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Abstract

We prove that, for the irreducible complex crystallographic Coxeter group W, the
following conditions are equivalent:

a) W is generated by reflections;

b) the analytic variety X /W is isomorphic to a weighted projective space.

The result is of interest, for example, in application to topological conformal field
theory. We also discuss the status of the above statement for other types of complex
crystallographic group W and certain generalizations of the statement.

It is impossible to read this paper without first reading our paper [5] which contains all
the notations and the data on affine root systems and complex crystallographic Coxeter
groups. All the data needed on the modular functions theory is collected in §4.

Introduction

Let X be a connected complex variety, W C AutX a discrete group of transformations of
X. An element w € W is called a refiection if the set X" of its fixed points is nonempty
and codimcX™ = 1. In many cases it turns out that if W is generated by reflections, then
the quotient space X/W has a simple structure.

Examples. 1) Let X = C' and let W be a finite group of linear transformations of X.
Then the classical Chevalley’s invariant theorem states that the following conditions a) —
c) are equivalent:

a) W is generated by reflections;

b) X/W =l

c) the algebra of W-invariant polynomials on X is isomorphic to the polynomial algebra
in [ indeterminates.

2) If X is the upper half-plane and X /W is a compact, then W is generated by reflections
if and only if X/W = PL.
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In this paper we will discuss the following situation: X = V is an [-dimensional affine
complex space, W a discrete group of affine transformations of V' containing a lattice of
rank 2/ of translations; such a group W will be called a complex crystallographic group.
Let us formulate an analogue of Chevalley’s theorem for complex crystallographic groups.

0.1. The weighted projective space

The weighted projective space P(no, ...,n;) with exponents (weights) ng, ...,n; € N is the
quotient space of C*1\ {0} modulo the C*-action determined by the formula

(20, z1) = (™20, t™ 21, ..., t" z), for any t € C* and (z,...,z) € C*1\ {0}.

In particular, P(1,...,1) coincides with the projective space P'.
The main goal of this paper is to discuss the status of the following general statement.

Statement. For any irreducible complex crystallographic group W, the following condi-
tions are equivalent:

a) W is generated by reflections;

b) The quotient analytic variety X/W is isomorphic to a weighted projective space.

This is an analogue of the Chevalley theorem. We will show that the “difficult” part
of Chevalley’s theorem, i.e., the implication a) = b), holds for a special kind of groups
W, called complex crystallographic Coxeter groups. In fact, we will see that in this case
a slightly stronger statement is true: the algebra of #-functions associ-
ated to this situation is a polynomial algebra.

A weighted projective space can be a singular variety. An explanation of this fact in
terms of complex crystallographic groups is due to the fact that even if W itself is generated
by reflections, the stabilizers of some points might be not generated by reflections, and
therefore the images of these points are singular points of the corresponding quotient space
(cf. [10]).

We believe that the statement is true always but the case of Shephard-Todd type groups
W requires additional investigation (and still is an open problem)

Note that the “easy” part of the Chevalley theorem, namely the implication b) = a),
is proven in [27] in complete generality. Actually, the proof in [27] uses only topological
arguments and it proves the following more general result.

Proposition. Let X be a connected and simply-connected complex analytic manifold, W a
discrete group of complex automorphisms of X and let Z = X/W be the quotient analytic
space.

Then the following conditions are equivalent

a) The group W is generated by reflections.
b) There exists a closed analytic subset F' C Z of codimension > 1 such that the
complementary open subset Zo = Z \ F is a nonsingular simply connected analytic variety.

0.2. The condition b) of Statement 0.1 in algebraic terms

The geometric condition b) of Statement 0.1 can be formulated in an algebraic language.
For this, we use f-functions. Let a be a 1-cocycle on W with values in the group O*(V)
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of invertible holomorphic functions on V. A holomorphic function f on V such that
wf = ayf forall we W

is called a 6-function corresponding to the cocycle a.
Consider now the graded algebra of #-functions A = % A, where A,, is the space of 6-
=0

functions corresponding to the cocycle a™. The cocyclez is called ample if A has “plenty”
elements (more exactly, if dim A,, > c¢-n' for sufficiently large n and some constant c). In
this case, V/W ~ Proj A, see [2].

Here is a more geometric realization of f-functions. Consider the trivial bundle © =
V x C* over V with the fiber C*. With the help of the cocycle a we lift the W-action to
this bundle:

pu(z,u) = (wz, ay(wz)u) for any w e W, u e C*, z € V.

Then the algebra A of 6-functions is naturally realized as the algebra of W-invariant
functions holomorphic on © and polynomial in u € C*.

It is easy to verify that the quotient space ©/W is isomorphic to (SpecmA) \ {0},
where SpecmA is the spectrum of maximal ideals of A, and 0 is the point of SpecmA

corresponding to the ideal AL = > A,,.
n>0

Together with O, consider also its universal covering ©. For each element w € W, the
transformation p¢ of © can be lifted in an infinite number of ways to a transformation of o.
These coverings differ by elements of the monodromy group of O over ©; this monodromy
group is isomorphic to Z. We denote by W the group generated by all these liftings for
all w e W.

Clearly, © / W~e /W, the projection 7: W — W is an epimorphism and Kerr = Z is
the central subgroup of w.

Statement. Let W be a complex crystallographic group acting on the space V and let a
be an ample 1-cocycle on W. Then the following conditions are equivalent:

a) W is generated by reflections;

b) The space ©/W = O /W is isomorphic to CH1\ {0};

c) The algebra A of -functions is a polynomial algebra in fo,..., fi, where f; € Ay,
and n; > 0.

0.3. Discussion

We cannot prove Statements 0.1 and 0.2 in full generality though we are quite sure that
they are true. The most difficult part of Chevalley’s Theorem is the “direct” one, i.e.,
implications

0.1a) = 0.1b) and 0.2 a)== 0.2b) and 0.2c).

We only proved them for one class of complex crystallographic groups, namely the Coxeter
type groups. For the proof of the “easy” part of Chevalley’s Theorem, see, for example,
[27].
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If W is a complex crystallographic group, then the group of its linear parts, dW, is a
finite linear group and if W is generated by reflections, then so is dW (for details, see [5],
sec. 1.1, 1.2). Therefore the following two cases are possible:

1) dW is generated by real reflections, i.e., dWW is a finite Coxeter group and then we
say that W is a Coxeter-type group;

2) dW is not real (there is no basis in which it can be expressed by real matrices) and
then W is called a Shephard-Todd-type group.

