
 

A Study of Test Oracle for Application Interface 
Testing of Distributed System 

Cui Jingyan 
School of Computer Science and Engineering 

Beihang University 
Beijing, China  

jingyan1949@126.com 

Li Xianjun 
School of Computer Science and Engineering 

Beihang University 
Beijing, China 

lixianjun@nlsde.buaa.edu.cn 

Ye Gang 
School of Computer Science and Engineering 

Beihang University 
Beijing, China 

gang.ye@cs2c.com.cn  

Ma Shilong 
School of Computer Science and Engineering 

Beihang University 
Beijing, China 

slma@nlsde.buaa.edu.cn
 
 

Abstract—The application interface testing is an important part 
of automated software testing of distributed system. It is based on 
network data which is produced when the distributed system is 
running. It is used to verify whether the network data is correctly 
exchanged. In this paper firstly we design test oracle for 
application interface testing of distributed system. Test oracle 
includes two parts: oracle information and oracle procedure. 
Oracle information represents expected output while oracle 
procedure compares the expected output with the actual output. 
Test cases need to be decided whether their operating results are 
correct by test oracle. And then, four types of test oracle are 
designed and divided according to the range of oracle 
information and the strategy of oracle procedure. Through the 
experiment, we can see that the choice of test oracle will seriously 
affect the efficiency and cost of software testing. At last, some 
suggestion is given about how to design test oracle in the software 
test. 

Keywords: test oracle; application interface testing; distributed 
system 

I.  INTRODUCTION  

The distributed system is a multiprocessor system whose 
structure and processing functions are distributed. These 
processors interact with each other via LAN or WAN 
connection. Normally, one or more application software are 
installed in a processor. Each software can complete part of 
the function in the system. Sometimes each application 
software is developed by different institutes; they have a high 
degree of independence, only through the interaction of the 
interface messages to accomplish a specific function. 
Therefore, the automated application interface testing of the 
distributed system is an important means to ensure the quality 

of the distributed system.  

Automated testing includes capabilities to generate test 
cases and expected outputs. Generating test cases 
automatically is relatively easy while generating expected 
results is a relatively difficult assignment. In the automated 

testing, test oracle is a trusted source of expected outputs. It 
has been applied to verify test case results that are produced 
during the testing. Many testers believe that automated test 
efficiency mainly depends on the number of test cases and the 
design of each test case. In fact, how to design a test oracle 
also has a significant impact on test efficiency. For that matter, 
Atif Memon has illustrated the important role of the test oracle 
in the GUI testing through experiments [1][2]. 

In the rest sections of the paper, we first define the 
application interface testing model of distributed system, and 
then the test oracle for the specially testing is designed. At last, 
through an experiment, we tell you the importance to design a 
suitable test oracle for the regression testing of the application 
interface testing and give some suggestions. 

II. TNE APPLICATION INTERFACE TESTING MODEL OF 

DISTRIBUTED SYSTEM 

Before explain the application interface testing of 
distributed system, we first describe the structure of the 
distributed system, which is shown in Fig. 1. 

Figure 1. The structure of distributed system under test 

The application interface testing can verify the correctness 
of network communication and the interaction between 
applications. At the point of view of the application interface 
testing, we describe distributed system as follows. 

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press479



 
A distributed system has several subsystems: 

P = {p1, p2, ..., pi} 

One or more applications on each subsystem: 

W = {w1, w2, ..., wi} 

Each application may send or receive a variety of network 
messages: 

M = {m1, m2, …, mi} 

Definition 1: The state of a distributed system under 
application interface testing at a particular time t is the set of 
triples {(pi, wj, mk)}, where piP, wjW, mkM. 

Definition 2: A set of events E = {e1, e2, ..., ei} includes the 
events which will occur during the testing, where ei is a man-
made or system-triggered event. Each event will trigger 
several messages transfer which changes the state of the 
distributed system. 

