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Abstract—In this paper we present a high order method to solve 
the Stokes equations with random coefficients numerically. A 
stochastic Galerkin approach, based on the truncated Karhunen-
Loeve decomposition technique for the stochastic inputs, is used 
to reduce the original stochastic Stokes equations into a set of 
deterministic equations for the expansion coefficients. Then a 
spectral collocation method, together with a block Jacobi 
iteration is applied to solve the resulting problem. The efficiency 
of the solver is verified in each model problem by numerical tests, 
against Monte Carlo simulations. 
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I.  INTRODUCTION 

Thanks to the great progress in the development of 
numerical methods and computer resources, many classical 
PDEs can now be solved very efficiently with high accuracy. 
However, in many cases, the inputs of the considered PDEs 
may contain uncertainties. In order to provide meaningful 
predictions to problems involving uncertain data, there is a 
need to investigate efficient numerical methods for handling 
general stochastic PDEs. In fact there exist several families of 
numerical techniques to treat such problems, e.g., Monte-Carlo 
simulations and its variants [1] , perturbation methods via 
Taylor or Neumann expansions [2], etc. 

In this paper, the stochastic Stokes equations describing the 
flow in a random medium determined by a random diffusion 
coefficient is considered. Firstly, the equation with random 
inputs is reduced to a finite-dimensional parametric saddle-
point problem by using a suitable Karhunen-Loeve 
decomposition with a suitable truncation. Secondly, we are 
focusing on its numerical solutions by using a method 
combining a stochastic projection method for the random 
variables and a classical spectral method [3] for the 
deterministic variables. Meanwhile, a block Jacobi iteration is 
applied in the implementation to decrease the computational 
cost, sine the resulting deterministic stokes-liking equations 
takes the strong coupling characters. Finally, numerical tests 
are illustrated to show the efficiency of the considered solver, 
against the Monte-Carlo simulations. 

 

II. PROBLEM DESCRIPTIONE 

We start by describing such a problem. Let  , ,F P be a 

complete probability space. The stochastic Stokes problem 

considered here reads: Given 2 2( )L Df , find the stochastic 

solution ( , )u x and ( , )p x almost surely such that  

                           
  ( ),

0,

p

div

   




u f x

u
                    (1) 

in D , together with a suitable boundary condition, e.g., 
u 0 on D  . Here, the diffusivity ( , ) x  is a 

stochastic function, which is assumed to have continuous and 
bounded correlation function. 

Firstly, the probability space  should be reduced into a 
finite-dimensional space by some effective ways. That means 
the uncertainty needs to be characterized by a finite number of 
random variables through some effective ways, e.g., the 
truncated Karhunen-Loeve decomposition [4] once the 
correlation function of the stochastic input is known. After 
making the K -dimensional noise assumption, the random 
characters in  can be characterized by these K random 
variables, and it can be rewritten as 

0

( , ) ( ) ,
K

i i
i

y y 


x x  

where 0 1,y  and  1

K

k k
y


are real random variables with zero 

mean and unite variance.    
Following the Doob-Dynkin lemma, the solution u and 

p can also be characterized by the same K random variables 

such as 

1

1

( , ) ( , , , ),

( , ) ( , , , ).
K

K

y y

p p y y







u x u x

x x




 

Furthermore, we also assume that   1

K

k k
y


are mutually 

independent random variables with probability density 

functions :k k R   and their images k are bounded 

intervals in R for 1, ,k K  . Then 1( ) ( )K
k k ky y   is 
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the joint probability density of 1( , , )Ky y y  with the 

support KR  . This allows us to rewrite the stochastic 
stokes equation as a deterministic parametric saddle-point 
problem in the strong form, i.e.,  
Find ( , )yu u x and ( , )p p y x  satisfying 

                           
  ( ),

0,

p

div

   




u f x

u
                    (2) 

in D , together with the corresponding boundary 
condition u 0 on D  . 

III. WEAK FORMULATIONS 

In order to write out its corresponding weak formulation, 
some notations are introduced. we shall denote 

by 1 2
0 ( )X H D and  2 2

0 ( ) ( ), 0
D

M L D q L D q    . 

As to the stochastic aspects, the random fields will live in 
the tensor product of spaces defined on the spatial domain ,D  

with spaces defined on the sample space . For brief, we shall 
denote by 

2 ( )X X L     and 2 ( ).M M L     

Let ( ) ( )L D L     . The weak formulation of the 

saddle-point problem (2) reads as follows:  

Find ( , ) , ( , )y X p y M  u x x , such that 

( , ) ( , ) ( ), ,

( , ) 0, ,

A B p L X

B q q M




   
   

u v v v v

u
          (3) 

with 
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 
,
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( , ) , , ,

( ) , , .

