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Abstract. The stress intensity factors (SIFs) for a infinite volume were corrected by two 
dimensionless quantities YI and YII which were obtained by employing the Boundary Collocation 
Method (BCM). The expression of the elastic-plastic boundary of a mixed crack for a cracked 
specimen was formulated based on the Mises yield criterion. Finally, the shape and scale of the plastic 
zone for tensile-shear cracks and compressive-shear cracks were analyzed and some meaningful 
conclusions were obtained. The results show that: the shape of a cracked specimen has an significant 
effect on the plastic zone; the scale of the plastic zone is much smaller than its real scale under the 
assumption of infinity volume; the orientation angle of a crack affects both the shape and scale of the 
crack tip plastic zone significantly under tension; the friction between the crack surfaces can reduce 
the scope of the crack tip plastic zone effectively under compression. 

Introduction 
Currently, more and more underground engineering projects have been implemented. The 

investigation on the failure mechanism of deep rock masses has become a hot issue. Under high 
temperature and pressure condition, the plastic deformation around a crack tip is significant, and this 
plastic deformation determines crack initiation, propagation and instability [1]. Thus, it is necessary 
to study the characteristics of the plastic zone under small scale yield condition. Dugdale [2] proposed 
a D-M model to calculate the size of plastic zone. Jendoubi [3](1991) and Ranganathan [4] (1994) 
suggested that the shape and size of the plastic zone can be determined by Mises yield criterion. 
Zhao[5] proposed the effective stress expression and obtained the initial elastic-plastic boundary 
function around a crack tip. Li [6] introduced the first and second estimations of plastic zone scale in 
detail. However, the rock specimen used in experimental study was finite, and it is unreasonable to 
analyze and evaluate the shape and scale of the plastic zone according to the fracture theory based on 
the assumption of an infinite volume.  

Elastic-plastic boundary function 
As is well known, for plain stress and plain strain problems, the stresses can be expressed as 
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where ν is the Poisson’s ratio. By employing the well-known Mises yield function, the elastic-plastic 
boundary function can be obtained as 

)2()8/(1 2
2212

2
11 IIIIII KbKKbKbCr ++⋅= π .                                                                                                 (2) 

where C was obtained by yield stress σYS which determined through a directional tensile test, 
b11=ξ(1+cosθ)+sin2θ，b12= sin2θ-ξsinθ，b22=1+ξ(1-cosθ)+3cos2θ，ξ=2(1-2ν*)2/3, and ν*= 0 for 
plane stress problems, ν*= ν  for plane strain problems. 

For a finite scale specimen, Eq.2 can be expressed as 

)2()8/(1 2
2212

2
11 IIIIII KcKKcKcCr ++⋅= π .                                                                                                (3) 

where c11=YI
2 b11, c12= YIYII b12, c22= YI

2 b22, YI and YII are dimensionless stress intensity factors. 
Under compression, the crack is a mode II crack. The effective shear stress along the crack is 

NSe σστ f−= .                                                                                                                                  (4) 

where βσβσσ 2
3

2
1S sincos +=  is the shear stress component along the crack and ( ) ββσσσ cossin 31N −=  

is the normal stress component, σ1 is the axial compression load,  σ3 is the confining pressure,   a is the 
half-length of the crack,  β is the angle of the crack and the axis of σ3, and f is the friction coefficient. 
If the condition f < tanβ is satisfied, then the elastic-plastic boundary function of finite size specimen 
under pressure load can be taken as 

22
II

2 ]cos3)cos1(1[)8/(1 IIKYCr θθξπ +−+⋅= .                                                                                      (5) 

Solution of the dimensionless stress intensity factors 
Boundary collocation method (BCM)  has been widely used in fracture mechanics [7-8]. For linear 

fracture mechanics problems, the stresses are related to these functions by following relations [9]. 
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The stress boundary conditions of the crack surfaces can be transformed to a Hilbert problem [8], 
therefore, Φ(z) and Ω(z) can be calculated by the following expressions 
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where M is the number of summation terms, Ak and Bk  are complex constants. From Eqs.9 and 10, 
)(zϕ , )(zω , )(' zϕ  and )(' zω  can be expressed as  
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Inserting Eqs.13, 14 and 15 into Eq.8, the resultant force boundary condition can be written as 
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The crack tip stress intensity factors are 
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and the dimensionless stress intensity factors are 
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In order to obtain the coefficients Ek and Fk, a certain number of points along the specimen 
boundary were used [7-8]. By employing Eq.16, the coefficients can be computed. 

Shape of the plastic zone in a specimen 
For the uniaxial tension/compression problems, the elastic-plastic dimensionless boundary 

function can be written as 

( ) )sincossin2cos(cos)/()8/3(// 2
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where σ1 is uniaxial tensile/compression load, σy is the yield strength. According to Eq.3 the modified 
expression of the elastic-plastic boundary function is 
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The elastic-plastic boundary function under compression is given by 

( ) ])coscos(sin[cos)/()8/3(// 22
22
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In the following analysis, the Poison’s ratio ν is set to 0.25, the width of the specimen is 2W , and 
the length ratio, a/W, is arranging in 0.1 and 0.35. For the uniaxial tension problems, β varies from 0°  
to 66° . For the uniaxial compression problems, β is 45° and f = {0, 0.25, 0.5 and 0.75}. Rx and Ry is 
the parallel and perpendicular components of the plastic zone boundary respectively.  

For uniaxial tension problems, the results, as shown in Fig.1, indicate that the shape and the scale 
of the plastic zone around the crack tip calculated by using Eq.19 and 20 are almost the same where 
ratio = 0.1. However, the scale calculated by using Eq.20 is much larger than the scale obtained 
according to Eq.19 where ratio = 0.35. From Fig.1, it can be seen that the orientation angle of the 
crack affects both the shape and the scale of the plastic zone significantly, and the scale of the plastic 
zone decreases with the orientation angle. 
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(a) β =0°                                (b) β=34°                            (c) β=45°                               (d) β=66° 

         Fig.1 Plastic zone for crack angle is 0°, 34°, 45°, 66° respectively. 
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The results, calculated by applying Eq.19 and Eq.21, are shown in Fig.2. It can be seen that the 
result calculated by using Eq.19 is close to the result calculated by using Eq.21 where the length of the 
crack is much smaller than that of the specimen, and the plastic zone scale calculated by employing 
Eq.21 is much larger than the scale calculated by Eq.19 where the ratio is 0.35. It also can be seen that 
the shape of the crack tip plastic zone doesn’t change although different friction coefficients were 
used. However, the scale decreases with the friction coefficients.  
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(a) f =0                                (b) f =0.25                            (c) f =0.5                               (d) f =0.75 

         Fig.2 Plastic zone for friction coefficient is 0, 0.25, 0.5, 0.75 respectively. 

Summary 
In this paper, the analytic expression of the elastic-plastic boundary around a crack tip was derived 

by employing BCM and Mises yield criterion, and the shape and scale of the plastic zone under 
tensile/compressive loading conditions are analyzed respectively. Based on the above analysis, the 
following conclusions can be obtained: 

1) The size of a specimen has a significant effect on both shape and scope of the plastic zone.  
2) Under tension, the crack angle affects the crack tip plastic zone significantly. 
3) Under compression, the shapes of the crack tip plastic zone with different friction coefficients 

are the same, and the friction can reduce the plastic deformation effectively.  
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