Definition 3: A set of states SI = {S1,S2, ..., Si} is called the 
valid initial state set, where Si is the state of the distributed 
system when it is beginning to run some test case of 
application interface testing. 

Definition 4: A test case T of application interface testing 
of distributed system is a pair <S0, E>, where S0SI，E = <e1, 
e2 , ..., en>，<e1, e2 , ..., en> is a legal event sequence, n ≥ 1. 
The relationship between the event ei and the messages it may 
trigger is expressed as: M(ei) = {m1, m2, ..., mn}，n ≥ 0. And 
that, any message is related to some application, n = 0 means 
there is no message. 

III. TEST ORACLE FOR APPLICATION INTERFACE TESTING OF 

DISTRIBUTED SYSTEM  

A. Test Oracle 

Intuitively, the oracle information is a description of the 
distributed system’s expected state for a test case of 
application interface testing. 

Definition: For a given test case T = <S0, E>，E = <e1, 
e2 , ..., en>，M(ei) = {m1, m2, ..., mm}，n ≥ 1, m ≥ 0, the test 
oracle information is a sequence<S1, S2, ..., Sn>, such that Si is 
the expected state of the distributed system immediately after 
event ei has been executed on it and messages M(ei) has been 
transferred. 

The oracle procedure is the process used to compare the 
executing distributed system’s actual state with the oracle 
information. If the actual equal the expected it will return true, 
otherwise false. 

In later experiment, we design a comparator used to 
perform the verification process for oracle procedure. 

We can see that the oracle information for a test case is a 
sequence of the sets of triples. According to the size of the sets, 
there may be the least descriptive oracle information set which 
just contains a single triple, describing a message that is sent 
or received by an application in a processor. On the contrary, 
the most descriptive oracle information would contain all the 

messages that are sent or received by all the applications of the 
distributed system. So on the basis of the messages of the 
oracle information are in the level of event, application, 
subsystem, or the entire system, we correspondingly divide 
oracle information into four levels G1, G2, G3 and G4. For a 
test case, it is true that G1G2G3G4. We may choose 
different levels of the oracle information for the same test case 
under different situations. 

According to the partition of the test oracle information 
and the comparison strategy in the verification process, four 
kinds of test oracle are designed (LTO: level of test oracle). 

LTO1: The oracle information is a set of triples G1 = {(pi, 
wj, mk)}, which mk is the message associated with the event ei 
executed in the test case. 

LTO2: The oracle information is a set of triples G2 = {(pi, 
wj, mk)}, which wj is the application associated with the event 
ei executed in the test case, and all the messages associated 
with wj are in the set G2.  

LTO3: The oracle information is a set of triples G3 = {(pi, 
wj, mk)}, which pi is the subsystem associated with the event ei 
executed in the test case, and all the messages associated with 
any application in the pi are in the set G3.  

LTO4: The oracle information is a set of triples G4 = {(pi, 
wj, mk)}, which G4 is the most descriptive oracle information, 
and all the messages sent or received during the test are in the 
set G4.  

For all kinds of test oracle, during the execution of the test 
case, only the actual results corresponding to their triples set 
are collected. After the last event of the test case, we compare 
the corresponding set and judge whether the results of the test 
case is true. 

There is an example of the test oracle information shown 
in Fig. 2. After the event ei is executed during this test case, a 
set of messages M(ei) will be triggered. There is only one 
message m named heart message in the M(ei). m is sent from 
application w2 in the radar subsystem p2 to application w1 in 
the total control subsystem. At this time, the maximum set of 
triples of the distributed system is shown as A in the Figure 2. 
For the test oracle information in the level of LTO1, we just 
need to save triples {(p1,w1,m), (p2,w2,m)} associated with the 
heart message m shown as B in the Fig. 2. 

