
P d n n x

  

 

 







 

  

   


  

     
         
       











 (15) 

Using Corollary 1, and integrating with respect to x in (2) 

from
1

1

2k

n



to

12k

n
 , then 

 

 

      

      

1

1

1

, , ,0

1 1 1 1
1

2

1 1

,

2
1

1 1
1

2

1 1

,

1 1
, , ;

2 2 1 2 2

ˆ ˆ1
ˆ0, 1, , 1, , ;

2 2

1
ˆ, 1, ,2 ,

2 2 1

ˆ ˆ1
, .

2 2

k

k

k

x

n m n m

x

m mk k k
n

k k

m m m n

k
m mk

n

k k

y d

n n
P P x

m

n n
n n x

A P y

P P n n
m

n n
x









  

 

 







 



   




 

 



 




 

        

       

 

  


    













(16) 

Because         
1

11 1 1 1
2

1 1 0
k

nm m m mP P P P


 

   

      , 

and         
1

1 1 1 1
2

1 1 0
k

nm m m mP P P P


 


   
    , thus we 

have 

 , , ,0

, 1, , , 1, ,

1 1

,

1 1 1
,

2 2 1 2 3 2 1

1
, ;

2 2

0, .

x

n m n m

n m n m n m n mk

k k

y d

m m m

n n
x

otherwise

  

 

 

 

 

       
      






      (17) 

Writing  
0

,
y

x d  as a vector whose element 

is  , , ,0
,

x

n m n m y d    , we could get matrix form 

as    
0

, ,
x

xx d P x y    .  

□  

B. Operational matrix of integration for y variable 

Theorem 3. Let  ,x y be the two dimensions Legendre 

wavelets vector defined in (10), then we have 

   
0

, ,
y

yx d P x y    ,                        (18) 

in which  

y

P P P

P P P
P

P P P

 
 
 
 
 
 





   



,

L F F

O L F
P

O O F

O O O L

 
 
 
 
 
 






 

yP is a 1 1 1 12 2 2 2k k k kMM MM      matrix. P 

is 1 12 2k kM M   matrix, L, F and O is M M  matrix. 
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0 0

0 0 01

2

0 0 0

k

a

F

 
 
 
 
 
 





   



,
2, 1

0, 1

k
a

k


    

1
1 0 0

3
1 1

0 0
3 3 51

12 0 0 0
3 5

0

0 0 0 0

k
L

 
 
 
  
 
  
 
 
  







   



. 

Proof.  
When 0m   , by integrating with respect to y in (4), then 

 

 

 

 

1

1

1

, , ,00

1 0 1 1
2

,0 1 1

12
1 0 1 1

2

,

1
, ,

2 2

ˆ ˆ1
ˆ0, 1, , 1, ,

2 2

ˆ ˆ1
ˆ, 1, ,2 , ,

2 2

k

k

k

y

n m n

y

n k k

m m k k

n
k

n k k

x d

n n
P d y

n n
A P x n n y

n n
P d n n y

  

 

 









   

  




   

      
           
         











(19) 

 

 , , ,00

, , ,1 , , ,0 1 1

1 1

1
ˆ, , ,01 1 1

,

1 1 1
, ,

2 2 23

1
ˆ0, 1, , 1, ,

2 2

1 1
ˆ, 1, ,2 , , ,

2 2 2

y

n m n

n m n n m nk k k

k k

k
n m nk k k

x d

n n
y

n n
n n y

n n
n n y

  

 





    

  


    

            
          
         







  (20) 

When 0m   , by integrating with respect to y in (4), then 

 

 , , ,0

, , , 1 , , , 1

1 1

,

1 1 1
,

2 2 1 2 3 2 1

1
, ;

2 2

0, .

y

n m n m

n m n m n m n mk

k k

x d

m m m

n n
y

otherwise

  

 

 

    

  

         
       






(21) 

writing  
0

,
y

x d  as a vector whose element 

is  , , ,0
,

y

n m n m x d    , we could get matrix form 

as    
0

, ,
y

yx d P x y    .  