In this paper, the direct Chevalley’s theorem is proved for all irreducible complex
crystallographic Coxeter groups except (due to the method’s shortcomings) for the series
W (D, ) connected with the affine root system D;.

On the other hand, Kac and Peterson ([12]) proved Chevalley’s theorem for all irre-
ducible crystallographic Coxeter groups connected with classical affine root systems (see
Remark 2.2 below).

Therefore, at present, Chevalley’s theorem is proved for all irre-
ducible complex crystallographic groups of Coxeter type.

Remarks. We have introduced complex crystallographic Coxeter groups [3] in connec-
tion with Macdonald’s identities and related problems. The main results are published in
[4], [3] and the detailed exposition is preprinted in [16], 2/1986-22, 1-66 (delivered at the
Seminar in 1976). New interest in complex crystallographic Coxeter groups arose thanks
to their applications: Dubrovin introduced Frobenius manifolds and applied complex crys-
tallographic Coxeter groups in topological conformal field theory [B. Dubrovin, Preprint
No. 89/94/FM, Internat. School Adv. Stud. (SISSA), Trieste; per bibl], cf. [8], [9],
[20]; for the elliptic case, Sheinman established that there is a one-to-one correspondence
between the complex crystallographic Coxeter groups and Krichever-Novikov algebras of
affine type [14], see [23] and [22].

Other related results: most close is that of Wirthmiiller [29]. Looijenga [17], R. Fried-
man, J. Morgan, E. Witten [9], and K. Saito [19] introduced the concept of an extended
affine root system and classified all elliptic root systems (2-extended affine root systems).
Later I. Satake [20] defined the theta function associated to the elliptic root system of
type Dfll’l). The theta functions constructed in this paper are similar to those defined by
T. Takebayashi [28]. For a review of related results, see also [24]-[27].

1 Cocycles on complex crystallographic Coxeter groups

1.1. Some standard facts on cocycles

Let G be a group, M a G-module. Denote by C'(G, M) an Abelian group of 1-cocycles
on G with values in M, i.e., the group of mappings

a:G— M (g~ ag) suchthat ag4, =ag + g1ag,-

To each element m € M, there corresponds a 1-cocycle a™: g — gm — m. Denote the
group of such cocycles by BY(G, M).

The cocycles a and o’ are called homologic to each other if a — a’ € BY(G, M). Set
HY (G, M) =CYG,M)/BYG,M).
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For the proof of the following standard facts on cocycles that we will need, see, e.g.,
Chapter IV in [7].

i) 0 — M — M — M" — 0 is an exact sequence of G-modules, then the
induced sequence

HYG,M") — HYG,M) — HY(G,M")

is exact.
(ii) If G is a finite group and M a uniquely divisible abelian group, then H!(G, M) = 0.
(iii) Let H be a normal subgroup in G. Set M := {m € M | Hm = m}. Then the
naturally defined sequence

0 — cY(G/H,M") — CY(G,M) — CY(H, M)

is exact.
(iv) If H is a normal subgroup in G trivially acting on M and a € C'(G, M), then the
restriction of a onto H is a G-equivariant homomorphism H — M (i.e., ap hy, = an, +an,

and aghg—1 = g(an))-

1.2. Specialization of the standard facts to complex crystallographic
groups. Linear cocycles

Let W be a complex crystallographic group acting on a complex affine space V. Denote
by O(V) the ring of holomorphic functions on V' and define a W-action on it, by setting

(wf)(2) = flw12),
Denote by O* the group of invertible elements of O(V') and set
ct=c*(w,0*), B'=BYW,0%, H'=HYW,0%.
Let
L =exp Aff(V) C O,

where Aff(V) is the space of affine-linear functions on V. The cocycle a € C! is called
linear if a,, € L for any w € W.

Proposition. a) Any cocycle a € C* is homologic to a linear cocycle.

b) If U is a quadratic function on V', the quadratic part of U is dW -invariant and
f =expU C OF, then the cocycle al € C' is linear. Conversely, if f € O* and the cocycle
af is linear, then f is of the above-mentioned form.

Sketch of the proof. a) It suffices to verify that in the exact sequence
H'\(W, £) — H'(W,0) -5 H'(W,0" /)

the map [ is zero.
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Let a € C!, and let ar € CY(T,0O*) be the restriction of a onto the subgroup of
translations 7' C W. As follows from §1 in [18], the cocycle ap is homologic to a linear
one; therefore, replacing a by a homologous cocycle, we may assume that ap is linear.

Therefore $(a)|r = 0. Due to the standard fact (iii) (sec. 1.1) this implies

Bla) € H{(W/T,(O*/L)").

Notice that the map exp: O(V)/Aff(V) — O*/L is an isomorphism, i.e., O*/L is a
uniquely divisible group. Since W/T is finite, the standard fact (ii) (sec. 1.1) implies that
B(a) = 0, as was required.

b) The first part of the statement is obvious. Let now f € O* be such that af is linear
2

and U = log f. Then, clearly, wU — U € Aff(V) for any w € W implying that 3 is

zi&zj
82
invariant with respect to the subgroup of translations T, i.e., 920 are constants since
2i0%j
V/T is compact. Therefore U is a quadratic function. The condition wU — U € Aff(V)
shows that the quadratic part of U is dW-invariant. |

Convention. In what follows we will only consider
a) irreducible complex crystallographic Coxeter groups;
b) linear cocycles.

1.3. Various facts concerning complex crystallographic Coxeter groups

Fix an affine root system S and a number 7 such that Im7 > 0. Consider the group
W =W(S,7) (see [5], 3.1).

Let us describe the construction of W in detail. Let xg be a special point for S, let
Vk C V be the real subspace from which V is recovered, Wy the stabilizer of zg. Denote
by Tk and T, the subgroups in T consisting of translations in the direction Vg and 77 !Vg,
respectively. Fix a base ag,...,q; of S so that «aq,...,q; is a base of the root system
R={ae€S|alxg) =0} Set

hi =hqa, fori=1,...,L

Lemma. a) Tg N T = 0 and Wy is the normalizer of Tr and T.
b) Tr = 7 H(®Zhi), Tr = ®pa,hi, and T =T, & Tr.
c) Wg =Wy Tg so that WsNTy =0 and W = Wg - T

Proof. a) is clear.

b) As is shown in [5] (proof of Theorem 1.3)), T = @®aq, - hi, where a, = poZ + 7 1Z
implying b).

c) Set W' = Wy - Tg. Clearly, W € Wg and W'T, = Wy - Tg - T, = Wy - T = W.
Therefore W’ is the stabilizer of Vg. Hence, Wg C W/, i.e., Wg = W' = W - Tk. [ |

1.4. Normal cocycles

A cocycle a € C! is said to be a normal one, if it is linear and trivial on the subgroup 7.