)M(e i

2e1e ie 1-ne ne

0s
1s 2s 1-ns nsis

 
Figure 2. Test oracle information of the heart message 

480



 
Many scholars have proposed many ways to generate 

oracle information: Memon et al. applied AI planning as 
automated GUI test oracle [3], Vanmali and his colleges 
proposed an approach to apply ANNs as test oracle [4], 
Schroeder and Korel used I/O relationship analysis to generate 
a reduced set of expected outputs with adequate cost [5], and 
so on. However, these methods are either suitable for GUI 
testing, but not suitable for the application interface testing, or 
difficult to be applied to the actual test items. Consequently, 
we use the method named execution extraction to generate the 
oracle information. 

B. Test Oracle Process 

Possible in the entire software testing activities, test oracle 
process can be described as follows [6]: 

1) Generate expected outputs 

2) Saving the generated expected outputs 

3) Execute the test cases 

4) Compare expected with actual outputs 

5) Generate report of the result 

See that test case is part of the oracle process, but it is not 
part of test oracle. Fig. 3 shows the oracle process and its 
activities. 

 
Figure 3. Test oracle process 

IV. EXPERIMENT 

Through this experiment, for a given system under test and 
the test case library, we do the regression testing with the 
automation test tool LoadRunner. Let’s observe the 
performance of different oracles and how the difference of 

oracles affects test efficiency and test cost. Some parameters 
as bellow will be inspected. 

Number of faults detected: We record the total number of 
faults detected by each oracle type. 

Time used by oracle: The time includes time t1 all the 
message sniffers spend capturing all the messages and time t2 
the comparator spends comparing expected outputs with actual 
outputs(in order to capture all the messages sent between 
applications, it is necessary to install the message sniffer on all 
the computers of the distributed system). 

Space used by oracle: Because of the level of detail of the 
oracle information, each oracle type has different space 
requirements. We measure the space required to store expected 
outputs and actual outputs for different levels. 

A. Experimental Preparetion 

1) SYSTEM UNDER TEST 

Our laboratory developed a simplified system according to 
some institute’s large-scale distributed software system. We 
simplify the original system, while maintaining its main 
functions. Fig. 4 shows the structure of the system. The main 
parameters of the system can be seen in TABLE I. 

 
Figure 4. The network structure of the distributed system 

We can learn from TABLE I that there are totally 163 
kinds of messages. Each message consists of message header 
and message body. In addition, a message may have multiple 
uses by setting the value of the fields in the message body. 

TABLE I. THE MAIN PARAMETERS OF THE DISTRIBUTED SYSTEM

Subsystem Hardware Number of applications 
Number of kinds of messages sent or received by 

applications 

State control subsystem State control PC 3 Receive: 58                send: 60 

Navigation subsystem Navigation PC 2 Receive: 20                send: 22 

Radar subsystem Radar PC 2 Receive: 33                send: 25 

Communication subsystem Communication PC 3 Receive: 37                send: 31 

Display control PC 1 2 Receive: 15                send: 25 

Display control PC 2 2 Receive: 15                send: 25 Display control subsystem 

Display control PC 3 2 Receive: 15                send: 25 

481



 
2) FAULT SEEDING 

After several rounds of testing and modification, we have 
got a stable and correct version, which is called the standard 
version. Then we invite some students who didn’t participate 
in develop of the system to modify some logic in the code and 
change filed values of some messages randomly. Last, more 
than 200 errors are injected.  

For example, there is a field state_request_e of the 
message SCM_RADAR_STATECONV_COMAND which is 
sent from the state control subsystem (SCM) to the radar 
subsystem (RADAR), the students may change the value of 
the field randomly while the radar has several states such as 
standby, maintenance, no-response and work. 

3) TEST CASES 

Select 100 and 300 test cases from test cases library as 
group 1 and group 2. All the 510 test cases of the library are 
considered to be group 3. Each group of test cases should to be 
run 4 times with each type of test oracle. 

