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Abstract—Acoustic echo cancellation (AEC) algorithms are 
widely used in communication devices. One of the main design 
problems is double-talk issue. The recursive prediction error 
(RPE) algorithm based on autoregressive (AR) model has been 
proven to be more attractive to traditional approaches. However, 
it adapts too fast in double-talk which may cause the algorithm to 
diverge. A variable step size (VSS) approach is developed to 
tackle the problem. On the assumption that prediction error is 
more than 10 times smaller than microphone signal when the 
adaptive filter has converged, the step size is adjusted adaptively 
according to the energies of near-end, far-end and prediction 
error signals. The experimental results show that our algorithm, 
compared with original RPE algorithm, the performance in 
double-talk is improved more than 8 dB while no any 
performance losses in single-talk and echo path change cases.  
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I.  INTRODUCTION 

The acoustic echo is caused by feedback of the far-end 
voice through the near-end loudspeaker-microphone path, i.e. 
room impulse response (RIR). The communication quality is 
interfered by acoustic echo seriously. Acoustic echo 
cancelation (AEC) is one of the best solutions for this problem. 
Thus, AEC is an essential part in modern multimedia 
communication systems. To cancel acoustic echo in mobile 
communication, Terminal Coupling Loss weighted (TCLw) 
must reach 46 dB at least during single-talk and 26 dB at least 
during double-talk. AEC is based on adaptive filter techniques. 
An FIR filter is commonly used to estimate the RIR. The filter 
output, which estimates the acoustic echo, is subtracted from 
the near-end's microphone signal to cancel the echo. Ideal AEC 
should have fast convergence and tracking abilities on 
condition that misalignment is low. These two features are both 
dependent on the adaptive algorithms. The existing adaptive 
algorithms can get satisfactory results during single-talk but not 
the case in double-talk. Due to the interference of near-end 
voice, the adaptive algorithms will diverge and deviate from 

the actual RIR during double-talk. According to the statistical 
data, double-talk happens at a time about 20\%. So, AEC's 
performance during double-talk is very important. Common 
solution is to introduce a double-talk detector (DTD). When 
double-talk is declared by the DTD, the adaptive filter update 
will be stopped. The disadvantage of this solution is that the 
adaptive filter may have diverged before double-talk is checked. 
To solve this problem, a variety of VSS adaptive algorithms 
have been proposed. The principle of these algorithms is to 
adjust the adaptive filter update step according to 
characteristics of near-end and far-end voice so that the update 
step is large in single-talk and small in double-talk. Paleologu 
proposed the VSS affine projection algorithm (APA) and VSS 
normalized least mean squares algorithm (NLMS)[1,2]. However, 
the performance of these approaches will be affected during 
single-talk and echo path change. The results of our 
preliminary study [3] show that the adaptive algorithm based on 
recursive prediction error which proposed by Toon [4] 

outperforms the literature [1, 2] and other adaptive step size 
control algorithms [5-7]. Its idea is to model near-end voice by 
adaptive autoregressive model so as to accelerate the 
convergence rate. The advantage of this approach is the 
convergence rate will be improved by AR model. But the filter 
may diverge in double-talk due to fast convergence rate. 

To resolve AEC problems in double-talk, a VSS AEC is 
proposed which inspired by Toon's approach [4]. The update 
step is derived taken into account the near-end, far-end and 
prediction error signal statistical properties of energy. 

