
Arinc429 Bus-based Multi-Dsp, Fpga Component
Program Serial Load

Yongchao Zeng
Department of Instrument Science and

Optical-Electronics Engineering
Beihang University

Beijing, China
zengyongchao@aspe.buaa.edu.cn

Jianhui Zhao
Department of Instrument Science and

Optical-Electronics Engineering
Beihang University

Beijing, China

Fan Li
Department of Instrument Science and

Optical-Electronics Engineering
Beihang University

Beijing, China

Abstract—The load of DSP and FPGA program are usually
accomplished by the way of JTAG. But in some occasions, the
circuit of DSP and FPGA are sealed up in the equipment; it is not
convenient to update the program by dismounting device. For
example, certain aviation equipment left only one interface of
ARINC429 to achieve the program load and verification of internal
chips. Based on this application, this paper proposed a way of
loading and verifying the serial program of multiple DSP and
FPGA. Under this way, the load and verification of multiple
internal DSP chip programs, external connection FLASH program
and FPGA configuration program can be accomplished in the
complete machine state. Currently, this way has been applied in the
program load and verification of an aviation equipment, and the
result is effective and reliable.

Keywords- serial load ;DSP; FPGA; ARINC429

I. INTRODUCTION

In a certain aviation equipment, two DSP (TMS320F2812
and TMS320C6414) and one FPGA were used as the core

processing part following the request of processing system. The
equipment used airtight structure, and the updating of program
could only be accomplished by a reserved ARINC429 bus
interface. In the process of whole updating of equipment program,
only TMS320F2812 could have communications with upper
computer by ARINC429bus, the updating of other chips and
FLASH program needed to be accomplished by transfer of
TMS320F2812. The structure of system hardware is shown in
Figure 1, the program load and read-back check of whole system
are divided into two parts, the TMS320F2812 (TMS320F2812
internal chip FLASH program, external connection FLASH
program) and TMS320C6414 (TMS320C6414 internal chip
FLASH program, external connection FLASH program and
FPGA configuration chip program).There are two important
communication interfaces: ARINC429 communication bus,
MCbsp (Multichannel Buffered Serial Port) interface. ARINC429
bus communication is used between upper computer and
TMS320F2812; TMS320F2812 used MCbsp interface to
communicate with the MCbsp1 interface of TMS320C6414.

Figure 1 the structure of system hardware

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press1026

II. THE ACCOMPLISHMENT OF BUS COMMUNICATION

PROTOCOL

To accomplish the serial load of system program by
ARINC429 bus, the reliability of bus transmission must be
guaranteed. No mistake can be allowed in the process of data
sending, transmission and receiving. Otherwise, wrong program
will be loaded in the system, leading unpredictable mistakes in
the running of system. Also, the loaded programs are usually

large, so the transmission of whole programs cannot be
accomplish once. It needs to divide the programs into numerous
data packets to transmit. The form of data packets includes 36-
byte packet-head and unloaded program data (the length is the
number of 22~25th bytes of the packet-head) and 2-byte end
sign. The detailed form of packet-head is shown in the Table 1,
the sign of packet-head is 0xAA08, and the end sign is 0x0000.

TABLE 1 HEAD FORMAT OF DATA PACKET

byte 0~1 2~9 10~17 18~21 22~25 26~29 30~31 32~35
meaning Head

sign
Command
type

The radix-minus-
one Complement
of Command

type

the entrance
address of
TMS320F2812

Loaded
data
length

The
destinatio
n address
of load

Loaded
data
length

The data buffer
address transmitted

to the
TMS320F2812

The system programs include TMS320F2812 on-chip

FLASH programs, TMS320F2812 external FLASH programs,
TMS320C6414 on-chip FLASH programs, TMS320C6414
external FLASH programs, FPGA data code, etc. And each part
is separated into program load and program read-back. Load or
read-back targets are distinguished by different command types
in the data packet.

A. ARINC429 communication

Only when the system is powered on and at loading work
status (enabled status), the communication between upper
computer and TMS320F2812 could be carried out. Using the
ARINC429 bus interface, the upper computer could send a 0x41
to TMS320F2812, then the TMS320F2012 should send back a
0x41 as the correct handshaking signal.

When loading the programs, according to the size of 16KB
and the loading format, we should firstly separate the data file
into several data packets. The relevant process of loading data
packets is finger 2:

Firstly, the upper computer would send the loading data
packets to TMS320F2812.After receiving the data packets, the
TMS320F2812 would send back signals to the upper computer.
At the same time, TMS320F2812 should check out the data
packets and send back the result to the upper computer. If the
result is right, the loading process would be carried out. If the
loading process is relevant to TMS320F2012, the relevant
process would be carried out. If the loading process is relevant to
the TMS320C6414, the data packets would be sent to the
TMS320C6414 through the MCbsp interface. The
TMS320C6414 would carry out the relevant process. After the
process is finished, the TMS320F2012/TMS320C6414 will send
the results of the process. If the result of checking out the data
packet is not right, the TMS320F2012/TMS320C6414 will wait
for the next data packet from the upper computer. After receiving
the data packet and response command sent back from
TMS320F2012, the upper computer would check out the
response command. If the result is right (the right result is

0xA3A3),it will wait for the result of the process carried out by
the TMS320F2812 and check out the result. Otherwise, it will
stop waiting. If the result is right (0xA7A7 for TMS320F2812
and 0xABAB for TMS320C6414), it means the loading process
is successful. Next data packet will be loaded. Otherwise, the
loading of this item will be stopped.

