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Abstract—The recently widely-spreading usage of combinatorial 

interaction testing is dramatically improving the effectiveness of 

highly-configurable software.  Conventional techniques based on 

greedy or heuristic algorithms can lead to suboptimal result in 

the size of the built test suite with unstability.  In this paper, a 

strategy for the construction of pairwise covering test cases is 

presented on the basis of research on previous 2-dimensional 

expansion algorithm to eliminate randomness and optimize 

efficiency that caused by itself. The proposed approach IPO_S_R 

is supported by symmetry property and lower bound theory. In 

addition, experimental assessment is also presented. 

Keywords: combinatorial interaction testing; IPO_S_R; restriction; 

2-dimensional expansion  

I.  INTRODUCTION 

Program families are defined (analogously to hardware 
families) as sets of programs whose common properties are so 
extensive that it is advantageous to study the common 
properties of the programs before analyzing individual 
members[1]. This kind of situation puts forward a challenge for 
testing and validation. One function depends on all components 
working together. Test has been switched from testing in a 
single software configuration to testing in all possible different 
optional configurations.  However, a set of possible inputs for 
any nontrivial piece of software is too large to be tested 
exhaustively[2][3]. Then pairwise testing has become an 
indispensable way in software testing[4]. 

Pairwise testing requires that, for each pair of input 
parameters of a system, every combination of valid values of 
these two parameters be covered by at least one test case [5]. 
Over the years, a number of combinatorial strategies have been 
devised to help testers choose subsets of input combinations 
that would maximize the probability of detecting defects[6]. A 
large part of these strategies are based on use of the traditional 
constraint solving, optimization methods or directly search 
covering arrays[7]. Due to the complexity of the problem is NP 
complete, most of the methods are local search algorithm, these 

methods can’t guaranteed to get optimal solution, but the time 
is relatively less than other methods. One-test-at-a-time method 
and 2-dimensional expansion method are Mainstream methods. 
In this article, we will discuss two-dimensional expansion 
method and discover some problems existed in the in-
parameter-order algorithm and put forward a solution for them. 

II. TEST CASE GENERATION OF TWO-DIMENSIONAL 

EXPANSION 

A. Introduction of 2-dimensional expansion 

Lei proposes IPO algorithm, which is typical 2-dimensi-
onal expansion algorithm[8]. It firstly construct first two 
parameters all combinatorial, forming a minimal matrix and 
repeats the two steps 2-dimensional expansion. It will make 
vertical and horizontal expansions. In contrast with that 
algorithm, Calvagna and Garganitini proposed IPOs algorithm 
used symmetry property to expand coverage matrix[9]. In this 
article, we will use IPOs as prototype to analyze 2-dimensional 
expansion algorithm. 

Firstly we will describe how the algorithm carries out. We 
assume a system with 3

3
×2

1
 parameters, which means 3 

parameters with 3 values and 1 parameter with 2 values. 
According to IPOs, the parameters rank as big to small in line 
with the number of values and firstly covered by first two 
parameters v1 and v2. Expanded with the symmetry principle, 
we make the third parameter value column clone v2 (see Fig.1-
(a)). We then only need to complete pairing of v3 and v2. Note 
also that some of the pairs between v3 and v2 are already 
covered by construction:{(0,0),(1,1),(2,2)}, and that they are 
three times redundant. We only need to cover pairs 
{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}. A simple heuristic 
applicable here is to edit the symbol in the row position of first 
redundant instance of a pair, that is, in this case, we choose to 
change assignment on fourth row so to form the missing pair 
(v2,v3)=(0,1). Since this will delete the unique pair (v1,v3)=(1,0), 
we need to restore it elsewhere, and precisely it can be done by 
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another change of assignment in sixth row from 2 to 0. This  
last induced change delete in turn the existing pair (v1,v3)=(1,2), 
immediately restored by changing fifth row redundant 
assignment to 2, and also increased (v2,v3) coverage also by 
additional pairs (2,0) and (1,2). Similarity we continue to repair 
all the missing pair until no missing pair existed (see Fig. 1-(b)). 

