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Abstract—Metric-space indexing is a general method for 

similarity queries of complex data. The quality of the index tree is 
a critical factor of the query performance. Bulkloading a metric-

space indexing tree can be represented by two recursive steps, 

pivot selection and data partition, while pivot selection dominants 

the quality of the index tree. Two heuristics, based on covariance 

and correlation, for pivot selection are proposed. Empirical 
results show that their performance is superior or comparable to 

existing methods. 

Keywords-similarity query; metric-space indexing; pivot space 

model; pivot selection; 

I.  INTRODUCTION 

With the advent of information age, the exp losive growth of 

data causes the current research emphasis of internet and cloud 
computing has been shifted from computing to mass data 

processing. Indexing technique, which aims to improving 
search speed, is most fundamental and crucial due to search is 

the essential part of mass data processing. Content-based 

similarity search is an important information retrieval type that 
is widely used in databases and data mining applications. 

Accompany with the development of multimedia and 
bioinformatics technologies, complex data types spring up. 

Similarity search has become the primary need of content-
based search in multimedia information systems (MIS), and its 

performance is the key indicator to evaluate the query function 

of MIS [1]. According to statistics, meantime, similarity search 
takes part in 35% of the whole research tasks in bioinformatics 

[2]. Currently, researches and applications of indexing 
technique are main ly focused on content-based similarity 

search methods. 

The traditional way of similarity search is implemented by 

multi-dimensional indexing technique. Its basic idea is to 
extract the feature vectors from data objects and map them into 

a vector space, then use the coordinates to compute their 

Euclidean distances. However, there are two limitations while 
using vector space indexing: 1) Data object must be presented 

as feature vectors. 2) The similarity of each data objects must 
be measured only by Euclidean distance. Today, non-

traditional data types is increasingly complex, more of them 
could not satisfy these two prerequisites. For instance, 

especially biological data, it is hard to consider them as spatial 
points and their similarity cannot be modeled efficiently by the 

Euclidean norm. 

Meanwhile, many specified manage systems have been set 
up or are under construction, such as BLAST and Midomi [3] 

music search. Building independent specified systems which 
cost both money and manpower is not an effective method. As 

a result, a new choice called general purpose search system is 
badly needed. 

Metric-space indexing also known as distance-based 
indexing is a general solution to the problem of searching based 

on similarity of complex data types. Metric-space indexing 

allow users to provide their own distance functions, and only 
distance information is maintained in metric space, therefore, 

same algorithm can be apply to different data types, which 
expands the scope of applications.  

For a long time, the research emphasis of metric-space 
indexing lies in data partition, while the significance of pivot 

selection is not been fully recognized. In recent years, the 

proposal of Pivot space model [4] clarifies the importance of 
pivot selection again. This article aims to explore the problem 

of pivot selection based on Pivot space model, and proposes 
two brand new pivot selection methods  using the properties of 

covariance and correlation in statistics. 

II. METRIC-SPACE INDEXING 

A metric space [5-7] is a pair (S, d), where S  is a  nonempty 

set and d: S S  R  is a real-valued function, called a metric  

on S, with the following properties: 

1) For all x, y   S, d(x, y) >= 0 and d(x, y) = 0 iff x = y.  

(Positivity) 

2) For all x, y  S, d(x, y) = d(y, x).  (Symmetry) 

3) For all x, y, z  S, d(x, y) + d(y, z) >= d(x, z).  (Triangle 
Inequality) 
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Only distance record is stored in general metric space, 

domain-specific and distance function information is 
completely segregated, then index tree could be built using 

Triangle Inequality. Metric -space indexing doesn’t need 
coordinates of data objects; thus, it can solve many problems 

that multi-d imensional methods are not able to handle. The 

most common metric-space indexing methods are as following: 
CRT [8, 9], linear partition family has GHT [10-12], GNAT 

[13], and ball partition family has VPT [10, 14], MVPT [15]. 

The most advantage using metric-space indexing is its high 

general applicability, which means users only need to provide a 
distance function before proceeding similarity search. Like a 

double-edged sword, the advantage of metric-space indexing 
also leads to its disadvantage. Data objects have been 

abstracted to points without coordinates in metric space, so 

mathematical tools could not directly be used because the only 
information availab le is the values of distances. Therefore, a  

connection is needed between metric space and vector space in 
which mathematical tools are maturely used. 