Lemma. Any linear cocycle a = (ay,) is homologic to a normal cocycle.
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Proof. (i) Let L = L(V') be the linear space of translations. Define a homomorphism

B:L— I B(f)=dinf.
The map d: W — dW C AutL determines a W-action on L* and we see that 3 is a
W-module homomorphism.
Consider the cocycle b = 3(a) € CY(W, L*). Since T, trivially acts on L, it follows
that, due to the standard fact (iv) (sec. 1.1), the function

B(t,z) = bi(z), wheret € T, and z € L

is Z-linear in t, C-linear in z, and Wy-invariant.

Let us extend B to a bilinear form B: L x L — C. This is possible since L = T @, C
by Lemma 1.3. Clearly, B is Wy-invariant.

Since the Wy-action on L is irreducible, ([5], Prop. 1.2.2) all the Wy-invariant bilinear
forms on L are proportional. Since Wy is a Coxeter group, there exists a symmetric
Wy-invariant form. Therefore B is symmetric. Set

f(z) =exp (%B(z, z))

Since B is Wy-invariant, it follows that the cocycle af is linear. Furthermore, it is easy to
verify that the cocycle b = B(af) on T, coincides with b (namely, b{(z) = B(t,z) = b(2)).
Therefore by replacing a by a homologous cocycle a - (af)™!, we may assume that 3(a)
vanishes on the lattice T .

(ii) The condition ((a)|z, = 0 means that a; € C* for any t € Tr. Let ¢1,...,4
be a basis in T, and therefore a basis in L. Determine a function g € L* by setting
g(t;) =logas, and let f =expg. Clearly, f € L. By replacing a by a homologous cocycle
a - (af)™! we may assume that a;, = 1 for i = 1,...,1. But then a|g, = 1, ie., a is a
normal cocycle. |

1.5. Description of the group H! for any complex crystallographic Cox-
eter group W

More exactly, we will distinguish a subgroup H}, C H! of even cohomology classes, and
mainly study this subgroup. For a definition of complex crystallographic Coxeter groups,
see [5].

Let a € C! and r € Ref(W) (see [5], sec. 1.2). Since a, - r(a,) = 1, it follows that the
value of a, on the hyperplane 7(r) is equal to 1; denote this value by sign,.(a).

Therefore we see that from any reflection » € Ref(WW') we have recovered a homomor-
phism sign, : C! — {£1}. It is easy to verify that

a) sign, is constant on homologous cocycles,

b) if reflections r and 7’ are conjugate in W, then sign, = sign,.,.

The cocycle a € C! is called an even one, if sign,.(a) = 1 for all r € Ref(W); the group
of even cocycles will be denoted by CJ,. Note that all cocycles in B! are automatically
even. Set

H},=C.,/B'C H'
In what follows we will see that H}, = Z. The elements of H'/H], are described by the

set {sign, | r € Ref(W)}. It is not difficult to verify that elements of H' realize any set of
signs constant on classes of conjugate elements in Ref(W).
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1.6. Description of the normal even cocycles

Let A be a weight of a affine root system S (see [5], sec. 4.2), U a quadratic function on
VR representing A\. We will consider U as a quadratic function on a complex affine space
V. By definition

roU — U € Za for all o € S.
Set v = 2miT. Consider the function a: W — L (see 1.2) determined by the formula
ay = expv(U —wgl), where w =t - wg for some t € T; and wg € Wg. (1)

Clearly, a,, does not vary if we add a constant to U, therefore a only depends on A and
we will denote it by a*.

Theorem. a) The function a’ is a normal even cocycle for any weight \;

b) The map A — a* determines an isomorphism of the group of weights A with the
group of normal even cocycles.

c) A cocycle X is homologic to 0 if and only if* k(\) =0 (i.e., A\ € Aff(V)/Const).
Corollary. H! =~ 7.

Proof. a) Since Wy is generated by reflections, it follows that for any w € Wy the function
wU — U belongs to the lattice I'(S) C Aff(V') generated by S.

Since dfB(hq) € Z for any «, § € S, we have d(wU — U)(hy) € Z.

Since T, = 7~ Y(®Zh;) (by Lemma 1.3), the value of d(wU —U) at any t € T’ belongs to
27iZ. This means that all the functions a,, are invariant with respect to T5, i.e., a,, € £1".
Clearly, a is a cocycle on W/T, = W (a coincides with af, where f = expvU). Hence, a
is a cocycle on the whole group W due to the standard fact (iii) from sec. 1.1.

Let us prove that a is an even cocycle. Consider the reflection r in the hyperplane

m(a, k) ={x eV |Ta(z) =k}.

Then r =t - ro, where t € T is a translation by a vector 7~ 'kh,. Therefore
ar = expv(U —raU) = expvnga, where n, € Z.

On the hyperplane 7(a, k), the value of a, is equal to
exp(7tvkng) = exp(2mikng) = 1.

b) Let a be an even normal cocycle, a € S, r = r,, and a, = expd, where 6 € Aff(V).
The condition 1 = a,2 = a, - ra, implies that 6 + rd§ € C, i.e., 6 = pa + q, where p,q € C.

Furthermore, a,(my) = 1, so q¢ € 2wiZ, i.e., we may assume that ¢ = 0. Now, consider
the reflection 7’ in the hyperplane 7(«, 1); clearly, ' = t-r,, where t € T is the translation
by the vector 7~ 'h,. Then the value of the function a, = a, on the hyperplane m(a, 1) is
equal to 1 = exp(7~!p) implying p € Zv.

Consider the basis ap, . .., a; of S. We have shown that a,, = exp(p;va;), where p; € Z.
Consider the cocycle a*, A = 3" p;\;, where the ); are the fundamental weights (see [5],

'For the definition of , see [5], sec. 2.5.
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sec. 4.2). Then a), = a,, for w =t € T, and w = r; for i = 0,...,l. Since these elements
generate W, it follows that a = a*.

