

Research on the Pairwise Test Case Generation of

Two-Dimensional Expansion

Yuan Shuai

School of Computer Science and Engineering

Beihang University

Beijing, China

yuanshuai.deny@gmail.com

Cui Jingyan

School of Computer Science and Engineering

Beihang University

Beijing, China

jingyan1949@126.com

Ye Gang

School of Computer Science and Engineering

Beihang University

Beijing, China

gang.ye@cs2c.com.cn

Ma Shilong

School of Computer Science and Engineering

Beihang University

Beijing, China

slma@nlsde.buaa.edu.cn

Abstract—The recently widely-spreading usage of combinatorial

interaction testing is dramatically improving the effectiveness of

highly-configurable software. Conventional techniques based on

greedy or heuristic algorithms can lead to suboptimal result in

the size of the built test suite with unstability. In this paper, a

strategy for the construction of pairwise covering test cases is

presented on the basis of research on previous 2-dimensional

expansion algorithm to eliminate randomness and optimize

efficiency that caused by itself. The proposed approach IPO_S_R

is supported by symmetry property and lower bound theory. In

addition, experimental assessment is also presented.

Keywords: combinatorial interaction testing; IPO_S_R; restriction;

2-dimensional expansion

I. INTRODUCTION

Program families are defined (analogously to hardware
families) as sets of programs whose common properties are so
extensive that it is advantageous to study the common
properties of the programs before analyzing individual
members[1]. This kind of situation puts forward a challenge for
testing and validation. One function depends on all components
working together. Test has been switched from testing in a
single software configuration to testing in all possible different
optional configurations. However, a set of possible inputs for
any nontrivial piece of software is too large to be tested
exhaustively[2][3]. Then pairwise testing has become an
indispensable way in software testing[4].

Pairwise testing requires that, for each pair of input
parameters of a system, every combination of valid values of
these two parameters be covered by at least one test case [5].
Over the years, a number of combinatorial strategies have been
devised to help testers choose subsets of input combinations
that would maximize the probability of detecting defects[6]. A
large part of these strategies are based on use of the traditional
constraint solving, optimization methods or directly search
covering arrays[7]. Due to the complexity of the problem is NP
complete, most of the methods are local search algorithm, these

methods can’t guaranteed to get optimal solution, but the time
is relatively less than other methods. One-test-at-a-time method
and 2-dimensional expansion method are Mainstream methods.
In this article, we will discuss two-dimensional expansion
method and discover some problems existed in the in-
parameter-order algorithm and put forward a solution for them.

II. TEST CASE GENERATION OF TWO-DIMENSIONAL

EXPANSION

A. Introduction of 2-dimensional expansion

Lei proposes IPO algorithm, which is typical 2-dimensi-
onal expansion algorithm[8]. It firstly construct first two
parameters all combinatorial, forming a minimal matrix and
repeats the two steps 2-dimensional expansion. It will make
vertical and horizontal expansions. In contrast with that
algorithm, Calvagna and Garganitini proposed IPOs algorithm
used symmetry property to expand coverage matrix[9]. In this
article, we will use IPOs as prototype to analyze 2-dimensional
expansion algorithm.

Firstly we will describe how the algorithm carries out. We
assume a system with 3

3
×2

1
 parameters, which means 3

parameters with 3 values and 1 parameter with 2 values.
According to IPOs, the parameters rank as big to small in line
with the number of values and firstly covered by first two
parameters v1 and v2. Expanded with the symmetry principle,
we make the third parameter value column clone v2 (see Fig.1-
(a)). We then only need to complete pairing of v3 and v2. Note
also that some of the pairs between v3 and v2 are already
covered by construction:{(0,0),(1,1),(2,2)}, and that they are
three times redundant. We only need to cover pairs
{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}. A simple heuristic
applicable here is to edit the symbol in the row position of first
redundant instance of a pair, that is, in this case, we choose to
change assignment on fourth row so to form the missing pair
(v2,v3)=(0,1). Since this will delete the unique pair (v1,v3)=(1,0),
we need to restore it elsewhere, and precisely it can be done by

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press554

another change of assignment in sixth row from 2 to 0. This
last induced change delete in turn the existing pair (v1,v3)=(1,2),
immediately restored by changing fifth row redundant
assignment to 2, and also increased (v2,v3) coverage also by
additional pairs (2,0) and (1,2). Similarity we continue to repair
all the missing pair until no missing pair existed (see Fig. 1-(b)).

