

SeqARM: An Association Rule Mining Algorithm

Based on Sequence Constraint

Shenshen Bai

Department of Information Engineering

Lanzhou Vocational Technical College

Lanzhou China 730070

shenshen128@sohu.com

Abstract—Sequence constraint mainly considers the occurrence

time of item, which can determine whether an association rule is

valid. This paper proposes a novel algorithm SeqARM that aims

to mine strong association rule with sequence constraint and runs

on the second phase of association rule mining. SeqARM employs

a fine data structure, named FI-Tree, which is used to save and

find frequent itemsets according to a few characteristics of

association rule. This work can dramatically reduce the number

of invalid association rules, and speed up the procedure of

association rules. At last, the experiments prove that SeqARM

can improve the performance and effect of the association rule

mining.

Keywords-association rule; sequence constraint; SeqARM; FI-

Tree

I. INTRODUCTION

Association rule mining is to find the correlation between
items and play an important role in data mining. The procedure
of mining association rule includes two phases [5]. The first
one is to find all frequent itemsets with a minimum support
threshold. And the second one is to generate strong association
rules from the frequent itemsets with a minimum confidence
threshold. Since [1] proposed this problem, many researchers
addressed a lot of works on this issue [2, 8, 6, 9, 3]. However,
many presented works focused on the first phase, few authors
focused their attentions on the second phase.

In another way, these works did not adequately take the
demands of user and the constraints of application into account.
The results may not have true values and real meanings. To
solve the drawbacks, some researchers proposed constraint-
based association rule algorithms [7, 4]. These constraints are
directly dependent on the value of items and are easily applied
to the process of frequent itemsets mining. However, in real-
world applications, there is another constraint which isn’t
related with the value of item, e.g. the occurrence time of item.
Considering the grades of a undergraduate student, obviously
the grades of forth semester may not affect the grades of third
semester. Let X = {C Programming = ’A’, Data Structure =
’B’, Database = ’B’} be a frequent itemset. We know that rule
R1 = {Database = ’B’ => (C Programming = ’A’ ˄ Data
Structure = ’B’)} is an illegal association rule, because C
Programming and Data Structure are prerequisite courses of
Database. However, rule R2 = {(C Programming = ’A’ ˄ Data
Structure = ’B’) => Database = ’B’} is a valid association

rule. This constraint cannot be applied to the first phase of
association rule mining. We call this kind of constraint as
sequence constraint. This paper focuses on sequence constraint
and the second phase of association rule mining, proposes a
novel strong association rule mining algorithm with sequence
constraint, named SeqARM.

The rest of the paper is organized as follows. In section II,
the definitions and properties of association rule are presented.
Section III proposes the sequence-constraint-based association
rules mining algorithm and section IV experimentally shows
this algorithm is efficient and effective. Section V summarizes
this proposal.

II. BASIC DEFINITIONS AND PROPERTIES

The first thing of this section is giving the definitions of
frequent itemset and association rule. The second one is
presenting two properties of association rule.

Definition 1: Let be a set of items, and

 be a transaction database,
be a transaction, where is an identifier and is an

itemset. The support of an itemset is the number of

transactions containing in , denoted by sup(X). Given ε is

the minimum support threshold. is a frequent itemset if

). If , is called frequent k-itemset.

Definition 2: Given itemset and

 , is an association rule. The support of is

equal to the support of , i.e.

 . The confidence of is , denoted by

 , .

The basic idea of generating strong association rules from
frequent itemset is also “Generation-and-Test” [5]. Given a
frequent itemset, the method is (1) firstly enumerating all
candidate association rules, (2) then calculating the confidence
of each candidate and comparing the confidence with the
threshold. However, this process is inefficient, especially for
long frequent itemset. Let L={A, B, C} be a frequent 3-itemset,
the number of candidate association rules of L is 6, they are
A=>BC, B=>AC, C=>AB, AB=>C, AC=>B, BC=>A. For a
frequent 4-itemset, the number of candidates is 14, and the
number of candidates of a frequent n-itemset is

 . It can be seen that the second phase also

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press523

play an important role. To improve the performance, the
efficient ways are pruning and constraint.

Following are 2 basic properties of association rule, which
can be used to effectively prune the candidates that are not
strong association rules.

Property 1: Given a frequent k-itemset ,
 , , if is not a strong association rule,
then is not a strong association rule.

Proof: Let λ be the minimum confidence threshold.

 is not a strong association rule,

 i.e.

 .

 ,

 ,

,

 ,

 is not a strong association rule. □

Property 2: Given a frequent k-itemset ,
 , , if is not a strong association rule,
then is not a strong association rule.

Proof: Let λ be the minimum confidence threshold.

 is not a strong association rule,

 i.e.

 .

 , ,

 ,

,

 ,

 is not a strong association rule. □

Applying these two properties into the process of
generating the strong association rule can dramatically reduce
the number of candidates and improve the speed.

III. MINING ASSOCIATION RULE WITH SEQUENCE

CONSTRAINT

This section presents the novel sequence-constraint-based
association rule mining method. Section III-A proposes the
related definitions and section III-B gives a new data structure
used to store frequent itemsets. The algorithm of SeqARM is
shown in section III-C.

A. Sequence Constraint

This section presents the formally definitions of sequence
constraint.

Definition 3: Let Ii, Ij be two items, notation
 represents that Ii’s occurrence is later than Ij’s.

Definition 4: Let Si, Sj be two itemsets, if , ,

and , we denote the relationship of Si and Sj as .