A u v u v dy u v X

B v q divv q dy v X q M
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 
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
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

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Its well-posedness can be established in the framework for the 
abstract saddle-point problem [5]. Firstly, we have 

| ( , ) |
inf sup ,

|| || || ||q M v X X M

B v q

v q   


 

  

where  is called the inf-sup constant. Finally, the weak 

formulation (3) can be verified that it admits one unique 

couple solution ( , ) .p X M  u  

IV. DISCRETE FORMULATION AND IMPLEMENTATION 

A. Discrete Formulation 

The polynomial chaos decomposition, as pioneered in [6], 
was generalized in [8] to solve PDEs with random data. It 

constructs a finite-dimensional subspace of 2 ( )L  , denoted 

by  0( ) , ,P
K QZ span    , with  k are Wiener-

Askey orthogonal polynomial chaos with respect to ( )y , 

where Q depends on P and K , with P is the highest order of 

the Wiener-Askey chaos. Note that if ( )y is the density 

function corresponding to a K -dimensional Gaussian 

distribution, then  k will be K -variate Hermite 

polynomials. If ( )y is the density function corresponding to 

a K -dimensional uniform distribution, then k will be K -

variate Legendre polynomials. For details of Wiener-Askey 
chaos, we refer to[8], etc. 

The subspace ( )P
KZ  can be constructed by a tensor product 

of one-dimensional subspace. It takes the form such 

as 1
1

( ) ( ),k

K
PP

K k
k

Z Z


     where
1

,
K

k
k

P P


 with the one- 

dimensional global polynomial subspaces 1 ( )kP
kZ  are 

defined by 

  2
1 0( ) ( ), , ( ) ( ),k

k k

P
k k P k kZ span y y L      

where ( )n ky denotes the n -th order Wiener-Askey chaos 

with respect to univariate ky , satisfies  

2( ) ( ) ( ) .
k

k k i k j k k i ijy y y dy    


  

Denote by  

, ,( ), ( )P P
N P N K N P N KX X Z and M M Z        

with ,N NX M are the Galerkin spectral approximation space 

[5] defined as 2( ) , ( )N N N NX X P D M M P D   , 

where ( )NP D denotes the polynomial spaces of degree less 

than .N  Then the discrete formulation of (3) is as follows:  

Find , , ,N P N PXu , ,N P N Pp M  such that 

           
, , , , ,

, ,

( , ) ( , ) ( ),

( , ) 0,
N P N P N P N P N P

N P N P

A B p L

B q

 
 

u v v v

u
      (4) 

holds for each , , , ,, .N P N P N P N PX q M v  Meanwhile, it can 

be verified that this discrete problem admits one unique 

solution couple , , , ,( , ) .N P N P N P N Pp X M u  

B. IMPLEMENTATION 

By applying P -th order Wiener-Askey polynomial chaos 
expansion to u and ,p  it yields  

0 0

( , ) ( ) ( ), ( , ) ( ) ( ),
Q Q

i i i i
i i

y y p y p y
 

    u x u x x x  

with ( )iu x and ( )ip x are deterministic functions. Substitute 
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these above two expansions into the first equation of (2), and 
notice that the gradient operator is taken just with respect to 
x and thus commutes with the operations in random space, the 
following equation can be achieved. 

0 0 0 0

,
Q Q QK

i i j j i i i i
j i i i

y p
   

            
  

   u f    

Multiplying the above equation by k on both sides and 

taking the mean value, together with the orthogonality 

of k , thus for each 0,1, ,k Q  , it holds that 

   2 2

0

( ) ( ) ( ) ( ),
Q

jk j k k k k
j

s p


           x u x x f x       (4) 

where 
0

( ) ( ) ,
Q

jk i ijk
i

s M


x x .ijk i j kM y    

Together with 2
k , the coefficient ijkM can be evaluated 

analytically from the definition of k . A similar treatment 

for the other two equations of (2) yields  

( ) 0, ;

( ) ,
k

k

D

D

   

  

u x x

u x 0 x
                        (5) 

The system (4)-(5) is a set of 1Q  coupled Stokes-liking 

problem, which governs the evolution of chaos expansion 

coefficients   0
,

Q

k k k
p


u .These equations are deterministic 

and can be solved by any conventional method. In this paper, 

the 2N N  spectral Galerkin method together with Uzawa 

techniques [5] is used. While it is possible to solve (7)-(8) via 
a direct solver, the block Jacobi iteration [7] is employed 
which takes the form: for 0,1, , ,k Q   solving 

   ( 1) 2 ( 1) 2 ( )

( 1)

( 1)

,

0, ,

0, ,

n n n
kk k k k k k ki i

i k

n
k

n
k

s p s

D

D

 






         

   
  








u f u

u x

u x

 

where the subscript ( )n denotes the iteration count. The 

convergence criterion is defined as 
( 1) ( ) ( 1) ( )

(1) (0) (1) (0)
max , ,

n n n n
k k k k

k
k k k k

p p

p p


      
   

u u

u u
 

where is a small positive number and different type of norm 

|| || can be used. In this paper the ( )L D  norm is used 

and is set to be 1010 . 

