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Abstract—Sequence constraint mainly considers the occurrence 

time of item, which can determine whether an association rule is 

valid. This paper proposes a novel algorithm SeqARM that aims 

to mine strong association rule with sequence constraint and runs 

on the second phase of association rule mining. SeqARM employs 

a fine data structure, named FI-Tree, which is used to save and 

find frequent itemsets according to a few characteristics of 

association rule. This work can dramatically reduce the number 

of invalid association rules, and speed up the procedure of 

association rules. At last, the experiments prove that SeqARM 

can improve the performance and effect of the association rule 

mining. 
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I.  INTRODUCTION  

Association rule mining is to find the correlation between 
items and play an important role in data mining. The procedure 
of mining association rule includes two phases [5]. The first 
one is to find all frequent itemsets with a minimum support 
threshold. And the second one is to generate strong association 
rules from the frequent itemsets with a minimum confidence 
threshold. Since [1] proposed this problem, many researchers 
addressed a lot of works on this issue [2, 8, 6, 9, 3]. However, 
many presented works focused on the first phase, few authors 
focused their attentions on the second phase. 

In another way, these works did not adequately take the 
demands of user and the constraints of application into account. 
The results may not have true values and real meanings. To 
solve the drawbacks, some researchers proposed constraint-
based association rule algorithms [7, 4]. These constraints are 
directly dependent on the value of items and are easily applied 
to the process of frequent itemsets mining. However, in real-
world applications, there is another constraint which isn’t 
related with the value of item, e.g. the occurrence time of item. 
Considering the grades of a undergraduate student, obviously 
the grades of forth semester may not affect the grades of third 
semester. Let X = {C Programming = ’A’, Data Structure = 
’B’, Database = ’B’} be a frequent itemset. We know that rule 
R1 = {Database = ’B’ => (C Programming = ’A’ ˄ Data 
Structure = ’B’)} is an illegal association rule, because C 
Programming and Data Structure are prerequisite courses of 
Database. However, rule R2 = {(C Programming = ’A’ ˄ Data 
Structure = ’B’) => Database = ’B’} is a valid association 

rule. This constraint cannot be applied to the first phase of 
association rule mining. We call this kind of constraint as 
sequence constraint. This paper focuses on sequence constraint 
and the second phase of association rule mining, proposes a 
novel strong association rule mining algorithm with sequence 
constraint, named SeqARM. 

The rest of the paper is organized as follows. In section II, 
the definitions and properties of association rule are presented. 
Section III proposes the sequence-constraint-based association 
rules mining algorithm and section IV experimentally shows 
this algorithm is efficient and effective. Section V summarizes 
this proposal. 

II. BASIC DEFINITIONS AND PROPERTIES 

The first thing of this section is giving the definitions of 
frequent itemset and association rule. The second one is 
presenting two properties of association rule.  

Definition 1: Let                be a set of items, and 

               be a transaction database,              
be a transaction, where      is an identifier and      is an 

itemset. The support of an itemset    is the number of 

transactions containing    in  , denoted by sup(X). Given ε is 

the minimum support threshold.    is a frequent itemset if 

         ). If       ,    is called frequent k-itemset. 

 

Definition 2: Given itemset           and       

 ,       is an association rule. The support of       is 

equal to the support of      , i.e.                   

   . The confidence of       is         , denoted by 

           ,                               . 

The basic idea of generating strong association rules from 
frequent itemset is also “Generation-and-Test” [5]. Given a 
frequent itemset, the method is (1) firstly enumerating all 
candidate association rules, (2) then calculating the confidence 
of each candidate and comparing the confidence with the 
threshold. However, this process is inefficient, especially for 
long frequent itemset. Let L={A, B, C} be a frequent 3-itemset, 
the number of candidate association rules of L is 6, they are 
A=>BC, B=>AC, C=>AB, AB=>C, AC=>B, BC=>A. For a 
frequent 4-itemset, the number of candidates is 14, and the 
number of candidates of a frequent n-itemset is   

    
  

    
        . It can be seen that the second phase also 
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play an important role. To improve the performance, the 
efficient ways are pruning and constraint. 

Following are 2 basic properties of association rule, which 
can be used to effectively prune the candidates that are not 
strong association rules. 

Property 1: Given a frequent k-itemset                , 
     ,       , if        is not a strong association rule, 
then          is not a strong association rule. 

Proof: Let λ be the minimum confidence threshold. 

        is not a strong association rule, 

                   i.e.  
       

      
   . 

       , 

                , 

 
       

       
 

       

      
, 

                  ,  

          is not a strong association rule.  □ 

Property 2: Given a frequent k-itemset                , 
     ,      , if        is not a strong association rule, 
then       is not a strong association rule. 

Proof: Let λ be the minimum confidence threshold. 

        is not a strong association rule, 

                   i.e.  
       

      
   . 

      , , 

                , 

 
      

      
 

       

      
, 

               ,  

       is not a strong association rule.  □ 

Applying these two properties into the process of 
generating the strong association rule can dramatically reduce 
the number of candidates and improve the speed. 

III. MINING ASSOCIATION RULE WITH SEQUENCE 

CONSTRAINT 

This section presents the novel sequence-constraint-based 
association rule mining method. Section III-A proposes the 
related definitions and section III-B gives a new data structure 
used to store frequent itemsets. The algorithm of SeqARM is 
shown in section III-C.  

