
Comparison and Analysis of the Performance on 
Measurement Matrix to Spectrum Estimation 

Wang Keqing  
Institute of Communications Engineering  

PLA University of Science and Technology  
Nanjing, China  

Wangkeqing0806@163.com 

Chen Jian-zhong 
Telecommunication Institute  

Nanjing, China 

Zhu Yong-gang 
Telecommunication Institute  

Nanjing, China 

Niu Ying-tao 
Telecommunication Institute  

Nanjing, China 

 
 

Abstract—In the spectrum estimation algorithm based on 
Compressed Sensing, the selection of measurement matrix has 
significant influence on whether can estimate the signal power 
spectrum with high precision. In the article, it briefly describes 
the basic principles of spectrum estimation algorithm and the 
common measurement matrixes. In addition, it presents a 
detailed comparison and analysis of the construction method, 
pros and cons among random measurement matrix, structured 
measurement matrix and deterministic measurement matrix. On 
this basis, aiming at single-tone, multi-tone and QPSK signals, 
the feasibility of six kinds of measurement matrixes used in 
power spectrum estimation based on compressed sensing were 
validated and compared the estimation performance by 
simulations. The simulation results show that Toeplitz matrix can 
obtain the minimum NMSE at the same compression ratio. 

Key words-Compressed Sensing(CS); Measurement Matrix; 
Power Spectrum Estimation(PSD) 

I. INTRODUCTION  

Spectrum sensing is one of the key technologies in 
Cognitive Radio, and paid more and more attentions. It has 
been put forward to a variety of effective spectrum sensing 
methods at present[1][2]. However, whether they are based on 
the energy detection, feather detection, or based on the 
matched filter detection algorithm, it needs sample the 
received signal at Nyquist rate first of all. So it requires high 
speed ADC for wideband spectrum sensing. For one hand, the 
implementation and technical difficulty of the system are 
increased obviously; for another hand, it also increases the 
data’s analysis and processing. The recent proposed 
Compressed Sensing[3] (CS) theory provides a new solution 
solving the problems. The first study of spectrum sensing 
algorithm based on CS was proposed in [4]. On the basis of 
this, the researchers put forward a variety of spectrum sensing 
algorithm based on CS[5][6][7]. Generally speaking, 
reconstructing signal has very high complexity, and spectrum 
sensing in communication system would like the signal 
characters (such as power spectrum density, center frequency, 
bandwidth and so on) rather than the figures. Therefore, a new 
spectrum sensing algorithm was proposed in [8] which called 

multi-taper method combined with singular-value 
decomposition based on CS(MTM-SVD-CS). The algorithm 
can reduce the sampling rate, and give a power spectrum 
estimation through the low rate measurements directly which 
obtained from the measurement matrix. It can avoid the 
complicate operation by reconstructing the original signal to a 
large extent. The paper gives a simple research on the 
performance of measurement matrixes based on this algorithm. 

Measurement matrix plays a crucial role in sampling the 
data and reconstructing the signal spectrum. It has been 
presented a variety of measurement matrixes for different 
applications, and mainly divided into random measurement 
matrix, structured measurement matrix and deterministic 
measurement matrix[9]. The orthogonal requirements of 
measurement matrixes under the condition of no noise, limited 
noise and Gauss noise were studied in [10], and proposed a 
chaotic sequence which can be regarded as measurement 
matrix in [11]. However, it is difficult to compare and study 
measurement matrixes for their different backgrounds, and it 
brings troubles for choosing one in practice. So, on the basis of 
comparing and analyzing the construction method and pros 
and cons among all kinds of measurement matrixes in this 
paper, a detailed simulation was offered to compare the 
estimation performance of six kinds of measurement matrixes 
at last. The simulation results show that Toeplitz matrix is 
superior to the other matrixes. 

II. SPECTRUM ESTIMATION BASED ON NON-
RECONSTRUCTION OF COMPRESSED SENSING 

The principle diagram of the algorithm is as figure 1. 
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Figure.1 The diagram of Spectrum Estimation Based on Non- 
Reconstruction of Compressed Sensing 
 

Firstly, using a M N  measurement matrix Φ  transform 
the wideband compressible signal x  into a lower speed digital 
signal My  by sampling at the sub-Nyquist rate. Φ  must satisfy 

some determinate conditions and can make x  from NR  to 
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 M M NR  and not lose the main information which is used 
for reconstructing signals nearly intact, x  here is a sparse 
signal. So it can be said, measurement matrixes directly 
determine whether CS can realize successfully. 