¢) Let f € O* be a function such that af is a normal cocycle. By Proposition 1.2
f =expU, where U is a quadratic function on V. Since a/|r. = 1, it follows that U is an

affine-linear function and dU (t) € 2miZ for any t € T,. Therefore
dU = vdU’, where dU’(h,) € Z for all a € S,

implying that X is a weight ([5], sec. 2.5, 4.2), k(\) = 0 and af = a.
Conversely, if A is a weight such that x(\) = 0 and U € Aff(V') a function representing
it, then a* = a®P*Y is homologic to zero. |

2 Main theorem and its corollaries

2.1. The algebra of #-functions and the structure of V/W

Let W be a complex crystallographic group, a € C! a cocycle. We denoted by ©(a)
the space of the #-functions corresponding to a and consider the cocycles ap = k - a,
where k = 0,1,... (we express the operation in the group C! additively; in other words,

(ag)w = (aw)F). Set

A= % Ay, where Ap = O(ag).

k=0
The multiplication of #-functions determines a graded C-algebra structure on A.
Up to an isomorphism, the algebra A depends only on the cohomolgy class of a. Indeed,

if a' ~a,ie., a =a+a? where g € O, then the family of isomorphisms

pri Ay — AL, frogtf
gives an isomorphism of graded algebras ¢: A — A/,
Statement. Let a be an ample cocycle. Then the quotient space V/W is isomorphic, as

an analytic space, to Proj(A). The isomorphism is determined by the formula x +— J,,
where J, = {f € A | f(x) =0} is an homogeneous ideal, an element of ProjA.

Proof. Let T C W be the subgroup of translations. If W = T, the statement follows
from the analytic theory of Abelian varieties ([18]).

In the general case, consider the cocycle ar € C1(T, O*) obtained by restriction of a on
T and denote by C' = @), the algebra of §-functions with respect to T and ap. Clearly,
ar is an ample cocycle, hence V/T = ProjC.

Determine the W-action on C} by the formula

w(f) = ay*(wf).

We should only verify the invariance of C} with respect to this action. Indeed, for any
feC;, teT and w € W, we have

ta,"(wf) = (ta,")(twf) = (ta,")(w(w™ " twf)) = (tay,*)(way, 1, f) =
(tay) (way, ) (wf) = (tay,")af,a." (wf) = af (a,* (wf)),

ie,wf € Cy.
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By definition, T" acts trivially, so this action is, actually, a dW = W/T-action and the
space CgW of dW-invariant elements coincides with A;. Moreover, the elements w € dW
are automorphisms of the algebra C, i.e., they determine an automorphism of ProjC' =
V/T. Clearly, this automorphism coincides with the natural W-action on V/T. Therefore
we see that

V/W ~ (V/T)/dW ~ (ProjC)/dW ~ Proj C™W ~ ProjA. ®

2.2. Formulation of the main theorem

Let W be a complex crystallographic Coxeter group. By Corollary 1.6 H}, = Z.

Theorem. (Main theorem). One of the two generators of H], is an ample cohomology
class. The corresponding to this class algebra A of 0-functions is isomorphic to the poly-
nomial algebra C[fo, ..., fi] in the indeterminates f; € A,,, where (no,...,n;) is the set of
exponents of W (see [5], Remark 3.2).

We will prove this theorem in §3.

Remark. For classical root systems, Kac and Peterson ([12]) introduced canonical gen-
erators of A. These generators are functions
OXi+
o, = P22
Op
described in sec. 3.2 below.

Corollary. The analytic space V/W is isomorphic to P(ng,...,n;).

This corollary follows immediately from the Main theorem since Proj(C[fo, ..., fi]) is
the weighted projective space P(ny,...,n;) with exponents ny,...,n;.

Let us sharpen this corollary. On V/W, we determine a series of coherent analytic
sheaves Ay, where k = 0,1,..., by setting

DU, Ap) = {f € O(pr Y (U)) | wf =ak f for any w e W},

where pr: V — V/W is the natural projection, U C V/W an open subset, O(pr—1(U))
the space of holomorphic functions on the open set pr=(U), and a € C*' a cocycle repre-
senting an ample generator H}, .

Further, on P(ny,...,n;), determine a series of coherent sheaves A}, by setting

LU, A) = {f € Opr 1 (U)) | fuu(2)) = t*f(2) for any t € O*},

where pr: C*+1\ {0} — P(ng,...,n;) is the natural projection, U a Zariski open subset
of P(nog,...,n;) (see sec. 0.1).

Theorem 2.2 easily implies that the isomorphism V/W 2 P(ny,...,n;) determines an
isomorphism of sheaves of graded algebras

A=A — A = qA,.
Observe that if A is not generated by .A;, then the sheaves Ay and Aj, are not necessarily
locally free. In terms of the sheaves Ay, this means that there exist w € W and z € V
such that wz = = but a,(z) # 1. In terms of the sheaves A}, this means that there exist

t € C*\ {1} and z € C'*1\ {0} such that u;(z) = z and such ¢ and z exist if not all the
n; are equal to 1.



Chevalley’s theorem 333

2.3. Corollary of the Main theorem in terms of algebraic geometry

Let W = W (S, ), let zp be a special point for S and Wy = W,, its stabilizer. Then
V/W = (V/T)/Wy, and hence

(V/T)/ Wy = P(ng,...,n).

Since both these spaces are projective algebraic varieties, we may consider this isomor-
phism as an isomorphism of algebraic varieties (see [21]). Therefore we may formulate a
corollary of Theorem 2.2 which does not appeal to complex geometry: in terms of algebraic
geometry.

Let R be a finite irreducible reduced root system in the space L, let ) C L be the
lattice generated by h,, where a € R. For an elliptic curve E, denote by Er the abelian
variety Q@ ®z E (this is the group isomorphic to the direct sum of [ = dim L copies of E,
so it is naturally endowed with the structure of an abelian variety).

In @), consider the sublattice Qg generated by the vectors corresponding to the short
roots a. It is easy to verify that [Q : Qs] = p(R) (for the definition of p(R) see [5],
sec. 1.3). Let ¢ be a point of E of order p(R). Denote by Eg . the abelian variety obtained
from Er by factorization modulo the finite subgroup Qs ® €. The Weyl group Wg of R
acts on the lattices @ and Qg, and therefore it acts on the abelian varieties Fr and Eg.

Corollary. Algebraic varieties Er/Wg and Er./Wg are isomorphic to weighted projec-
tive varieties. The exponents (no,...,n;) of these projective varieties correspond to the
affine root system S(R,1) for Er/Wg and to the system S(R,p(R)) (see [5], sec. 2.3) for
Er:/Wg .