A. Sequence Constraint 

This section presents the formally definitions of sequence 
constraint. 

Definition 3: Let Ii, Ij be two items, notation    
   represents that Ii’s occurrence is later than Ij’s. 

 

Definition 4: Let Si, Sj be two itemsets, if       ,       , 

and      , we denote the relationship of Si and Sj as      . 

 

Definition 5: Given itemsets Si and Sj satisfy      , if Si is 

in the left of an association rule, Sj cannot be in the right. We 

name this constraint as sequence constraint. 

B. Data Structure 

The major operations of mining strong association rule are 
generating and searching subsets of frequent itemset. In order 
to improve the speed of these operations, this work designs an 
new fine data structure, named FI-Tree (Frequent Itemset 
Tree), which combines the features of FP-Tree [6] and AFP-
Tree [3]. Next, we will describe FI-Tree through an example. 

 

 

 

 

 

 

 

 

Table I is a transaction database, which includes 9 trans-
actions and 5 different items [5]. Set the minimum support 
threshold is 2, mining this database can get 13 frequent 
itemsets which are shown in table II. The numeric following 
the “:” is the support. 

The algorithm of building FI-Tree is presented in algorithm 
1. The input parameter FIs is a set of frequent itemsets, which 
is in ascending order according to the length of each frequent 
itemset, if two frequent itemset have the same length; the order 
is descending according to their supports. And each item in a 
frequent itemset is descending order according its support. 
These orders can be seen from table II. Figure 1 depicts the FI-
Tree of table II. 

 

 

 

 

 

 

 

 

 

 

In FI-Tree, a path                 where Ni-1 is the 
parent of Ni,          , the parent of N1 is root, represents a 
frequent k-itemset whose support is the count of Nk. It is very 
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convenient to get the support of any frequent itemset from FI-
Tree by preorder traversal. For example, if we want to search 
the support of {I1, I3}, so long as we traverse the shadow node 
in figure 1, we can get its support, it is 4. 

 

Furthermore, we need an array to store the additive 
sequence of each item. This constraint doesn’t come from the 
frequent itemset, but come from other external file. 

 

C. Algorithm 

This section presents the detail of the SeqARM algorithm. 
Algorithm 2 is the pseudocode.  

At the beginning, SeqARM initialize R with   (line 1), 
which stores the strong association rules. Next, it treats each 
child of root as a frequent 1-itemset, then calls the iteration 
function generate_rule() which is the core of SeqARM (lines 
2~4). Firstly, generate_rule() visits FI-Tree by preorder 
traversal. Line 7 adds child node N of current subtree into array 
L. Now L is frequent (k+1)-itemset. Line 9 gets all proper 
subsets of L except DS that saves the deleted itemsets before. 
The purpose of this step is pruning. Let L

i
 represents L of ith 

iteration of generate_rule(). According to line 19,    
            is not a strong association rule. If        

            , according property 2,        is not a strong 

association rule. Lines 11~21 determine whether         
is a strong association rule with sequence constraint where 
      . If           is true, ss is skipped (lines 12, 13). 

Otherwise, the confidence of           is calculated (line 
15). If           is a strong association rule, it is appended 
into R (lines 16, 17). Otherwise, according to property 1, line 
19 deletes ss and its subsets from S and simultaneously appends 
them into DS. If N is not leaf node, generate_rule() is called 
again (lines 22~24). 

 

IV. EXPERIMENTAL EVALUATION 

This section experimentally evaluates the effect and 
performance of SeqARM. The evaluated criteria are running 
time and the number of association rule. The comparison is 
traditional association rule method, named as “TradARM”. The 
experiments are conducted on an Intel Core T2080 1.73GHz 
CPU with 1G Bytes of main memory, running on Windows XP 
professional SP2. All codes are implemented in C# using 
Microsoft Visual C# 2005 Express Edition. We use two real 
datasets, pumsb* and mushroom, which are standard test 
datasets and can be downloaded from http://fimi.cs.helsinki.fi/. 
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In the experiments we define the sequence between items as 
following: 

Given Ii, Ij are two items, if         , it is considered Ii’s 

occurrence is later than Ij’s, i.e.      .  

Figure 2 and 3 show the number of association rule 
generated by two algorithms. The number of association rule 
generated by SeqARM is 1/2 to 1/3 of the number generated by 
TradARM on pumsb*. The number generated by SeqARM is 
an order of magnitude smaller than the number generated by 
TradARM on mushroom. From this view, SeqARM can 
obviously reduce the number of association rule which is 
invalid, the result is more meaningful. 

 

Figure 4 and 5 give the running time of two algorithms. 
These two figures demonstrate that SeqARM is faster than 
TradARM. In figure 4 the time of SeqARM is about half of 
TradARM’s and in figure 5 the time of SeqARM is far less 
than TradARM. It can be seen from this point that SeqARM is 
not only able to avoid generating invalid association rule, but 
also improves the performance of mining association rule. 

V. CONCLUSION 

In this paper, we propose a new kind of constraint of 
association rule, called sequence constraint. To mine 
association rule with sequence constraint, a novel algorithm 
SeqARM is presented. SeqARM uses FI-Tree to store frequent 
itemsets. Experiments show that SeqARM outperform the 
traditional method and supply accurate association rules.  
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