This paper introduced an algorithm based on compressive 
sensing and multi-taper method combined with singular-value 
decomposition (MTM-SVD-CS)[8] to simulate and evaluate the 
performance of measurement matrixes. Now give an 
introduction to the algorithm. 

Given a time series  ( ) 0 1x n n N  ， , an orthonormal 

sequence of K  Slepian tapers denoted by k
nv . The associated 

eigenspectra defined by the Fourier transforms 
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( )kY f is k-th eigenspectral, K is the number of windows， 

the length of DPSS is N . Equation (1) can be rewritten in the 
form of matrix as 

  0,1, , 1k
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From CS theory 

1,2, ,m n m M y Φx ，   (4) 
Inserting equation (2) into (4), it is 

1 1( )k
m n N k

  y Φx Φ v F Y   (5) 

The k -th eigenspectrum kY  can be reconstructed by OMP 
or ROMP algorithm. And it can be expressed as 

       1 2, , , kA f Y f Y f Y f      (6) 

Singular value decomposition of  A f is  
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 k f  is a singular value of  A f , 

and      0 1 Kf f f     , therefore   2

0 f  is an 

estimation of PSD. 

III. CLASSIFICATION AND COMPARISON OF MEASUREMENT 
MATRIX 

Now, the measurement matrix which has been put forward 
to dividing into three types on the whole[9]: random 
measurement matrix, structured measurement matrix and 
deterministic measurement matrix. 

A. Random Measurement Matrix 

Random measurement matrix includes Gaussian, Bernoulli, 
sub-gaussian[12], very sparse random matrix[13] and so on. The 
common ground of these matrixes is: the elements in matrixes 
submit to one distribution independently, they are irrelevance 
with most sparse signals and demand less measurements to 

recovery exactly. But they all need biggish storage space and 
upper complexity. 

Each element in Gaussian random matrix satisfies that 
M NΦ R :   ~ (0 1 )i j N MΦ ， ， . N  is the signal length, K  

denotes sparse degree, So it meets RIP to a great extent only 
requires  logM cK N K  measurements, c is a small constant. 

Each element in Bernoulli random matrix meets 

that M NΦ R : .

1 probability 0.5

1 probability 0.5
i j

M

M

 


Φ , the characters are 

similarity to Gaussian matrix. 

B. Structured Randomly Measurement Matrix 

Structured randomly measurement matrix includes Fourier, 
part of orthogonal, Hadamard, Toeplitz random measurement 
matrixes and so on. These kinds of matrixes extract M  rows 
from an N N  orthogonal matrix. 

The structure of part of orthogonal matrix is: building U , 
an N N  orthogonal matrix, we can get a M N  matrix which 
extract M  rows from U randomly. In the premise of matrix 
size, to make signal reconstruct accuracy, the sparsity K  

should meet the expression that    62/ logK cM N , and 

,
,

max i j
i j

M U  . When 1  , part of orthogonal matrix is part 

of Fourier matrix and the Fourier matrix satisfies that 
  6

/ logK cM N . The matrix utilizes the high speed of fast 

Fourier transform, but it is incoherent with signals only in the 
time domain or frequency domain.  

Partial Hadamard matrix is structured in a way that 
sampling M  rows from a generated N N  Hadamard matrix. 
Because of the inherent characteristics of Hadamard, N  must 
match the condition of 2kN  ， 1, 2,k   , this greatly limits the 
application of the matrix. 

Toeplitz matrix is constructed of the generated vector, the 
process is through the cyclic shift to realize. Above all, 
generating a vector  1 2, , N

nu u u u R  and U  which is the 
corresponding rotation matrix, then selecting one of the M  
rows to structure M N  Toeplitz matrix. Typically, the value 
of u  is 1  and each element submits independently to 
Bernoulli distribution. The cyclic shift can be easily 
implemented in hardware, which is the main reason for 
Toeplitz matrix widely studied and applied. For K -sparsity 
signal, when K  and M  satisfy  / logM cK N  , the original 
sparse signal can accurately reconstruct at the probability of 
1  . 