Finger 2 Program loading flow chart

B.MCbsp communication

The MCbsp interface of TMS320F2812 and the MCbsp1
interface of TMS320C6414 transmit data to each other
reciprocally. The format of the data is single phase, each frame is

1027

a data unit, a data unit includes 32 bytes. When a jump from high
level to low level on the GES0/GES1 pin of the hardware GPIO
interface on TMS320F2012 is detected by the supervisory
computer, the fever write begins. Then the TMS320F2812 begins
to transmit data packet with relevant commands to MCbsp
interface. After receiving a data packet, TMS320C6414 will
adopt different load/read-back operations to different chips
according to the command types in the data packet.

III. DSP PROGRAM DESIGN

TMS320F2812 is the core part of the system when loading
programs. It is in charge of the communication with the upper
computer, the communication with the TMS320C6414 and the
load/read-back of some FLASH programs. Before the serial
loading of the system programs, curing some core code on the
TMS320F2012 chip through JTAG is needed. This part of code
could carry out the process of the program data which is sent by
the supervisory computer through the bus, and it will carry out
the relevant load/read-back process according to the type of the
command. At the same time, when the serial loading is not
processed, this part of code is in charge of jumping to the user
programs.

Due to the kernel code will not be changed in the process, the
following three requirements are needed to be achieved: firstly,
the kernel code cannot be rewritten in the process of serial load;
secondly, the program pointer can jump to the code segment and
then return to the user code segment when DSP is resetting;
finally, the curing kernel code will not be broken in case of
power cut by accident in the process of loading.

Therefore, according to the property that the flash in
TMS320F2812 slice is allowed to write by segments based on
user’s requirements, the serial-loading code can be loaded to the
last two blocks(block A and block B, addressing space distributes
from 0x3F4000 to 0x3F7FFF)which never to be rewritten.

The program pointer will jump to the kernel code segment as
long as DSP resets, its function is to enable the ports of SCI and
Mcbsp of DSP, set communication protocol, judge whether serial
received handshaking signal, jump to user’s code segment
automatically when the handshaking signal is out of emerging for
a certain time. DSP will receive the data packet sent by
supervisory computer if handshaking signal has been received
successfully, and then perform an appropriate action on the basis
of the instructions of the received data packet. Core program flow
chart of TMS320F2812 shown in Figure 3:

Finger 3 TMS320F2812 Core program flow chart

IV. PC PROGRAM DESIGN

To ensure the code is loaded correctly in the loading
processing, it is necessary for verification. The data packet is
verified by the embedded program of DSP by the way of send-
back (After the packet has been received, DSP will send the
packet back to the upper computer which then compares received
packet with sent packet and stops loading if not match). Because
of COFF file (.out file) is generated after DSP project file was
compiled and assembled, it is necessary to split it into the hex file
to meet the requirements of serial loading. The usual practice is
to convent .out file into hex file by using TI own tools. Because
the program file is sent by section by the way of packet, so we
use our own program to conversion, divide COFF file and write
the packet-head and end into divided file for convenience. When
transmitting to TMS320F2812, just read every file orderly and
sent. Compare the DSP send-back file with the corresponding file
when verifying. CCS has written the information of every section
into the .out file when it was generating.

The whole structure of COFF file is:

File Header ；Header

Optional Header ；Optional header

Section Header 1 ；Section header

......

Section Header n

Section Data ；Section data

Relocation Directives ； Relocation table

Line Numbers ；Line number table

Symbol Table ；Symbol table

1028

String Table ；String table

The first three structs are defined as：

struct head_section{

 UInt16 id;

 UInt16 amount;

 int data_time;

 int file_ptr;

 int symbol_amount;

 UInt16 option_bytes;

 UInt16 flag;

 UInt16 dest_id;

 }

struct Option{

 short flag;

 short verision;

 int code_size;

 int data_size;

 int uninit_size;

 int entry_point;

 int code_addr;

 int data_addr;

}

struct Section{

 char[] symbol;

 int phsical_addr;

 int virtual_addr;

 int word_size;

 int orignal_ptr;

 int relocation_ptr;

 int line_entry_ptr;

 uint relocation_amount;

 uint line_amount;

 uint flag;

 UInt16 reserved;

 UInt16 page_number;

 }

We mainly focused on the file header, option header and
section header. Firstly, read the number of the section (“amount”
in struct head_section) and the size of the Option
section(“option_bytes” in stuct head_section) from the file
header, and then obtain the entry address of the procedure
(“entry_point” in struct Option) from the option header. Finally,
get the important data of each section header such as the physical
address (“physical_addr” in struct Section), virtual address
(“virtual_addr” in struct Section) and the section size
(“word_size” in struct Section). Based on these data to read all
the data files and split it into multiple files to save. At the same
time the beginning and ending of each file was written into the
corresponding packet-head and packet-end according to the
format of Table 1.

V. CONLUSIONS

This paper introduced a method of serial load and verification
program for multiple DSP and FPGA through the ARINC429.
The method had been applied to certain aviation equipment, and
the result shows that the load and verification method was
effective and reliable. It has a certain reference value to the
program load of others multi-DSP system.

REFERENCES
[1] TMS320C6414 Hardware Designer’s Resource Guide[J]. Texas

Instruments.2005

[2] Cui Weicheng.Serial loading and verification technology of
TMS320F240DSP on-chip Flash based on SCI[J]. ELECTRONIC
MEASUREMENT TECHNOLOGY.2007(3):71-73.

[3] Ren Linxiang, Ma Shufen, Li fanghui, Principle and Application of the
TMS320C60 DSP series, Beijing: Electronic Industry Press,2000.

1029