We expand all the parameters like that (see Fig. 1-(c) (d)).
Details have already described by Calvagna and Garganitini.

However, 2-dimensional expansion has some issues to
solve. We will state them in next part.

Figure 1. IPOs Example Task

B. Issues with 2-dimensional expansion algorithm

1) Expansion way: Expanding process mostly focuses on
how to optimize horizonal expansion or repair process to
eliminate the possibility of adding a row. Assume that there is a
test case set S and ith parameter to cover pairwise, the total
number of which is Ri. Now we expand the (i+1)th parameter,
which means to search a combination Γ, that is, make Ri-
V=(Ri,Γ) a best result for vertical expansion. If (i+1)th
parameter range from 0 to (α-1), there are |α

Ri
| possibilities to

choose. In the research of the past, two ways are mainly
refered to, one is IPO_H_EC, and other is IPO_H_IV[8].
Vertical expansion is low priority than horizontal. However,
good vertical expansion can also make the next parameter
expansion effective. Assume we extend (v1.v2)=(x,1) and (x,2),
we assign arbitrary value to x(see Fig. 2-(a)). Now we expand
the v3 parameter. Assume there is missing pair(2,2), the
expansion result will better if x=2 than x=1.

Figure 2. Vertical Expansion Importance Example

2) Random selection process: 2-dimensional expansion

algorithm has uncertainty during the process. For instance,
Assume there is a 3

3
system, after covering first two

parameters, when we expand the 3
rd

 parameter, there are 3
selections for us. It may be a good matter for solution but not
for an algorithm because randomness is caused by that. The
expansion result is on the basis of 0→1→2(see Fig. 3-(a)),
1→2→0(see Fig. 3-(b)), 2→0→1(see Fig. 3-(c)) by using
IPO_H_IV. That explain why randomness interfere with
generation result. In another instance, using IPO_H_EC, we
are faces with the same issue that 12 best selections in
3

9
=19683 selections when expand the 3

rd
 parameter.

III. GLOBAL SUBSYSTEM

Definition 3.1: With input parameter set Γ, test case set X
and number of parameters n, parameter set can be divided into
Γ1, Γ2,…, Γn.

Definition 3.2(Optimization Problem for Constraint): So
lution of the optimization solution set,

 min min Γ),) 0, 0 i n 1

Figure 3. Randomness Example Task

 Γ)：Γ→ is objective function, g

) is constraint

function which is meet pairwise condition. g
n
) is the final

result set. We assume g
i
) g

i
) means case set result

is better than , and X is best set if g
i
() 0.

 Feasible set is the set meet the constraint condition of X.
All feasible set recorded as S is feasible region, which is as
follows and g

i
) 0 means there are pairs redundant.

 | g
i
) 0,i 1,m g

i
) 0,i m,n (2)

) i| g
i
) 0 is binding constraint index set. If m,n

is empty, then above problem has optimization solution;
otherwise it is a Constraint optimization problem.

Definition 3.3(Global Maximum Point): Assume ∈

and ∈ , if

 (
) ()

Then call global maximum point.

Definition 3.4(Local Maximum Value Point): Assume

 ∈ and (
) { | || - || , 1, ,3,… , for

 ∈ (
). If exist

g
i
) g

i
)

Then call local maximum value point.

It is important for optimization problem solution to ensure
that algorithm has overall convergence. Therefore, there are
some definitions as follows towards coverage issue.

Definition 3.5: If the feasible domain g
i
() 0 and g

()

 , 0 i, then g
i
() is the feasible stable point of the optimal

solution.

Definition 3.6(Lower Bound Theory): Assume a system
has n parameters, the number for parameter is Γ

i
, i 1, ,…,n,

555

there is a lower bound N of number of test case set as follows
and 1 i n:

 ma ti t)

Proof: For the tis value of i parameter and tjs value of j
parameter, the completely combination number is (ti tj).
Therefore, test case set must have at least (ti tj) cases in order
to pairwise cover the parameters.

Finally, from above mentioned, we import lower bound
theory to optimize the algorithm. That means during the 2-
dimensional expansion, for each expansion, it is equivalent to
expansion to its subsystem. Therefore, we define a global
subsystem mechanism to optimize it. For instance, we want a
generation result of 3

4
 that contains a subsystem of 3

2
 and 3

3
.