(See also [17], where this corollary is formulated for the systems of type S(R,1) but
the proof contains a considerable gap.)

Proof. Let S = S(R,p), where p = 1 or p(R), and let W = W(S,7). Then V/W =
(V/T) /Wy, where Wy = Wg. Lemma 1.3 implies that the abelian variety V/T is of the
following form:

VT = El, where E' = C/(t7'Z ® Z), ifp=1

B Ep v, where B = C/(17'Z @ pZ) and £" is the image of 1 € C, if p = p(R).
Corollary 2.2 implies that (V/T)/Wgr = P(ng,...,n;). Since any elliptic curve E is iso-
morphic to a curve of the form E’ and any pair (F,¢) is isomorphic to a pair (E”,&") for
some 7, it follows that Er/Wg and Egr./Wg are weighted projective spaces. |
2.4. Remark. The main theorem can be molded in the following geometric form. Let a
be a cocycle corresponding to the ample generator of H},. Consider the one-dimensional
trivial bundle Y =V x C — V and determine a W-action on it by the formula

w(z,u) = (W, ay(wz)u).

This action is, clearly, discrete.
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Let f; € A, be f-functions considered in Theorem 2.2. On Y, determine functions g;
by setting

gi(w,u) = filz)u™.
Clearly, the functions g; are W-invariant, i.e., they determine the map g: Y/W — CH1,

This map sends the zero section V/W C Y/W to 0. If we blow down this section into a
point, then the space Y/W obtained is mapped isomorphically onto C!*!.

3 Proof of the Main theorem

3.1. A geometric realization of the algebra of #-functions. 6-forms

Let S = S(R,p) be an affine root system, 7 a complex number such that Im7 > 0 and
W =W(S, 7). Fix a basis ap, ..., of S (see [5], sec. 2.4).

Consider the fundamental weight Ay and denote by Uy the corresponding quadratic
function on V normed by the condition Uy(xg) = 0, i.e.,

Up(x) =|| = — xo H2 for x € Vg,

where || - || is the canonical metric on the space Vg (see [5], sec. 2.5).

Set a = a’ € C! (see sec. 1.6). By definition (1), if w = twg, where t € T, and
wg € Wg, then ag, = expr(wsUy — Up) for v = 2mit. As follows from Theorem 1.6 and
results of [5], sec. 4.2, the cohomology class determined by a is a generator in H.,. We
will show that

a is an ample cocycle and A ~ C[fo, ..., fi], where f; € Ay,.

To prove this, it is convenient to give another geometric realization of A. Consider the
bundle © =V x C* — V over V and determine a W-action on this bundle by setting

w(z,u) = (wz, ay(wz) - u), wherew e W, z €V, u e C*.

In the space O(O) of holomorphic functions on O, consider the subspace Ok(0) con-
sisting of functions of homogeneity degree k with respect to u, i.e., functions of the form
f(2)uF. Tt is easy to verify that the map f — uFf determines an isomorphism of A; with
the space O1,(0)" of W-invariant functions in Ox(©). In what follows we will identify Ay
with O (©)". In other words, we have realized A as the algebra of W-invariant functions
holomorphic on © and polynomial in u.

Now, let ©2(©) be the space of holomorphic forms of the highest degree on © and 4 (©)
the subspace of forms of homogeneity degree k in wu, i.e., the forms of the shape

ukf(z)wo, where wg = da . .. dald—u.
u

Set
¥ = @Y%, where ¥, = (Q(0)W.
Clearly, the space X of #-forms is an A-module.

Remark. If w = u* f(2)wy € Q(0), then w € ¥}, means that wf = detw - a® - f for any
w € W. In other words, the space ¥; determines a geometric realization of the space of
“skew” 6-functions.
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3.2. Bases of the spaces of O-functions and 6-forms

Fix an integer £ > 0 and set Ay, = {A € A | k(\) = k}, see [5], sec. 4.3. Each weight
A € Ay can be expressed in the form A = kXg + 0, where ¢y € Aff(V)/Const ~ L*. The
correspondence

A — Oy
determines the bijection of A, with the lattice
Ar={0€ L*|§(h;) € Z, wherei=1,...,1},
the lattice of weights of a finite root system R (see [5], sec. 2.1).
For each weight A € A, denote by U, the quadratic function on V' corresponding to A
and normed by the condition M,y = 0 (see [5], sec. 4.1). In other words,
Uy=k|z—xy | for z € Vg,
where z) is the center of Uy. Clearly,
Uy — kUy = 0x + Ux(xo) € AfE(V).
For each weight A € Ag, consider the function
fr=uFexp v(Uy — kUy) € Or(0).
Let A € At, ie., A = k;\;, where k; > 0. Determine the functions 6y and 1) € O(O)
by setting
h=> fur, a= D detw- fuy.
weWg weWyg
Further on, set
du

u

o\ = Yrwp, where wy = da ... dag -

(2)

Statement. Series for 0 and V) converge. The functions {0y | A € A;} and the forms
{on| N € Az, A€ p+ AT}, where p= Xo+ -+ + \;, constitute bases in the spaces Ay, and
Y., respectively.

Convention. Hereafter “convergence” means the uniform convergence on compacts.

Corollary. X is a free A-module with generator o,. The functions {J(’:”\ | A e A+}
constitute a basis in A. g
Indeed, the multiplication by o, determines an embedding

Ay — Sy,
where (see [5], sec. 4.1)

g=r(p) =no+--+mn. (3)
Statement 3.2 implies that

dim Ay = #(A]) = dim Sy .

(Since V/W is compact, the case k = 0, where Ay = C, should be considered separately.)
Therefore the multiplication by o, defines an isomorphism of A with 3.
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Proof of Statement 3.2

(i) Denote by O} (©) the subspace of Tr-invariant functions of O(0).
Let us prove that the functions {f\ | A € Ay} constitute a basis of O] (0), i.e., any
f € Of(©) can be uniquely expanded into a converging series ) | c) fy. Since

Uy —kUy =0y +c,

where c is a constant, it follows that fy is proportional to u* exp(vdy), and therefore we
have to verify that the functions {exp(vdy) | A € Ax} constitute a basis of the space of
T,-invariant functions of O(V').

l
Since the functions &, run over the elements of the lattice Ag and T, = 771( @ Zh;)
i=1
(by Lemma 1.3), it follows that

{vox | A e N} =T ={6 € L | §(T;) € 2miZ}.