II. PRINCIPLES OF RPE ALGORITHM FOR AEC 

Assuming L-tap FIR filter  (0), (1), , ( 1)
T

h h h L h  can 

estimate RIR, near-end signal and far-end signal at sample 
index i are represented by x(i) and v(i) respectively. 
Microphone signal at sample index i is y(i). Thus, following 
equations will be got, 

 y Xh v ,                                               (1) 
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where, 

 ( ), ( 1), , ( 1)
T

y i y i y i M   y  ,   (2) 

 ( ), ( 1), , ( 1)
T

v i v i v i M   v  ,    (3) 
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With least squares, RIR h estimation ĥ is defined as follows, 

  1ˆ T T
h X X X y ,                                     (5) 

To minimize estimation error variance, covariance matrix 
of near-end signal is introduced and we have, 

  11 1ˆ T T h X R X X R y ,                        (6) 

Above equation is hard to be directly applied to AEC as 
covariance matrix of near-end signal is unknown. In order to 
solve the above Eq., assume that near-end signal v(i) is 
generated by a M order AR model  (0), (1), , ( 1)

T
a a a M a   

which input is a white noise b(i). 

( ) ( )T d i b i y a ,                                   (7) 

where, 

( ) Td i  x h ,                                                (8) 

 ( ), ( 1), , ( 1)
T

x i x i x i L   x  ,    (9) 

According to the best one-step-ahead predictor [8], estimated 
microphone signal at sample index i can be got from Eq. (7), 

ˆ( ) ( ) T Ty i y i  y a d a ,                     (10) 

where, 

 ( ), ( 1), , ( 1)
T

d i d i d i M   d  ,    (11) 

Eq. (10) tells that estimated microphone signal y(i) is 
dependent on RIR h and AR model coefficients a . Solution 
for h and a will be got by optimal estimation for y(i) as 
follows, 

( ) T Ti  y a d a ,                                      (12) 

According to literature [9], estimation for h and a  should 
be got by minimizing estimation error variance. Further, 
iterative solution is got according to literature [8] as follows, 
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where ( )h iR , ( )a iR represents estimation for the Hessian 

matrix 
 2

2
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2

E i

h
and 

 2

2

( )1

2

E i
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respectively. They 

define the searching direction for fir filter update. ( )h iψ  and 

( )a iψ  is gradient vector of h and a respectively. 2 ( )e i  is 

estimation energy for prediction error signal at sample index i. 

Substitute h in Eq. (8) with ĥ  and substitute a  in Eq. (12) 

with â , ˆ( )i  will be got. Prediction error signal energy, 
gradient vector and Hessian matrix are estimated as follows, 

2 2 2ˆ( ) ( 1) (1 ) ( )e a e ai i i        ,    (15) 

( ) T
h i  ψ x X a ,                                     (16) 

ˆ( )a i  ψ Xh y ,                                      (17) 
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The inverse of Hessian matrix hR and aR have to be 

computed when using Eq. (13) and (14) to estimate h and 
a respectively. The results of our preliminary study [3] show 
that 1-order AR model is superior to high order AR model in 
estimating near-end signal. So 1-order AR model is adopted in 

this paper. Thus, aR becomes a scalar and inverse operation in 

Eq. (14) is just a simple division. To avoid inverse operation in 
Eq. (13), h  is estimated using stochastic gradient method as 
follows,  

2
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e h
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ψ

h h
ψ ψ

,    (20) 

where   is regular factor to prevent dividing by zero. Once 

using Eq. (20) to estimate h , the Hessian matrix hR  and its 

inverse are no more need. 

III. VARIABLE STEP SIZE RPE ALGORITHM 

Using a white noise as excitation to estimate near-end 
signal, the above approach reduces correlation between near-
end signal and far-end signal so as to speed up convergence 
rate. However, too fast convergence rate in double-talk may 
cause the fir filter to diverge. To solve the issue, a VSS 
approach is proposed as showed in the Fig.1. 
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In VSS approach,  in Eq. (20) will be adjusted according 
to communication scenarios, and it is defined as follows, 

2 2
1 1

2

,  ( )> ( ) 

,  
xstep if i i

step otherwise

 



 


,        (21) 

where 2 ( )x i  is far-end signal energy estimation at sample 

index i and 2
1 ( )i is a temporary variable considering 

prediction error and near-end signal, 

2 2 2( )= ( 1)+(1- ) ( )x x x xi i x i    ,                     (22) 
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2 ( )y i  is energy estimation for microphone signal, 