V. NUMERICAL TEST 

To demonstrate the solver’s convergence character, a model 
with the available exact solution will be considered firstly. 

Finally, a stochastic Stokes problem, in which  and f are 

assumed to be stochastic functions with an exponential 
correlation function, is examined as an example of more 
complicated practical applications. 

In all models, let 2[ 1,1] ,D   and 16N  is chosen in the 

spectral Galerkin method to avoid the influence of spatial 
approximations to the stochastic aspects. Moreover, 

  1

K

k k
y


are also prescribed to be uniform random variables 

in [ 1,1]k   , so the corresponding optimal chaos is still 

the Legendre-chaos. 

  Test 1. Let 1 1( , ) 1 cosy y  x . Consider the Stokes 

problem with the exact solution such as  

1 2 1

1 2 1

1 2 1

sin( )cos( )(1 sin )
,

cos( )sin( )(1 sin )

sin( )cos( )(1 sin ).

x x y

x x y

p x x y

 
 

 

 
    
 

u
 

Here, different values for P is examined in the process of 
computations. Results show that the block Jacobi iterative 
scheme converges at most 3 iterations for each computation. 
Figure 1 shows the convergence rate of the approximation 
error with respect to the order P used in the Legendre-chaos 
expansion. Since the logarithm arithmetic has been done for 
the coordinate which characterizes the error property, the 
exponential rate of convergence is achieved. 

 
Figure 1. The convergence character for the Legender-chaos decomposition. 

 

Test 2. A general case that both  and f are stochastic 

processes is examined. Here, the exponential correlation 

function
| |

( , ) exp( )C
b


 

x z
x z  is employed. Due to the 

fast decay of its eigenvalues with 100b   (see Figure 2), the 
fourth order truncation is taken in the KL decomposition. This 
results in a four-dimensional (in random space) Legendre-

chaos decomposition. Here, we set 4,   and 

2
1 2 1 2

2
1 2 1 2

8 sin( )cos( ) cos( )cos( )
.

8 cos( )sin( ) sin( )sin( )

x x x x

x x x x

     
     

 
 
  

f  
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Resolution checks in stochastic space were conducted, and 

it was shown that third-order ( 3P  ) Legendre-chaos results 
in converged solution. For four-dimensional Legendre-chaos 
( 4K  ), the total number of decomposition terms is 35. In 
figure 3, the convergence character of the block Jacobi 
iterative scheme is shown. 

Since no analytical solution is available, the Monte Carlo 
simulation is employed to validate the Legendre-chaos 
solution. Here, the Monte Carlo computation is employed after 
the same KL decomposition. In this way the error from the 
Legendre-chaos decomposition is isolated, while the error 
introduced by the finite-term truncation of the KL 
decomposition, which is well understood, is excluded. The 
corresponding computational results associated with the 

2 2 2( ) ( )L D L   norm has been shown in Figure 4. 

 

 
Figuer 2. Eigenvalues of KL decompositon for ( , )C x z  with 100b  . 

 

 
Figure 3. Convergence of error norm in term of iteration counts for the block 

Jacobi iterative scheme with 4, 3K P  . 

 
Figure 4. Comparison between the third-order Legendre-chaos solution and 

the Monte Carlo solution with various number of realizations. 

VI. CONCLUSION 

In this paper, we have presented a stochastic spectral method 
to the Stokes problems with random inputs. The essential finite 
dimensional noise assumption turns the original Stokes 
problem into a parametric saddle-point problem. It was solved 
by using the generalized polynomial chaos decomposition, 
together with a spectral Galerkin approximation in the spatial 
domain. We have employed a block Jacobi iteration technique 
to solve the system which governs the evolution of the chaos 
decomposition coefficients efficiently. The exponential 
correlation function was studied and applied in the 
computations. The Karhunen-Loeve  decomposition is used to 
reduce the dimensionality of the stochastic space. 

The exponential convergence rate is demonstrated for the 
model problem with 1K  . For more complicated Stokes 
problems, the Monte Carlo simulation is employed to validate 
the chaos solution. We have observed good agreement between 
the well-resolved chaos decomposition solution and the 
converged Monte Carlo simulation results. 
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