The theory of Fourier series implies that the functions {expd | § € T} constitute a basis
of the space of T-invariant functions of O(V).
(ii) Let K be any compact in ©. It is easy to verify that

UA(z) =k [ 2x 2| < CO+ [ 2 ),
where (z,u) € K and where C only depends on K and k. Therefore

[fa(z.w)| < Cexp(C || 2y ||) exp(kRe v || 2y |1%).

where C' and C depend on K and k. These inequalities immediately imply that the series
> |fa(z,u)| converges uniformly on K and the series for ©, and v also converge on K.
AEAL

(iii) Clearly, the function 6y and the form o) are T -invariant. Since wfy = f, for
w € Wy, and wwy = det w - wy, it follows that ) and o) are also Wg-invariant. Therefore
0, € A, and o) € Zk

If f € Ay, C Of(0), then having expressed f in the form f =37 .5 Cxfx, we see that
C) only depends on the Wg-orbit of A. Since Wg-orbits in Ay are labelled by elements of
A} (see [5], sec. 4.3), it follows that the functions {f | A € A} constitute a basis of Ay.

We similarly verify that the forms {0y | A € A} generate Xj. However, if the stabilizer
of X\ in the group Wy is nontrivial, then it is generated by reflections (see [6]), so that
oy = 0.

Therefore there remain only the forms o) corresponding to the weights A € AZ with
trivial stabilizer. These weights are exactly of the form A = ) k;A;, where k; > 0, i.e.,
the weights A € p+ A", where p = Ao + -+ + \;. The corresponding forms o) are linearly
independent and constitute a basis of Y. |

3.3. Siegel’s inner product

On the bundle ® — V (see sec. 3.1), introduce an hermitian W-invariant metric. For
this, we consider the projection along 77! Lg:

prr: V. — Ve, preo(z+7 'y) =2z, where z € Vg and y € Lg,
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and determine the real-valued quadratic function on V' by the formula

Q(2) = Uo(pr-2)-

Determine a metric in the fiber C* over z € V' by setting
I [12= [uf exp (—(v + 2)Q(2)) -

It is subject to a direct verification that this metric is W-invariant. Denote by B = B(0)
the fibration of unit balls: B = {(z,u) € © | || u |,< 1}. Clearly, B is W-invariant.
Now, define Siegel’s inner product on 3 by setting

(wi,ws) = /w1w2,

B/W
where wyws is considered as a volume form on ©.

Proposition. Let \, i € p+ At, where p = Mo+ -+ + N. Then (ox,0,) =0 for X # ;1
and

(0 02) = Clr|~*(Im7)"2,
where C' is a constant depending only on S and the number k = k(X).

Proof. In the following calculations C' denotes a constant depending on S and k = k()
but independent of 7. This constant varies from formula to formula.

(i) Let ¢ be a smooth real function with compact support on Vg such that > we = 1.
weWg

We extend this function onto V' by setting ¢(z) = ¢(pr-z). Clearly, if wi,ws € X, then

<W1,WQ> = / pwiwe.
B/T,

The Siegel inner product expressed in the above form can be extended to the space of
Tr-invariant forms of homogeneity degree of k in u.

(ii) Let A, € A, k = k(X) >0, m = k(p) > 0. Let us calculate (fiwo, fuwo)-

In O, introduce coordinates z, 3, u by expressing each point z € V in the form z +7 1y,
where z € Vg, y € Lr, u € C*. In these coordinates, the inner product is expressed by
the integral over

{(z,y,u) | © € V&, y € Lg/To, ul* < exp((v + 2)Uo(x))},
where Ty = 7T, = {®Zh;}. Tt is easy to verify that

du du
wog = C D(T)dxdyzugu,

where dz and dy are volume forms on Vi and Ly respectively, and D(7) = (Im (771))".
Further,

x4+ 77 y) = fa(z) exp(2mida(y)).
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Therefore

(frwo, fuwo), =
CD(r) f o(x) fr() fu(r) exp (2mi(dy — 0u)(y)) - uF1 e dududady,
(,y,u)

where x = k(\), m = k(u). Integrating over u and y we see that the integral vanishes if
either k # m or 6y # 0.

Therefore we consider the case where k£ = m and ) = d,, i.e., A = p. The integral over
y is equal to the volume of Ly /Ty and the integral over u is equal to Cexp k(v + v)Up(x)
(since the integral is taken over the domain |u|? < Cexp(v + 7)Up(z)). Therefore

I o 3= CD() [ ) explo +7) (U ~ KUi) explo + ) (kU)o =

CD(1) [ ¢(z)exp(v + v)Ux(z)dz.
R
(iii) Since (fiwo, fuwo) = 0 for X # p, it follows that (o, 0,) = 0if A # p and
(ox o) = Y (furwo, furwo) = > CD(7) / o(z) exp(v + 7)Uy (wz)dz.

weWg weWg Vi

Let us replace wx by x, interchange the order of summation and integration; we see that

(o, 00) = CD(T) /exp(y + v)Uy(x)dx

Vr
because Y. p(wz) = 1. Since Uy(z) = k || z — z ||?, the integral is equal to C(v 4 )~V/2.
Since v + 7 = —4nlm 7, we have
(ox,03) = C(Im7 Y (Im7) ™2 = C|7| 2 (Im7)~/2. W
3.4. The function Fs(T)
Let us prove now the Main Theorem 2.2. Given a set of functions f = (fo,..., fi), where

fi € Ay, € O(0), set

J(fo,--- i) =dfodfy ... df; € Q(O).

If we prove that J(fo,...,fi) # 0 for some set f, this would mean that the f; are alge-
braically independent, i.e., the homomorphism C[fy,..., fi] — A is an embedding. But
then from the formula for the dimension of Aj (see Statement 3.2 and [5], sec. 4.2, 4.3)
we immediately deduce that this homomorphism is an isomorphism.

It is easy to verify that

J(fo,..., fi) € g, where g =ng+ ...+ ny,
J(fo,---, f1)

Op
W-invariant 1-form on © of homogeneity degree n; in u. Therefore the form J(fo,..., f)

i.e.

€ C. Indeed, J(fo,...,f;) € 2" (O) because each differential df; is a
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is of homogeneity degree g = > n; in u, i.e, J(fo,..., fi) € 4. To each weight u € AT,
we assign a f-function (see Statement 3.2)

Outp
= "E e A,
Cu o, € Au(p)

To each set of weights ft = (po, - - ., i;) such that x(u;) = n;, we assign the number

J G
ou(T) = (C“O’C‘;; Sur).