III. PIVOT SPACE MODEL 

Pivot space model maps data objects from metric space into 

vector space where data has coordinates without loss any 
distance information [4]. The existence of coordinates provides 

a platform on which mathematical tools could directly be 
performed. It builds a bridge between metric space and multi-

dimensional mathematical methods. 

A. General Theory and Steps 

Let R
n 

denote a general real coordinate space of dimension 
n. (M, d) is a metric space, d is the distance oracle or distance 

function of M. Database S is the finite subset of M, 

{ | , 1,2, , , 1}i iS x x M i n n     . P is the set of pivots , 

{ | 1,2, , }jP p j k   , P⊆S. Fig. 1 shows the three steps 

which are needed when encountering a range query. [4] 

Step1. 

1) Map data into R
k
. 

2) Map query object into R
k
. 

3) Determine a region in R
k
 that completely covers the range 

query ball. 

Step2. Exploit multi-dimensional techniques to retrieve all 

the points in the region determined in Step1. The main task in  
this step is data partition, thanks to the result from Step1; many 

multi-dimensional methods can be used, such as k-d tree [16] 
and MVPT [15]. 

Step3. For each points retrieved in Step2, compute its 

distance to the query object to remove false positives. 

These three steps show that in pivot space model, data 

objects are firstly mapped isometrically into complete pivot 
space, and then high-dimensional methods such as dimension 

reduction can be applied on it. After this step, the processed 
data is finally able to be partitioned by many data partition 

methods in low-dimension space in order to find the unfiltered 
query result. In the end, remove false positives and we can get 

the final query result. 

B. Pivot Space 

Mapping data objects into R
k
 by pivot selection also means 

picking specific points in database as pivots, and other points 
can be represented as the distances to these pivots. Pivot space 

, ( )P dF S  is a new metric space
k( , )R L , moreover, each of the 

k coordinate axis is corresponding to one of k the pivots. 

Therefore, every point in the original metric or data space can 
be represented as the distances to all the pivots in a pivot 

space:

        , , 1{ | , , , , , }p p

P d P d kF S x x F x d x p d x p x S     . 

It is necessary to note that the distance in a pivot space is 

measured by L
 rather than 

2L  norm. 

Given a range query R(q, r) in general metric space, it’s 
hard to determine the shape of the image of the query ball in a 

pivot space. Whereas, it can be proved that the image of the 

query ball is completely covered by a hypercube of edge length 
2r in the pivot space using the triangle inequality, as Fig. 2 [4]. 

Complete pivot space refers to a specific p ivot space that all 
points in the data space are selected as pivots. It is a known fact  

that any finite metric space (size n) is isometric to a metric 

space formed by a subset of R
n 

with the L
 distance [4]. As a 

result, if we consider distance only, data have been mapped 

from metric space that has no coordinates to complete pivot 
space which has coordinates. Thus, problems in metric -space 

indexing can be solved in complete pivot space (High-
dimension vector space). It’s also proved that evaluation of 
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Metric space 
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Pivot Space 

Pivot      selection 

Low-dimension 
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Data   partition 

Metric space 

Search result  

Metric space indexing 

Figure 1. Pivot space model indexing process 
Figure 2. The query ball of a range query in a general metric 

space is covered by a square in the pivot space 

673



 

similarity queries in the complete pivot space degrades the 

query performance to linear scan [4]. Therefore, dimension 
reduction or pivot selection is inevitable. 

IV. PIVOT SELECTION 

The quality of index structure is a determinative factor of 

search performance. For a long time, the research emphasis of 
metric-space indexing lies in data partition, while the 

significance of pivot selection is not been completely 
recognized. 

A. Importance of Pivot Selection 

Take Fig. 3 as example, three points A, B, C located on the 

axis. If B in the middle is selected as pivot, then the distances 
to A and C are both 1, and it’s impossible to separate A, C after 

mapped into a pivot space. If we pick A or C as pivot, however, 

all three points are distinguishable in a pivot space. It follows 
that different pivots have a significant effect on query 

performance. 

B. Common Pivot Selection Methods 

The M-tree[8] algorithm randomly selects points as pivots, 
while SA-tree[17] begin with a random picked point and 

selects the centers of neighbouring cells of a Voronoi 
diagram[18] as pivots. 