We expand all the parameters like that (see Fig. 1-(c) (d)). 
Details have already described by Calvagna and Garganitini.  

However, 2-dimensional expansion has some issues to 
solve. We will state them in next part. 

 

Figure 1. IPOs Example Task 

B. Issues with 2-dimensional expansion algorithm 

1) Expansion way: Expanding process mostly focuses on 
how to optimize horizonal expansion or repair process to 
eliminate the possibility of adding a row. Assume that there is a 
test case set S and ith parameter to cover pairwise, the total 
number of which is Ri. Now we expand the (i+1)th parameter, 
which means  to search a combination Γ, that is,  make Ri-
V=(Ri,Γ) a best result for vertical expansion. If (i+1)th 
parameter range from 0 to (α-1), there are |α

Ri
| possibilities to 

choose. In the research of the past, two ways are mainly 
refered to, one is IPO_H_EC, and other is IPO_H_IV[8]. 
Vertical expansion is low priority than horizontal. However, 
good vertical expansion can also make the next parameter 
expansion effective. Assume we extend (v1.v2)=(x,1) and (x,2), 
we assign arbitrary value to x(see Fig. 2-(a)). Now we expand 
the v3 parameter. Assume there is missing pair(2,2), the 
expansion result will better if x=2 than x=1.  

 
Figure 2. Vertical Expansion Importance Example 

 
2) Random selection process: 2-dimensional expansion 

algorithm has uncertainty during the process. For instance, 
Assume there is a 3

3 
system, after covering first two 

parameters, when we expand the 3
rd

 parameter, there are 3 
selections for us. It may be a good matter for solution but not 
for an algorithm because randomness is caused by that. The 
expansion result  is on the basis of 0→1→2(see Fig. 3-(a)), 
1→2→0(see Fig. 3-(b)), 2→0→1(see Fig. 3-(c)) by using 
IPO_H_IV. That explain why randomness interfere with 
generation result. In another instance, using IPO_H_EC, we 
are faces with the same issue that 12 best selections in 
3

9
=19683 selections when expand the 3

rd
 parameter.  

III. GLOBAL SUBSYSTEM 

Definition 3.1:  With input parameter set Γ, test case set X  
and number of parameters n,  parameter set can be divided into 
Γ1, Γ2,…, Γn. 

Definition 3.2(Optimization Problem for Constraint): So
lution of the optimization solution set, 

                   min    min  Γ),  ) 0, 0 i n 1  

 
Figure 3. Randomness Example Task 

  Γ)：Γ→  is objective function, g
 
  ) is constraint 

function which is meet pairwise condition.  g
n
  ) is the final 

result set. We assume g
i
   )   g

i
  ) means    case set result 

is better than  , and X is best set if g
i
( ) 0. 

 Feasible set is the set meet the constraint condition of X. 
All feasible set recorded as S is feasible region, which is as 
follows and g

i
  )   0 means there are pairs redundant. 

      | g
i
  ) 0,i  1,m     g

i
  ) 0,i  m,n           (2) 

   )    i| g
i
  ) 0  is binding constraint index set. If  m,n  

is empty, then above problem has optimization solution; 
otherwise it is a Constraint optimization problem. 

Definition 3.3(Global Maximum Point): Assume   ∈  

and   ∈ , if 

  ( 
 )    ( ) 

Then call    global maximum point. 

Definition 3.4(Local Maximum Value Point): Assume 

  ∈  and   ( 
 ) { | || -  ||  ,   1, ,3,… , for 

  ∈    ( 
 ). If exist  

g
i
   )   g

i
  ) 

Then call    local maximum value point. 

It is important for optimization problem solution to ensure 
that algorithm has overall convergence. Therefore, there are 
some definitions as follows towards coverage issue. 

Definition 3.5: If the feasible domain g
i
( ) 0 and g

 
( )  

 , 0   i, then g
i
( ) is the feasible stable point of the optimal 

solution. 