4) DETAIL OF TEST ORACLE 

1. Oracle information 

Before the regression test, there is a correct version called 
standard version. We get the information of all the messages 
as the oracle information for some oracle by running all the 
test cases in the library with the oracle. The oracle information 
can tell us the expected results after running each test case. 

The oracle information is saved with xml file. For a test 
case, the structure diagram of the oracle information’s xml file 
is shown as fig. 5. The messageName is the child node of the 
testCase, and its number is changed according to the type of 
the test case. The child nodes of the data represent data fields, 
and the number of the child nodes is determined according to 
the type of the message. 

 
Figure 5. Structure diagram of the oracle information’s xml file 

2. Oracle procedure 

The application interface message of the distributed system 
can be divided into two types: periodic message and aperiodic 
message. Each message is required to test their existence, 
accuracy and time sequence. TABLE II shows the comparator 
algorithm. 

TABLE II. THE COMPARATOR ALGORITHM 

BEGIN 
1. Get the first message from the expected message queue 
2. Whether it is periodic; if true then goto 5    
3. Whether the message exists in the actual message queue;   if false 

then goto 10 
4. Check the values of assigned fields, record the results;   goto 11 
5. Whether the message has expected number in the actual message 

queue; if true then goto 8  
6. Whether the message does not exist even one; if true then goto 10 
7. Record that the number of the message is not enough, and cancel the 

test of time sequence 
8. Check the assigned fields of each actual message, record the results 
9. According to the arrival time of each message, compare the time 

interval, and record the results;   goto 11 
10. Record that the message is non-existent, and cancel the test of time 

sequence  
11. Whether it arrives in the tail of the expected message queue; if true 

then goto 13 
12. Get the next message from the expected message queue;   goto 2 
13. Determine whether do the test of time sequence according to the 

previous information; if false then goto 15 
14. Test the time sequence according to the arrival time of each message 

in the actual queue, record the results 
15. Write all the results to xml file 
END 

B. Results 

There are 4 kinds of test oracle and 3 groups of test cases, 
so we need run the system for a total of 12 times. At last, the 
number of faults detected by the test cases, the time and space 
costs are counted for each software test. The results are as 
follows. 

1. Oracle fault-detection ability 

 
Figure 6. The fault-detection ability of 4 kinds of test oracle 

As shown in fig. 6, with the oracle level increases, the fault 
detection ability is constantly enhanced. Moreover, with the 
number of test cases increases, it is possible to compensate the 
fault detection capability of the low level oracle. 

In the other hand, if all the faults need to be detected, the 
higher the level of oracle, the less number of test cases it needs. 
However, even with all of the 510 test cases, LTO1 still cannot 
detect all the faults. In this case, in order to detect all the faults, 
we need to design some other test cases, or describe part of 
oracle information of LTO1 with a high level of oracle. 

2. Time costs 

The time costs of test oracle include time t1 all the 
message sniffers spend capturing all the messages and time t2 

482



 
the comparator spends comparing expected outputs with actual 
outputs. During the test, we record t1 and t2 of all the test 
oracle and count all of the time costs. 

 

Figure 7. Total time for test oracle 

As shown is Fig.7, with the increase of the oracle level and 
the number of test cases, the time spent is also increasing. 
That’s because the sniffers need more time to capture the 
messages and the comparator needs check the messages 
captured with more times of comparisons. 

3. Space costs 

Since the computers now normally have a huge storage 
capacity, it is not very important that how much space test 
oracle costs to store the information. But if the regression 
testing will be executed frequently, this indicator has certain 
reference value. We measure the space required to store 
expected outputs and actual outputs for different oracle levels. 

 

Figure 8. The storage requirements for the group 3 

As can be seen from Fig. 8, the higher the level of oracle, 
the larger storage space is required. Besides, the difference is 
very obvious from LTO1 to LTO2 which shows that more 
detailed information need to be recorded from LTO2. 