Yianilos proves that in a unit square in which points are 
uniformly distributed, the best pivots are corners, so he applies 

this method in his VPT [19]. In addition, MVPT selects 

multiple corners as pivots, and the algorithm it uses is called 
Farthest-first-traversal (FFT) [20]. 

FFT is a k-center clustering algorithm often used to choose 
pivot. FFT minimize the maximum cluster diameter and it’s 

proved that the result is at most twice the optimal result. It’s a 
very fast algorithm to find corner points, the algorithm s hows 

as Fig. 4. 

The first cluster center is randomly picked. Each time 
selecting the next cluster center, find points that have min imum 

distance to selected points  (pivots) first as the lower limit of 
distance, and then choose the point which has the maximum 

lower limit as pivot. 

In pivot space model, the popular dimension reduction 

method PCA [21, 22] is applied for pivot selection. It selects 
the existing coordinate with the min imum angle with the new 

dimensions created by PCA as pivots. Experimental results 

demonstrate PCA is one of the best pivot selection methods at 
present [4]. 

V. PIVOT SELECTION METHODS BASED ON COVARIANCE 

AND CORRELATION 

Pivot space model shows that performing search in 

complete pivot space is equivalent to a linear scan, so selecting 
pivots, for example dimension reduction is inevitable. Pivot 

space is presented as a distance matrix, so we consider rows as 
points and column as dimension. 

A. Pivot Selection Method Based on Covariance 

In statistics covariance is a measure of how much two 

random variables change together. Assume X, Y are two  
random variables, the covariance between X and Y 

is    ,cov X Y E X Y    ,    ,E X E Y   . If the 

variables show similar variation trend, the covariance is 

positive. Let { | 1,2, , , 1}iS x i n n    be a set of all points in 

a complete pivot space, { | 1,2, , }jP p j k   is the set of 

pivots, P⊆S. According to the properties of covariance we can 

give the pivot selection method, as shown in Fig. 5. 

Step1. Select the row with maximum covariance as the first 
pivot. Large covariance indicates a high data fluctuation, and 

points are easier to be distinguished from each other. 

Step2. If we still pick pivots the same way when selecting 
the second pivot, it may contain much redundant information 

compared to the first pivot. Take Fig. 3 as example; if A is the 
first pivot and C is the second one, the distances to other points 

are all the same, so picking two points like this is equivalent to 
picking only one point. As a result, when selecting the next  

pivot, for each rest points compute its covariance between 

pivots, and take maximum one as the upper limit of covariance. 

Step3. Select the point with minimum upper limit value of 

covariance as the next pivot. 

The essential methodology of this algorithm is making the 

covariance as the distance oracle through computing the 
covariance matrix of the original distance matrix, then using 

the theory of FFT to select pivots. 

 

To find k cluster centers: 

(1) randomly choose one point  z S as the first center, set D = {z} 

(2) for i = 2 up to k{ 

       z argmax ( ( ( , )))x S min d x D  

       { }D D z  } 

Figure 4. FFT algorithm 

(1) 1 arg ( ( ))pp max variance S  

(2) for each unselected point 
ix  { 

   1 2 1( ) ( , , , , , ( , ))i i i kmaxcov x max cov x p cov x p cov x p  
 

(3)    argmin ( ( ))k x S Pp maxcov x   } 

Figure 5. Pivot selection method based on covariance 

 

B 

2 

A C 

0 1 3 x 

Figure 3. Importance of pivot selection: 1 

dimension data case 
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(1) 
1p argmax (variance(S))p  

(2) for each selected point pj { 

     1( ) ( , , , , )j n jmincor x min abs cor x p abs cor x p 
 

(3) argmax ( ( ))k x S Pp mincor x  } 

Figure 6. Pivot selection method based on correlation  

B. Pivot Selection Method Based on Correlation 

The correlation indicates the strength of a linear 
relationship between two variables  without considering their 

variance.  Though correlation has some connection with 
covariance, in this article we propose a new and different 

algorithm for correlat ion. Assume X, Y are two random 
variables, the correlation between X and Y 

is X,Y ( , ) / ( )X YCov X Y   . Let { | 1,2, , , 1}iS x i n n    be a 

set of all points in a complete p ivot space, 

{ | 1,2, , }jP p j k   is the set of pivots, P⊆S. According to 

the properties of correlation we can give the other pivot 
selection method, shown as in Fig. 6. 