During the process, we have the generation of 3
2
 and 3

3
 at first.

It is a feature of 2-dimensional expansion algorithm. We import
global subsystem and use the lower bound theory to define it
which will help us to eliminate the randomness.

IV. IPO_S_R

A. Algorithm

S is the set of cases generated. S[i][j] means value of ith col
umn and jth row. P(a,b) means missing pairs of column a and b.
Ni means total value of column i parameter. Parameter[i] means
 value of ith parameter. Let Established(m)=0 as row m which i
s not considered as established row. Let Established(m)=1 as ro
w m which is considered as established row. Besides, assume
BestResult is subsystem best result case set of parameters unde
r test.

Algorithm IPO_S_R(S,Parameter)

1. P ← parameters

2. Sort(P) as descend

3. Empty(S)
4. ← Cover 1,)

5. for each column i from P(3) to P(n)

6. if isBestResult(1,i) =1
7. ← continue and BestResult 1,i)

8. else tempS ← AddColumn(i)

9. if BetterResult temp , BestResult 1,i))>0
10. BestResult 1,i) ← temp

11. S ← temp

12. end if
13. end if

14. end for

AddColumn(i)

1. for each row j in S do

2. a ← S[i-1][j]

3. if a i

4. b:=a
5. else b:=x

6. end if

7. S[i][j]:=b;
8. end for

9. while(P(i-1,i) is not empty)

10. Randomly select a,b) belonging to P i-1,i)
11. for each row in do

12. if (a,b) = (S[i-1][j],S[i][j])

13. Remove (a,b) from P(i-1,i)
14. Established(j) ← 1

15. else if a,b) doesn't e ist in column i-1,i)

16. Recover(a,i-1,b,i)

17. end if

18. end for

19. end while

Recover(a,i,b,j)

1. Choose any row m where S[i][m]=x and S[j][m]=x or b
2. S[i][m] :=a

3. Choose any row m where i m a and m

or where Established[m]=0 and S[j][m]=b

4. Established m : 1

5. if none

6. insert a new row contained a,b) and return
7. end if

8. if m m : b

9. else if Established m 0 and m b
10. bold: m

11. m : b

12. if bold) return
13. else for each column h: 1..j-2 in S do

14. if pair h m , bold) is not covered

15. Recover(S[h][m],h,b,j)

16. end if

17. end for

18. end if
19. end if

B. Time and Space Complexity

In[10], the authors show that the number of tests for
pairwise coverage grows at most logarithmically in n and
quadratically in r with n the number of parameters and r the
number of values. In Algorithm IPO_S_R, AddColumn
function is O(r

2
), as it is dominated by the loop of calls to the

Recover() function. The latter can at each execution either
modify a row assignment or add a new test case to the test set.
Recursion can be induced on when a row has been modified.
This in turn can happen only N times overall, as any row can be
modified at once. Moreover, since the recursive call is nested
inside an O(n) loop, the total tine complexity of the function is
O(nN), which is O(r2nlogn). Thus as the AddColumn() is
called n times, the complexity is O(r

4
n

2
logn). The space

complexity is O(r
n-1

).

C. Analysis

We use global subsystem case set as auxiliary and expand x
finally to ensure vertical expansion can give the next vertical
expansion more selection. The whole generator structure is
shown in Fig. 4.

V. EXPERIMENT

The proposed algorithm IPO_S_R aims at the issues of 2-
dimensional expansion and tries to improve them. Now, we
make IPOs algorithm as contrast and do some experiment.
Here, a system contains n parameters and each parameter range
for d is under test.

Firstly, we will compare the number if expansion. The
times of Recover() function called will determine the efficiency
of the algorithm.

Data in TABLE I and TABLE II show that our approach
performance is better than IPOs. From that, it might be found
that the modified algorithm can eliminate call times of
Recover() function because it will assign x value in final not in
every vertical e pansion. n addition, this result doesn’t import
subsystem result.

556

System

Specification

Parameter
Test

Environment

Format Parameter

Test Case Generator

IPO_S_G Main

Loop

Comparator

Interaction

with

Subsystem

Recover

Format Test Case Set

SubSystem

Case Set

Coverage

Check

Figure 4. Test Case Generator

TABLE I. Comparative Recover times for 4n System

n 5 10 0 30 40 50 60

 POs 60 30 600 1057 1510 1931 344

 PO_ _R 58 08 541 950 13 1 170 0 1

TABLE II. Comparative Recover times for n3 System

n 4 5 6 7 8

 POs 16 33 55 71 99

 PO_ _R 16 5 46 64 88

Secondly, we will see the advantages of the global
subsystem. When the result imported, we make 500 times IPOs
experiment and will show the average, minimum and variance
just in TABLE III. With the complexity of the system under
test increased, the randomness of the whole algorithm has
become apparent, making test case generation outcome
unstable. It is not conductive for test case generation. In
addition, it makes generation instability.