Clearly, g analytically depends on the parameter 7. Set

Fs(r) = | a(m)I%,
ii

where i runs over the sets of the form i = (uo, ..., ) with p; € Al To prove the Main
Theorem, it suffices to verify the following statement:

Fs(1) #0 for any 7. (4)

3.5. The behavior of Fg(7) under isomorphisms of complex crystallo-
graphic Coxeter groups. The function Gg(7)

First, recall a construction from the linear algebra. Let C1,...,Cg, D be finite dimensional
hermitian vector spaces, J: C; X --- X Cp — D a multilinear map. Then J can be
considered as an element of (C} ® --- ® Ck)* ® D. The hermitian structures on the spaces
C; and D determine an hermitian structure on (C; ® --- ® Cy)* ® D, and hence || J ||? is
defined. To calculate || J ||? explicitly, we choose in each space C; an orthonormal basis
{e} | j € Ji}; then

k
1T 1P= > (e ednef) 1D -
(J1y-2Jk)

Let us apply this construction to the case where D = ¥, (for the definition of g, see
sec. 3.3), the C; are the spaces Ay, Ay, , ..., Ay, respectively, and J(fo,..., f1)) =dfo-...
dfy.

The hermitian structure on ¥, and A are determined by Siegel’s inner product and
the formula || f ||= Lfoo| respectively. Set Gg(7) =| J ||%.

llopll

Proposition. a) Gs(7) = Cs|7|~2(Im 7)/2Fs(r), where Cs is a constant depending only
on S.

b) If ¢: W(S1,71) — W (S2,72) is an isomorphism of split complex crystallographic
Cozxeter groups (see [5], Th. 3.2), then Gg,(11) = Gs,(72).

Proof. a) Proposition 3.2 implies that the functions ”gﬁ constitute an orthonormal basis

in A. We explicitly calculate || J ||? in this basis and use the fact that || ¢, || only depends
on k(p) and || o, ||>= C|7|72(Im 7)"/2; we obtain a).
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b) Let us identify W (S1,71) with W (S2, 72) by means of the isomorphism . Then we
see that the cocycles aj,as € C! are homologic to each other since they are ample and
determine a generator of the group H}, = Z. Therefore a; — az = a9, where g € O*.

By Proposition 1.2 g = exp U, where U is a quadratic function on V with dW-invariant
quadratic part; without loss of generality we may assume that U(zg) = 0. Determine an
isomorphism ¢: ©1 — B4 by the formula (z,u) — (z,exp U(z) - u).

Since as = a4+ a9, this isomorphism is compatible with the W-action on ©; for i = 1, 2.
Let us identify ©; with ©2 via this isomorphism and denote them by ©. On O, there are
two W-invariant metrics: || - ||; and || - ||2 recovered from S; and Sa, respectively.

Each of these metrics is of the form || u ||?= |u|? exp Q;(2), where Q; is a real-valued
quadratic function on V' (see sec. 3.3). This implies that the function Q2(z) — Q1(2) is
W-invariant, and therefore a constant.

Thus, the metrics || - ||; are proportional to each other; since they coincide on the fiber
over xg € V, they coincide everywhere.

The isomorphism ¢: ©1 = ©9 allows us to identify the algebras of #-functions and the
spaces of f-forms recovered from the cocycles a; and as. These identification identify as
well the corresponding multilinear mappings

Jl,JQZAnO ><--~><Anl —>Eg.

Since p(B(©1)) = B(02) because the metrics || - ||; coincide, we see that the formulas
that determine Siegel’s inner product imply that this identification preserves the inner
products.

Since || J || is defined with the help of the inner product, || J; ||=|| J2 ||, i-e., Gs, (71) =
Gs,(12). [ |

3.6. The function Hg(T)

Set pi = pa, (i =1,...,1), i.e., p; is the least positive number such that o; + p; € S (see
[5], sec. 2.3). Set

ns(r) = [ nlwir),

1<i<1

where 7 is Dedekind’s n-function ([15], Ch. XI). The function 7s(7) has the following
properties (see [15]):

a) 1s(7) is a nowhere vanishing on the upper half-plane H holomorphic function in 7;
b) ns(1) ~ ¢"¥)/?* as Im 7 — oo, where ¢ = exp(2mit) and 7(S) = 3. pi ;

1<i<i
c) Set
fs(7) = Ins()*(Tm7)"/2,
Then a straightforward calculation (see [5], sec. 2.3, 2.6) shows that
fs(yr) = fs(r) for any v € T'o(p),

and

fs(pT) = femv(7), where p = p(S5).
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With the help of Th. 3.2 from [5] we can reformulate heading c) as follows:
) If W(S1,71) = W(Sq,72), then fs,(11) = fs,(72).
Set
Hs(r) = Gs(1) - f5'(7).
By Proposition 3.5
Hg (1) = CsFs(r)|r| "> ns ()|
Therefore Hg(7) has the following properties:

A) Hg(1) € A(H), i.e., Hg(7) is the sum of squares of absolute values of holomorphic
functions;
B) Hg(yr) = Hg(7) for v € I'g(p), and Hg(yp7) = Hginv (7).

Property A) follows from the fact that Fs € A(H) and property B) follows from the fact
that Gs(y7) = Gg(7) and Gg(yp7T) = Ggine(7) thanks to Proposition 3.5 and Theorem 3.2
from [5].

In the next subsections we will show that the following asymptotic estimate holds:

Hg(T) :O(]q\”/r”) as Im7 — oo,
where ¢ = exp(2mit), 11 = 3, ro = 4, r3 = 6.

()

Then the results of §4 imply that the function Hg(7) satisfying A), B) and (5) does not
vanish anywhere. This proves the non-vanishing of Fis(7), and therefore the Main theorem
(see sec. 3.4).

3.7. The asymptotic of Hg(T)
To prove estimate (5) above, let us use the formula
Hs(r) = CsFs(r)lns ()| 2|77

By definition, Fs(7) = Y |¢7|*, where the sum runs over all the sets & = (uo, . . ., ) for
i € A Therefore it suffices to verify that

sl = O(I7'lq|"®724=1/7) for any f.

Clearly, if two weights in g coincide, i.e., pu; = pj; for @ # j, then oz = 0.