  

IV. PROBLEM STATEMENT AND METHOD OF SOLUTION 

Consider the following form PDEs 

2 2

2 2
, , ,

u u u u
u F

x y x y

    
      

.                        (22) 

with the Dirichlet boundary conditions 
In this section, we let  and ' denotes differentiation with 

respect to x and y, respectively. According to the Legendre 
wavelet method, it generally assumes that  ,u x y can be 

expanded in terms of Legendre wavelets as formula 

 ,Tu C x y   ,                              (23) 

Integrating formula Eq. (23) with respect to x twice from 0 
to x and with respect to y once from 0 to y, we obtain 

     , , 0, ,T
xu x y C P x y u y                  (24) 

       2, , 0, 0, ,T
xu x y C P x y xu y u y            (25) 

       
     

2, , 0, 0,0

0, 0,0 ,0 ,

T
x yu x y C P P x y x u y u

u y u u x

       
    

 
    (26) 

Putting 1x  in the Eq. (25) and (26), we have  

       20, 1, 1, 0, ,T
xu y C P y u y u y            (27) 

         2
10, 0,0 1, ,T

x yu y u C P P y g y            (28) 

where          1 1, 0, 0,0 1,0g y u y u y u u       . 

Substituting Eq. (27) into (25) and Eq. (28) into (26), we 
have 

 
     

     

2, , 1,

1, 0, 0, ,

T
xu x y C P x y x y

x u y u y u y

      
      

         (29) 

     
     

2

2

, , 1,

, 0,0 , 0 ,

T
x yu x y C P P x y x y

g x y u u x

      
   

               (30) 

where

           2 , 1, 0, 0,0 1,0 0,g x y x u y u y u u u y           .  

Integrating formula Eq. (23) with respect to x from 0 to x 
we obtain 

       
     

2 2
3, , 1, ,

,0 0,0 ,0 ,

T
x yu x y C P P x y x y g x y

y u x u u x

      
     

    (31) 

in which 

         
       

3 , 1, 1,0 0, 0,0

0,0 1,0 0, 0,0

g x y x u y u u y u

x yu yu u y u

     
      

. 

Putting 1y  in the Eq. (30), we have 

       
     

2 2

3

,0 0,0 ,1 1,1

,1 ,1 ,0 ,

T
x yu x u C P P x x

g x u x u x

        
  

     (32) 

Substituting Eq. (32) into (30) and (31), we have 
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2

2 2

2 3

, , 1,

,1 1,1

, ,1 ,1 ,0 ,

T
x y

T
x y

u x y C P P x y x y

C P P x x

g x y g x u x u x

      
     
   

        (33) 

     
   

     

2 2

2 2

3 3 4

, , 1,

,1 1,1

, ,1 ,

T
x y

T
x y

u x y C P P x y x y

C P P y x xy

g x y yg x g x

     
     
  

                 (34) 

where        4 ,1 ,0 ,0g x y u x u x u x     . 

Integrating Eq. (23) with respect to y from 0 to y and with 
respect to x from 0 to x, we obtain 

     , , ,0 ,T
yu x y C P x y u x                            (35) 

       2, , ,0 ,0 ,T
yu x y C P x y yu x u x                (36) 

       
     

2, , ,0 0,0

,0 0,0 0, ,

T
y xu x y C P P x y y u x u

u x u u y

      
  

  

  
     (37) 

Putting 1y  in the Eq. (36) and (37), we have  

       2,0 ,1 ,1 ,0 ,T
yu x C P x u x u x                    (38) 

       2
5, 0 0,0 ,1 ,T

y xu x u C P P x g x                 (39) 

where          5 ,1 ,0 0,0 0,1g x u x u x u u       . 

Substituting Eq. (38) into (36) and (39) into (37), we have 

     
     

2, , ,1

,1 ,0 ,0 ,

T
yu x y C P x y y x

y u x u x u x

     
    



  
                 (40) 

     
       

2

5

, , ,1

,0 0,0 0, ,

T
y xu x y C P P x y y x

yg x u x u u y

     
   



  
        (41) 

Then, integrating formula (41) with respect to x from 0 to x, 
we obtain 

 
     

       

2 2

6

, , ,1

, 0, 0,0 0, ,

T
y xu x y C P P x y y x

g x y x u y u u y

     
      

   (42) 

where 

         
       

6 , ,1 0,1 ,0 0,0

0,0 0,1 ,0 0,0

g x y y u x u u x u

xy u u u x u

     
      

. 