TABLE III. Comparative set sizes

 510 1010 1510 010 510

Min 44 178 396 691 1090

μ 47. 188.6 431.5 755. 1168.5

σ 4.67 7.9 175. 675.6 1584.3

Then we consider IPO_S_R algorithm to solve the
problems with the e periment. We’ll take a simple 5

10
 system

as prototype. See Fig. 5 and to compare the performance
between IPOs and IPO_S_R. It take about 30 times experiment
of generating. IPO_S_R can avoid randomness and during
generation it works stable in succeeding performance.

Another system under test is 10
10

 system, we will import
subsystem of IPO 10

5
result in IPO_S_R and record the result

as IPO_S_R_1, and import IPO 10
8

result as IPO_S_R_2. We
do the experiment and result is shown in Fig. 6. Because IPO
10

10
 result is better than IPO_S_R, so if we import that

subsystem of IPO result, the final result will be improved.

From the results it can be found that IPO_S_R algorithm
has the following advantages:

1) High compatible with result of other case generation
algorithm and easy to expand.

2) Eliminate the randomness of 2-dimension expansion
and make uncertainty decrease.

3) With global subsystem results exist, it maintains case
reusability and maintainability better.

Figure 5. IPO_S_R Task Example Result 1

Figure 6. IPO_S_R Example Task Result 2

VI. FUTURE WORK AND CONCLUSION

In this paper, we studied 2-dimensional expansion analysis
in pairwise test case generation. We then propose a strategy to
eliminate randomness and optimize some components. In
addition, we do some experiment to prove our algorithm
feasible and improve some places. As a final remark, work is
undergoing to extend the algorithm to support t-wise testing
and constrains over the inputs. In particular, we are working on
applying the use of global subsystem to some other algorithm
besides 2-dimensional expansion.

REFERENCES

[1] D.L.Parnas, “On the Design and Development of Program Families”
IEEE Trans. Software Eng. Vol.2, No.1, pp.1-9, 1976.

[2] G.J. Myers. The art of Software testing. John Wiley and Sons, 1979.

[3] B.Beizer. Software testing Techniques. Van Nostrand Reinhold, 1990.

[4] Tatsumi,K. “Test-Case-Design upport ystem.” n Proceedings of the
International Conference on Quality Control(ICQC), Tokyo, 1987, pages
615-620, 1987.

[5] Czerwonka J. Pairwise testing in real world: Practical extensions to test
generators. In: Butt D. Gens C.eds. Proc. of the 24th Pacific Northwest
Software Quality Conf. 2006.

[6] Bach, J., and P. hroeder. “Pairwise testing: A Best Practic that sn’t.” n
Proceedings of the 22nd Pacific Northwest Software Quality Conference,
pages 180-196, 2004.

[7] Czerwonka J. Pairwise Testing. 2009. http://www.pairwise.org/

[8] Lei Y, Tai KC. In-Parameter-Order: A test generation strategy for
pairwise testing. In: Tsai J, Keefe T, Stewart D, eds. Proc. Of the IEEE
 nt’l. ymp. On high Assurance ystems Engineering. Los Alamitos:
IEEE Press, 1998. 254-261.

[9] A.Calvaga, and A.Gargantini, “ PO-s: Incremental Generation of
Combinatorial Interaction Test Data Based on Symmetrics of Covering
Arrays,” in Proc. of EEE nt. Conf. on oftware Testing Vertification
and Validation Workshops, Denver, Colorado, USA, 2009, pp. 10-18.

[10] D.M.Cohen, S.R.Daral, M.L.Fredman, and G.C.Patton. The AETG
system: An approach to testing based on combinatorial design. IEEE
Transactions On Software Engineering, 23(7):437-444,1997.

40

45

50

55

IPOs

IPO_S_R

160

180

200

220
IPOs

IPO_S_R

IPO_S_R_1

IPO_S_R_2

557

http://www.pairwise.org/