Definition 3.6(Lower Bound Theory):  Assume a system 
has n parameters, the number for parameter is Γ

i
, i 1, ,…,n, 
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there is a lower bound N of number of test case set as follows 
and 1 i   n: 

    ma   ti t ) 

Proof:  For the tis value of i parameter and tjs value of  j 
parameter, the completely combination number is (ti  tj). 
Therefore, test case set must have at least (ti tj) cases in order 
to pairwise cover the parameters.  

Finally, from above mentioned, we import lower bound 
theory to optimize the algorithm. That means during the 2-
dimensional expansion, for each expansion, it is equivalent to  
expansion to its subsystem. Therefore, we define a global 
subsystem mechanism to optimize it. For instance, we want a 
generation result of 3

4
 that contains a subsystem of 3

2
 and 3

3
. 

During the process, we have the generation of 3
2
 and 3

3
 at first. 

It is a feature of 2-dimensional expansion algorithm. We import 
global subsystem and use the lower bound theory to define it 
which will help us to eliminate the randomness. 

IV. IPO_S_R 

A. Algorithm 

S is the set of cases generated. S[i][j] means value of ith col
umn and jth row. P(a,b) means missing pairs of column a and b.
Ni means total value of column i parameter. Parameter[i] means
 value of ith parameter. Let Established(m)=0 as row m which i
s not considered as established row. Let Established(m)=1 as ro
w m which is considered as established row.  Besides, assume 
BestResult is subsystem best result case set of parameters unde
r test. 

Algorithm IPO_S_R(S,Parameter) 

1. P ← parameters  

2. Sort(P) as descend 

3. Empty(S) 
4.   ← Cover 1, ) 

5. for each column i from P(3) to P(n) 

6.    if isBestResult(1,i) =1 
7.          ← continue and BestResult 1,i)  

8.     else tempS ← AddColumn(i)  

9.        if BetterResult temp , BestResult 1,i))>0 
10.         BestResult 1,i)  ← temp  

11.         S ← temp  

12.        end if 
13.      end if 

14.  end for 

AddColumn(i) 

1. for each row j in S do  

2.    a ← S[i-1][j] 

3.    if a    i  

4.       b:=a 
5.    else b:=x 

6.    end if 

7.    S[i][j]:=b; 
8. end for 

9. while(P(i-1,i) is not empty) 

10.    Randomly select  a,b) belonging to P i-1,i) 
11.    for each row   in   do  

12.         if (a,b) = (S[i-1][j],S[i][j]) 

13.        Remove (a,b) from P(i-1,i) 
14.        Established(j)  ← 1 

15.      else if  a,b) doesn't e ist in column i-1,i) 

16.           Recover(a,i-1,b,i) 

17.      end if 

18.    end for 

19.  end while 

Recover(a,i,b,j) 

1. Choose any row m where S[i][m]=x and S[j][m]=x or b 
2.    S[i][m] :=a 

3. Choose any row m where   i  m    a and      m       

or where Established[m]=0 and S[j][m]=b 

4.    Established m : 1 

5. if none 

6.    insert a new row contained  a,b) and return  
7. end if 

8. if      m         m : b 

9. else if Established m    0 and      m    b 
10.    bold:      m  

11.         m : b 

12.    if bold  ) return 
13.    else for each column h: 1..j-2 in S do 

14.      if pair   h  m , bold) is not covered 

15.         Recover(S[h][m],h,b,j) 

16.      end if 

17.     end for 

18.    end if 
19. end if 

B. Time and Space Complexity 

In[10], the authors show that the number of tests for 
pairwise coverage grows at most logarithmically in n and 
quadratically in r with n the number of parameters and r the 
number of values.  In Algorithm IPO_S_R, AddColumn 
function is O(r

2
), as it is dominated by the loop of calls to the 

Recover() function. The latter can at each execution either 
modify a row assignment or add a new test case to the test set. 
Recursion can be induced on when a row has been modified. 
This in turn can happen only N times overall, as any row can be 
modified at once. Moreover, since the recursive call is nested 
inside an O(n) loop, the total tine complexity of the function is 
O(nN), which is O(r2nlogn). Thus as the AddColumn() is 
called n times, the complexity is O(r

4
n

2
logn). The space 

complexity is O(r
n-1

). 