C. Analysis of Results 

The above results show that the test oracle does play an 
important role in the application interface testing of distributed 
system. According to the test oracle we defined, from LTO1 to 
LTO4, the fault detection ability is stronger but more expenses 
of time and space are also needed. In the regression testing, if 
the limit of the cost of time and space is not high, then we 
should try to choose a high-level oracle so that all the software 
errors can be detected. But in Fig. 6, we can also see that if 
there are enough test cases, low-level oracle can fully meet the 

requirements. So in the actual test, we can select a suitable 
oracle according to the number of regression testing, the 
number of test cases, test time requirements and the 
restrictions on the storage space. When necessary, different 
test oracle can be combined. In order to reach an optimal 
balance point of fault detection efficiency and reducing testing 
expenses, we can run part of test cases with high-level oracle 
while other part of test cases with relatively low-level oracle. 

V. FUTURE WORK AND CONCLUSION 

This paper first formally describes the test oracle for 
application interface testing of distributed system, then we 
design several different test oracle. After the experiment that 
the distributed system of our lab is tested automated, we can 
see that the choice of test oracle will seriously affect the 
efficiency and cost of application interface testing. At last, 
some suggestions are given to help you choose the right test 
oracle for automated testing. 

In the future, we will study the new ways to generate 
oracle information except the way execution extraction we 
used. Some methods used in the GUI testing such as IFN 
Regression Tester and ANN Based Test Oracle will be 
considered how to work on the application interface testing of 
distributed system. 

REFERENCES 
[1] A. M. Memon, I. Baneree and A. Nagarajan, "What Test Oracle Should I 

use for Effective GUI Testing?," Proc.IEEE International Conference on 
Automated Software Engineering (ASE'03), Montreal, Quebec, Canada, 
pp. 164-173, October, 2003. 

[2] Xie, Q., and Memon, A.M.: ‘Designing and comparing automated test 
oracles for GUI-based software applications’, ACM Transactions on 
Software Engineering and Methodology, 2007, 16, (1), pp. 4 

[3] Memon, A.M., Pollack, M.E., and Soffa, M.L.: ‘Automated test oracles 
for GUIs’, SIGSOFT Softw. Eng. Notes, 2000, 25, (6), pp. 30-39 

[4] Vanmali, M., Last, M., and Kandel, A.: ‘Using a neural network in the 
software testing process’, International Journal of Intelligent Systems, 
2002, 17, (1), pp. 45-62 

[5] Schroeder, P.J., Faherty, P., and Korel, B.: ‘Generating expected results 
for automated black-box testing’, in Editor (Ed.)^(Eds.): ‘Book 
Generating expected results for automated black-box testing’ (2002, 
edn.), pp. 139-148 

[6] S.R.Shahamiri, M.N.W.K.Wan and Z.M.H.Siti. "A Comparative Study 
on Automated Software Test Oracle Methods," Proc. International 
Conference on  Software Engineering Advances (ICSEA'09), IEEE Press, 
Sep 2009. 

[7] Last, M., Friendman, M., and Kandel, A.: ‘Using data mining for 
automated software testing’, International Journal of Software 
Engineering and Knowledge Engineering, 2004, 14, (4), pp. 369-393 

[8] Aggarwal , K.K., Singh, Y., Kaur , A., and Sangwan , O.P.: ‘A Neural 
Net based Approach To Test Oracle’, ACM Software Engineering Notes, 
2004 

[9] D.K. Peters and D.L. Parnas, “Using Test Oracles Generated from 
Program Documentation,” IEEE Trans. Software Eng., Vol. 24, No. 3, 
Mar . 1998, pp.161–173. 

[10] Hu, J., Yi, W., Nian-Wei, C., Zhi-Jian, G., and Shuo, W.: ‘Artificial 
Neural Network for Automatic Test Oracles Generation’. Proc. 
Proceedings of the 2008 International Conference on Computer Science 
and Software Engineering - Volume 022008. 

 

483