2 2 2( )= ( 1)+(1- ) ( )y y y yi i y i    ,                       (24) 

In the experiments, 1step  and 2step  are set to 1 and 0.01 

respectively which means step size will be reduced by 100 

times during double-talk. In fact, 2step  can be set to any small 

value which will not affect its performance. The step size is 
reduced once 2 2

1( ) ( )x i i  which means double-talk happens. 
2
1 ( )i reflects energy changes of microphone and prediction 

error signals. 1w  and 2w  in Eq. (23) are set to 5 and 50 

respectively in all experiments. The choice of 1w  and 2w  

makes sure that prediction error for microphone signal is 10 

times smaller at least. 2
1 ( )i is scaled up by 5 to improve 

double-talk checking sensitivity. In single-talk and echo path 

change scenarios, 2
1 ( )i will be smaller than far-end signal 

energy 2 ( )x i  and the step size will not be changed which 

preserves the original algorithm's fast tracking abilities. In 

double-talk, 2 ( )y i will raise up and quick adaptation will 

make the filter apart from the true echo path which let 2 ( )e i  

becomes larger and larger. The two will make 2
1 ( )i  becomes 

larger than 2 ( )x i  and the second case in Eq. (21) happens. 

 

Figure 1.  VSS RPE algorithm for AEC 

IV. EXPERIMENTAL RESULTS AND COMPARISON 

Three simulation experiments will be performed. For 
simulation case, the RIR is known, so the performance is 
evaluated in terms of misalignment (in dB). Misalignment 
reflects how the adaptive FIR filter impulse response 
approximates the real echo path. The lower the misalignment is, 
the better the performance of adaptive filter is. The 
misalignment is defined as follows [10],  

2

10 2

ˆ ( )
( ) 10log

i
misalign i

    
  

h h

h
,        (25) 

The order of the AR model is set to 1 and the length of the 
adaptive filter is set to 256 coefficients in all experiments. 

Two measured RIR are plotted in Fig. 2 and Fig. 3 
respectively (the sampling rate is 8 kHz); their entire length has 
256 coefficients.  

 

Figure 2.  Measured RIR 1 

 

Figure 3.  Measured RIR 2 

A. Single-talk scenario 

Convolve far-end signal with RIR showed in Fig. 2 and add 
60 dB gaussian white noise to get microphone's speech signal 
in single-talk. The misalignment curves for our approach and 
Toon's approach are plotted in Fig. 4. It can be noticed that 
there is no any performance loss thanks for the carefully choice 
of step size in Eq. (21).  
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Figure 4.  Misalignments in single-talk 

B. Double-talk scenario 

Add a speech to near-end signal in single-talk case between 
8s and 9s to generate microphone's speech signal in double-talk. 
The misalignment curves are plotted in Fig. 5. It can be noticed 
that compared with Toon's approach, the misalignment of the 
proposed algorithm achieves at least 8 dB improvement thanks 
for the right identification of double-talk. 

 

Figure 5.  Misalignments in double-talk 

C. Echo path change scenario 

Convolve the first half of far-end signal with RIR 1 and the 
last half with RIR 2, then add a 60 dB gaussian white noise to 
generate microphone's speech signal in echo path change. The 
misalignment curves are plotted in Fig. 6. It can be noticed that 
compared with Toon's approach, there is no any performance 
loss which meets our desires. 

V. CONCLUSION 

A variable step size for recursive prediction error algorithm 
in acoustic echo canceller is proposed. The filter update step 
size will be adjusted adaptively according to near-end, far-end 
signal and prediction error energies. Simulation experimental 
results show the performance is improved at least 8 dB in 

double-talk while no performance loss both in single-talk and 
echo path change scenarios. 

 

Figure 6.  Misalignments in echo path change 
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