At 1x  in the Eq. (42), we have 

 
       

     

2 2

6

0, 0,0 1, 1,1

1, 1, 0, ,

T
y xu y u C P P y y

g y u y u y

       
  

 
     (43) 

Substituting Eq. (43) into (41), we have 

 

           
       

5 6

2

, ,0 1, 1, 0,

, ,1 1, 1,1 ,T
y x x x

u x y yg x u x g y u y u y

C P P x y y x P y yP

    

         

 

(44) 

Substituting Eq. (29), (33), (34), (40) and (44) into Eq. (22), 
and collocate Eq. (22) at 1 12 2k k MM   points, we can get a set 
of algebraic equations which can be solved for C.  

V. ILLUSTRATIVE EXAMPLES 

In this section, we will demonstrate the effectiveness of the 
proposed two-dimensional Legendre wavelets method with 
two illustrative examples. 

A. Diffusion equation 

Consider the following diffusion equation 

   
2

2
0.1 0.01 , , 0,1

u u u
x t

t x x

  
  

  
               (45) 

Subject to the Dirichlet boundary conditions as 

    0.09,0 , ,1 ,x xu x e u x e                           (46) 

   0.09 1 0.090, , 1, ,t tu t e u t e                          (47) 

and the exact solution is   0.09, x tu x t e  . 

We solve the above problem by applying the technique 
described in Section III and have 

     
       
       

1

2
2

, , ,0

, , 1, ,

, , 1, ,

T
t

T
t x x

T
x

u x t C P x t u x

u x t C PP x t P t g x t

u x t C P x t x t g x t

  

      
       

 

 ,       (48) 

         
         

2, , 1, ,0 0,0

1, 1,0 0,0 0, 0, ;

T
t xu x t C PP x t x t u x u

x u t u u u t u t

       
      

  (49) 

in which          1 , ,0 1,0 0, 1, 1,g x t u x u u t u t     and 

       2 , 1, 0, 0,g x t x u t u t u t       . 

Substituting (48) and (49) into (45), we obtain 

 
     

 ,TC g x t                                    (50) 

where
   
   

2

2

0.1 0.01 ,

0.1 1,

x t x t

t x

P PP P x t

xI P P t

    

  
.  

From formula (50) the wavelet coefficients TC can be 
calculated. When 12M M   and 1k k   , the absolute 
error is plotted in figure 1. 

 
Figure 1.  the absolute error of diffusion equation 
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From figure 1, we can see that numerical solution obtained 
by our method is good agrees with the exact solution and the 
accuracy of the method is very high. 

 
Figure 2.  the absolute error of Poisson equation 

B. Poisson equation 

Consider the following Poisson equation 

     
2 2

2 2
2 , , 0,1 0,1

u u
u x y

x y

 
    

 
                  (51) 

with the Dirichlet boundary conditions 

       
       
0, 0, 1, sin 1 sin ,

,0 0, ,1 sin sin 1

u y u y y

u x u x x

 

 
                  (52) 

has the exact solution is    sin sinu x y . 

We solve the above problem by applying the technique 
described in Section III and have 

     
     

     
     

2

2

, , ,1

,1 ,0 ,0 ,

, , 1,

1, 0, 0, ,

T
y

T
x

u x y C P x y y x

y u x u x u x

u x y C P x y x y

x u y u y u y

     
    

      
      



  
            (53) 

       
       

2 2

2 2
3 3 4
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where
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and

       4 , ,1 ,0 ,0g x y y u x u x u x     . 

Substituting (53) and (54) into (51), we obtain 

 ,TC g x y                                      (55) 

where 
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   . 

From figure 2, we can see that numerical solution obtained 
by our method is full agrees with the exact solution. 

CONCLUSION 

In this paper, we give a brief proof about the general 
procedure of two-dimensional operational matrices of 
integration, and then develop a solution of PDEs by using the 
two-dimensional operational matrices of integration. The main 
benefits of the proposed method are its computation-effective 
(only need a small number of collocation points guarantees the 
necessary accuracy) and universality (the same approach is 
applicable for a wide class of linear PDEs).  
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