Step1. Select the row with maximum covariance as the first 
pivot. Same reason to the covariance method. 

Step2. When picking the next pivot, for each pivot find 
points have minimum correlation (absolute value) with them. 

Small absolute value of correlation indicates two points are 
highly distinguishable, so it’s helpful to optimize index tree. 

Step3. Select the point with maximum correlation value 

among the points gathered from Step2 as the next pivot. In 
order to preventing a situation that x, y are p ivots, z has small 

correlation with x while has large correlation with y, we use a 
heuristic method that select row with highest correlation value 

to avoid it. 

VI. EMPIRICAL RESULTS 

A. Test Suit 

The empirical study involves in MoBIoS test suit [23], 
shown as Table I. 

Table I. Test suit  data set  

Data type Size Distance oracle dimension 

vector(uniform) 100k 
2L  8 

DNA 100k Hamming distance 9-18 

Protein 100k 
Weighted edit  

distance 
6-18 

image 100k L-norms 66 

The MoBIoS test suit consists of four data type and the size 

of databases are all 100,000. Two types of biological data are 
considered. (1) The amino-acid sequence fragments of the 

yeast proteome with weighted-edit distance based on the metric 
PAM substitution matrix, mPAM [24]. (2) The DNA sequence 

fragments of the Arabidopsis genomes with Hamming distance. 

Two types of vector data are considered. (1) Uniform vector 

of 8 dimensions with 2L  distance. (2) The image dataset 
contains 10221 images. Each image is represented as three 
feature vectors which stand for color, structure and texture. The 

length of each vector is 15, 3 and 48. For feature vectors of 

texture and structure, the distance functions are both 2L  norm, 

while color vector use 1L  norm. The final distance is a linear 
combination of the distances of each feature vector, and also 

has the metric properties. 

MVPT is the index data structure we used in this article, 

and the partition algorithm is clustering partition [25]. The 
number of pivots is two, fan-out is three and the maximum 

number of data points in each index leaf node is 100. 

Since distance evaluation in a metric space is usually costly, 
we use the average number of distance calculations  to evaluate 

the performance. For each test 5000 range queries are picked 
sequentially from the beginning of the dataset files. The radii of 

range queries are chosen so that approximately 0.01% of the 
databases are returned as query results. 

FFT is an easy, fast and generally used pivot selection 

method, and PCA is one of the best pivot selection methods 
known as so far. Thus, these methods and our two new 

methods are compared.  

B. Experimental Result 

As shown in Table II and Fig.7, in bio logical data type, our 
two new algorithms perform better than PCA and much better 

than FFT. In vector data type, the result of two new algorithm 
is very close to PCA method, and they are both better than FFT. 

Comparing out two new pivot selection algorithms, method 
based on correlation is better than the other one based on 

covariance in every data type. 

Thus, we can draw the conclusion that in DNA and protein 

data types two new methods are both better than other methods 

and the correlation method is the best among all. Additionally, 
in vector and image data types, two new methods especially  

correlation method is close to PCA method and better than FFT 
method. 
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VII. CONCLUSION 

Pivot selection is the crucial factor that affects the 

performance of metric-space indexing. Under pivot space 
model, we propose two new pivot selection algorisms based on 

covariance and correlation. Empirical results shows that these 
two methods are both better than FFT, and is superior or 

comparable to the PCA method. The shortage of these 
algorithms is they take more t ime to bulkload an index tree. To  

this problem, we plan to use FFT to choose some candidates 

than perform out algorithm to a smaller matrix. 

PCA method and our new methods only consider the 

relevancy of data objects, while ignoring the transforming 
magnitude of data. The basic idea of p ivot selection is mapping 

points from high-dimension complete pivot space to low-

dimension pivot space. After the mapping, the L


 distance of 
data points decreased, which means information is lost. Thus, 

the target function of pivot selection is aim to minimize the loss 

of distance. This article attempts to selection pivot using 
covariance and correlation and get a good performance, future 

work will base on it. 

Pivot space model makes it possible to apply mathematical 

tools to solve metric-space indexing problem. Current methods 
are all base on linear dimension reduction which only considers 

the linear correlation of data. Using non-linear methods is our 

next emphasis in future work. 
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