Definition 5: Given itemsets Si and Sj satisfy , if Si is

in the left of an association rule, Sj cannot be in the right. We

name this constraint as sequence constraint.

B. Data Structure

The major operations of mining strong association rule are
generating and searching subsets of frequent itemset. In order
to improve the speed of these operations, this work designs an
new fine data structure, named FI-Tree (Frequent Itemset
Tree), which combines the features of FP-Tree [6] and AFP-
Tree [3]. Next, we will describe FI-Tree through an example.

Table I is a transaction database, which includes 9 trans-
actions and 5 different items [5]. Set the minimum support
threshold is 2, mining this database can get 13 frequent
itemsets which are shown in table II. The numeric following
the “:” is the support.

The algorithm of building FI-Tree is presented in algorithm
1. The input parameter FIs is a set of frequent itemsets, which
is in ascending order according to the length of each frequent
itemset, if two frequent itemset have the same length; the order
is descending according to their supports. And each item in a
frequent itemset is descending order according its support.
These orders can be seen from table II. Figure 1 depicts the FI-
Tree of table II.

In FI-Tree, a path where Ni-1 is the
parent of Ni, , the parent of N1 is root, represents a
frequent k-itemset whose support is the count of Nk. It is very

524

convenient to get the support of any frequent itemset from FI-
Tree by preorder traversal. For example, if we want to search
the support of {I1, I3}, so long as we traverse the shadow node
in figure 1, we can get its support, it is 4.

Furthermore, we need an array to store the additive
sequence of each item. This constraint doesn’t come from the
frequent itemset, but come from other external file.

C. Algorithm

This section presents the detail of the SeqARM algorithm.
Algorithm 2 is the pseudocode.

At the beginning, SeqARM initialize R with (line 1),
which stores the strong association rules. Next, it treats each
child of root as a frequent 1-itemset, then calls the iteration
function generate_rule() which is the core of SeqARM (lines
2~4). Firstly, generate_rule() visits FI-Tree by preorder
traversal. Line 7 adds child node N of current subtree into array
L. Now L is frequent (k+1)-itemset. Line 9 gets all proper
subsets of L except DS that saves the deleted itemsets before.
The purpose of this step is pruning. Let L

i
 represents L of ith

iteration of generate_rule(). According to line 19,
 is not a strong association rule. If

 , according property 2, is not a strong

association rule. Lines 11~21 determine whether
is a strong association rule with sequence constraint where
 . If is true, ss is skipped (lines 12, 13).

Otherwise, the confidence of is calculated (line
15). If is a strong association rule, it is appended
into R (lines 16, 17). Otherwise, according to property 1, line
19 deletes ss and its subsets from S and simultaneously appends
them into DS. If N is not leaf node, generate_rule() is called
again (lines 22~24).

IV. EXPERIMENTAL EVALUATION

This section experimentally evaluates the effect and
performance of SeqARM. The evaluated criteria are running
time and the number of association rule. The comparison is
traditional association rule method, named as “TradARM”. The
experiments are conducted on an Intel Core T2080 1.73GHz
CPU with 1G Bytes of main memory, running on Windows XP
professional SP2. All codes are implemented in C# using
Microsoft Visual C# 2005 Express Edition. We use two real
datasets, pumsb* and mushroom, which are standard test
datasets and can be downloaded from http://fimi.cs.helsinki.fi/.

525

In the experiments we define the sequence between items as
following:

Given Ii, Ij are two items, if , it is considered Ii’s

occurrence is later than Ij’s, i.e. .

Figure 2 and 3 show the number of association rule
generated by two algorithms. The number of association rule
generated by SeqARM is 1/2 to 1/3 of the number generated by
TradARM on pumsb*. The number generated by SeqARM is
an order of magnitude smaller than the number generated by
TradARM on mushroom. From this view, SeqARM can
obviously reduce the number of association rule which is
invalid, the result is more meaningful.

Figure 4 and 5 give the running time of two algorithms.
These two figures demonstrate that SeqARM is faster than
TradARM. In figure 4 the time of SeqARM is about half of
TradARM’s and in figure 5 the time of SeqARM is far less
than TradARM. It can be seen from this point that SeqARM is
not only able to avoid generating invalid association rule, but
also improves the performance of mining association rule.

V. CONCLUSION

In this paper, we propose a new kind of constraint of
association rule, called sequence constraint. To mine
association rule with sequence constraint, a novel algorithm
SeqARM is presented. SeqARM uses FI-Tree to store frequent
itemsets. Experiments show that SeqARM outperform the
traditional method and supply accurate association rules.

REFERENCES

[1] R. Agrawal, T. Imieli´nski, and A. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993
ACM SIGMOD international conference on Management of data,
SIGMOD ’93, pages 207–216, New York, NY, USA, 1993. ACM.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[3] X. Chen, L. Li, Z. Ma, S. Bai, and F. Guo. F-miner: A new frequent
itemsets mining algorithm. In ICEBE, pages 466–472, 2006.

[4] L. Cui, S. Yuan, and C. Zhao. Algorithms for mining constrained
association rules. Chinese Journal of Computers, 23(02):216–220, 2000.

[5] J. Han and M. Kamber. Data Mining: Concepts and Techniques, Second
Edition (The Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann, 2 edition, Jan. 2006.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD Conference, pages 1–12, 2000.

[7] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In KDD, pages 67–73, 1997.

[8] M. J. Zaki. Scalable algorithms for association mining. IEEE
Transactions on Knowledge and Data Engineering, 12:372–390, 2000.

[9] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In KDD,
pages 326–335, 2003.

526