C. Analysis 

We use global subsystem case set as auxiliary and expand x 
finally to ensure vertical expansion can give the next vertical 
expansion more selection. The whole generator structure is 
shown in Fig. 4. 

V. EXPERIMENT 

The proposed algorithm IPO_S_R aims at the issues of 2-
dimensional expansion and tries to improve them. Now, we 
make IPOs algorithm as contrast and do some experiment.  
Here, a system contains n parameters and each parameter range 
for d is under test.  

Firstly, we will compare the number if expansion. The 
times of Recover() function called will determine the efficiency 
of the algorithm. 

Data in TABLE I and TABLE II show that our approach 
performance is better than IPOs. From that, it might be found 
that the modified algorithm can eliminate call times of 
Recover() function because it will assign x value in final not in 
every vertical e pansion.  n addition, this result doesn’t import 
subsystem result.   
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Figure 4. Test Case Generator 

TABLE I. Comparative Recover times for 4n System 

n 5 10  0 30 40 50 60 

 POs 60  30 600 1057 1510 1931  344 

 PO_ _R 58  08 541 950 13 1 170   0 1 
 

TABLE II. Comparative Recover times for n3 System 

n 4 5 6 7 8 

 POs 16 33 55 71 99 

 PO_ _R 16  5 46 64 88 
 

Secondly, we will see the advantages of the global 
subsystem. When the result imported, we make 500 times IPOs 
experiment and will show the average, minimum and variance 
just in TABLE III. With the complexity of the system under 
test increased, the randomness of the whole algorithm has 
become apparent, making test case generation outcome 
unstable. It is not conductive for test case generation. In 
addition, it makes generation instability. 

TABLE III. Comparative set sizes 

 510 1010 1510  010  510 

Min 44 178 396 691 1090 

μ 47.  188.6 431.5 755.  1168.5 

σ  4.67  7.9 175.  675.6 1584.3 
 

Then we consider IPO_S_R algorithm to solve the 
problems with the e periment. We’ll take a simple 5

10
 system 

as prototype. See Fig. 5 and to compare the performance 
between IPOs and IPO_S_R. It take about 30 times experiment 
of generating. IPO_S_R can avoid randomness and during 
generation it works stable in succeeding performance. 

Another system under test is 10
10

 system, we will import 
subsystem of IPO 10

5 
result in IPO_S_R and record the result 

as IPO_S_R_1, and import  IPO 10
8  

result as IPO_S_R_2. We 
do the experiment and result is shown in Fig. 6. Because IPO 
10

10
 result is better than IPO_S_R, so if we import that 

subsystem of IPO result, the final result will be improved. 

From the results it can be found that IPO_S_R algorithm 
has the following advantages: 

1) High compatible with result of other case generation 
algorithm and easy to expand. 

2) Eliminate the randomness of 2-dimension expansion 
and make uncertainty decrease. 

3) With global subsystem results exist, it maintains case 
reusability and maintainability better. 

 
Figure 5. IPO_S_R Task Example Result 1 

 
Figure 6. IPO_S_R Example Task Result 2 

VI. FUTURE WORK AND CONCLUSION 

In this paper, we studied 2-dimensional expansion analysis 
in pairwise test case generation. We then propose a strategy to 
eliminate randomness and optimize some components. In 
addition, we do some experiment to prove our algorithm 
feasible and improve some places. As a final remark, work is 
undergoing to extend the algorithm to support t-wise testing 
and constrains over the inputs. In particular, we are working on 
applying the use of global subsystem to some other algorithm 
besides 2-dimensional expansion. 
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