C. Deterministic Measurement Matrix 

Deterministic measurement matrix is put forward to 
overcoming the shortcomings of random matrixes for long 
time simulation and difficult to achieve in equipment. It has an 
irreplaceable excellent quality. Ronald A.Devore[14] proposed 
polynomial deterministic matrix which is a new research 
direction. But the research in this field has just started, there 
still are many problems need to be further studied. 
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Gaussian matrix, Toeplitz matrix, Fourier matrix, 
Hadamard matrix, part of orthogonal matrix and Bernoulli 
matrix are the mainly matrixes compared in the paper. 

IV. SIMULATION ANALYSIS 

Simulation analysis 1: Under the influence of white 
Gaussian noise, estimating the PSD of single-tone, multi-tone 
and QPSK signals based on MTM-SVD-CS, the article is 
simulated the effect which measurement matrixes have on the 
signal spectrum estimation. Six kinds of matrixes are talked 
above, compression ratio /M N =0.7. Signal parameter sets as 
shown in Table 1, and spectrum estimation shows in figure2 to 
figure4. 

TABLEⅠ  SPECIFIC PARAMETER SETTING OF SIGNALS 

Signal 
Style 

Length/ 
Sampling Point 

Sampling 
Rate 

Specific 
Parameters 

SNR Simulation 
Number

Single-
tone 

N/nfft=1024 fs=1024 Center frequency 
=400 

25 1000 

Multi-
tone 

N/nfft=1024 fs=1024 Multi-tone 
number=7 

25 1000 

QPSK N/nfft=2048 fs=1600 symbols=128 
Center frequency 

=2000 

25 1000 

 

 
Figure.2 PSD of Single-tone 

 

Figure.3 PSD of Multi-tone 

 

 

Figure.4 PSD of QPSK 
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From the three diagrams it can be found: These 
measurement matrixes can be approximated to recover the 
signal power spectrum when the compression rate is 0.5. It 
means that these stochastic matrixes can be successfully used 
in CS. It is noted that, after CS, the power spectrum comes out 
the apparent loss in amplitude. 

Simulation analysis 2: The six kinds of matrixes have an 
effect on signals spectrum estimation at different compression 
rate. Signal parameters setting as Table 1. The expression of 
normalized error minimization is  

 2 2

1

1
ˆ( ) ( ) ( )

N

n

NMSE s n s n s n
N 

      (8) 

s  is the PSD vectors in Nyquist rate, ŝ  is the estimation 
PSD vectors in CS rate. Compression rate /M N  changes from 
0 to 1. The spectrum estimation NMSE with compression rate 
curves is shown in figure 5 to figure 7. 
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Figure.5 M/N and NMSE curve–Single-tone 
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Figure.6 M/N and NMSE curve-Multi-tone 
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Figure.7 M/N and NMSE curve –QPSK 

 
Thus, there are some conclusions as follows: 

(1) As the compression rate increases, NMSE of power 
spectrum estimation decreases gradually; Toeplitz matrix gets 
the minimum NMSE, and Fourier matrix gets the maximum 
NMSE; and other four measurement matrixes have the similar 
properties. 

(2) For different signals, it can be found a certain 
compression rate which makes these stochastic matrixes 
recovery the signal power spectrum in high probability; 

(3) The more sparse the signal is, the better performance 
for recovering power spectrum at the same compression rate 
(by single-tone and multi-tone); 

Ⅴ.THE CONCLUSION 

By summarizing the classification of the Measurement 
Matrix, a detailed simulation was given to compare the 
estimation performance of six kinds of measurement matrixes, 
the conclusion is made that Toeplitz matrix has the optimal 
performance. The conclusion is very important in selecting 
measurement matrix in compressive spectrum sensing. As a 
result of these random matrixes is random and difficult to 
realize in hardware circuit, deterministic matrix is studied and 
whether existing an optimal deterministic matrix for a stable 
PSD algorithm is the next step to solve. 
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