Therefore it suffices to verify the estimate for the sets g without equal weights. The
estimate of |pz| is a corollary of the following two statements. Let C be the chamber
corresponding to the base ap, ..., of S (see [5], sec. 2.4).

3.7.1. Proposition. If x belongs to the interior of C and
Afi(x) = Y Upprp(x) = (14 2)U, (@),

then
el = O(I7|'[g|*F1)).

For the set ji = (ao, . . ., ), this estimate is exact, i.e., |oz| ~ C|7|'|q|*#@) where C # 0.
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3.7.2. Proposition. There exists © € C such that Ap(x) > % — % for any 1.

Observe that Proposition 3.7.2 implies, in particular, that Fg(7) # 0, i.e., Hg(7) # 0.
3.8. Proof of Proposition 3.7.1
Recall the definition of ¢j;. For each weight A € A with x(\) =k > 0, we set
fa(z) = uF - expr(Ux(z) — kUp(2)).

Further, for A € p+ AT, where p = \g + - - - + )\, we define a 6-function

Ya= ) detw: fux

weWg

For 1 € AT, we define: (, = wuﬂ).

1
Finally, we define a function ¢z on © by setting

Gy dGy 1 du

o , where wy =day ...doy—.
wp wo u

We will consecutively estimate all these functions and their differentials at (z,1) € ©.
To estimate the differentials, introduce a metric in the cotangent bundle over © by
setting || %‘ |=1and || « ||=|| da || for any « € S. Since

Ux(z) — k(AN)Up(2) = dr(2) + ¢,
where §) € L* is a linear function (see sec. 3.2) and ¢ is a constant, it follows that

d
dfy = wy - fn, where wy = vddy + /@(A);u.

Furthermore, |fy| = |¢|°®), where f is evaluated at (z,1) € © and
e(N) = Ux(z) — kUp(x).

Observe that if A € p+ A", where p = X\g + --- + A;, then
e(w) =k | way—x |~k | 2 [*> k| oy -2 | —k || 2 [I°= e()

for any w € Wy such that w # 1 (the inequality is strict since z) € C, see [5], sec. 2.4).
This inequality easily implies that

U = A1 +o(lgl%),  dipa = falwx +ollal?))

for some positive e. Since ¢, = w:z)ip , it follows that

dGu = fl}:p - (wu +o(lgf)-
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Finally, o = ¢1 - @2, where

[p e, g, - Tt olet)

z+2 ’ w0

Since
D elui+p) = (1+2)e(p) = Y Upirolw) = (1+ 2)Uy(w) = Afi(w),

it follows that |p1| = |q|Aﬁ(:v)
On the other hand, clearly, [] % = 7! and C # 0 for fi = (Ao, ..., \))- m
wo

3.9. Proof of Proposition 3.7.2

The estimate of Proposition 3.7.2 is rather rough; and this estimate is inapplicable to
the affine root system D;. For the other root systems, the proof will be carried through
case-by-case checking. For the definition of g, see (3) in sec. 3.2. We use the data on
classical affine root systems accumulated in the Table (at the end of the paper) and in the
following easy to prove general statement:

(i) Let ¢; > 0 and z; € Vg. Then the form Q(z) = Y. ¢; || # — 2 ||? is, actually, of the
shape Q(z) = C ||z — 2 |* +¢, where C =Y ¢;, and z = 5 3" ¢z

Recall that Uy, = n; || © — z; ||?, where z; is a vertex of the chamber C. Set 7 = x,, so
that U,(z) =g ||z — 7 ||%

Then (i) implies that r = > N;T;

, that is r is the center of the simplex C. For any

k
weight A with x(\) = k > 0, we see that xy,, = Mf—kkg?” In particular, if x is of the
g
form ky + g?“’ then
g+k
Unip(®) = (g4 K) | 3= asp [P= (g B) | —— - (g — ) 2=~ |y =y |
Ap =g Mo Il =9 gtk Yy A _g+k Yy A .

(ii) The case of nonclassical root systems S. In this case

~T):ZU1'+P(T)>O

Therefore it suffices to verify that

1 .
r(S) < —. Since 7(S) + r(S™) = (p+ 1)l and for

24 Ty
all nonclassical root systems S™ 2 S, we see that 7(S) = 1(p + 1)L.
1)l 1
Therefore we should verify that (p 1—8 ) < — . Indeed:
Tp
1 l 1 I
If p=1, then [ < 8 implying (p+1) -< —
8 S35
N 1 1
if p=2, then [ = 4 (case S(Fy,2)), so that (p+1) <-<—
48 4= ry



344 J Bernstein and O Schwarzman

i 1 1
48 6

(iii) The case of the classical root systems. In the Table we con81der an [-dimensional
Euclidean space L with an orthonormal basis (e1,...,¢;) and canonically identify L and
L*. Let us deduce several corollaries from the Table.

(a) Set 2} = 1(e1 + - +¢;). Then z; almost always coincides with z/; more exactly,
x; =} forz—O i =1 and any i with n; = 2. Setting y = $(zo + ;) (ie., y = (§,..., 7))
we, clearly, see that | o} —y ||>=| y |* and || z; —y ||*>| v H2 for all i.

(B) It is clear from Table that » = (u1,...,u), where uy,...,u; is an arithmetic pro-
gression, % >up > ug > o>y > 0and ug +up > % This implies that (y,r —y) > 0;

hence || v [2=[ r =y 2+ [ y |I? ie.,

if p=3, then [ = 2 (case S(G2,3)), so that

Ir =y IP<lr 1= lly
(7) Let us prove that || z; — r [|?<|| 7 ||* for any i. This inequality is equivalent to the
fact that (2r — 2y, 2;) > 0. If 2; = , the inequality holds because u; + u; > %

For the cases z; # x}, this inequality easily follows from the Table.
(8) Let us estimate the constant A = > _n; || 2; — r ||%. Thanks to (i) we have

Yonille—ai|P=gle—r|®+A (6)
Substituting = = y into (6) we get (see (53))

A=) nilly—ai > =g lly—rP=>
Yonilly P =gUlr P =yl =9yl =11
(iv) Cases S(A;,1) and S(Cy,1). Here n; =1 so g =1+ 1 and there exists exactly one,

up to a permutation, set g = (Ao, ..., \;).
Moreover, r(S) = [ and

1
=Y Uniy( = g+ 1) | arg, —7 = o Do lwi—r .

We have || z; — 7 ||*=|| r ||* for S(A;, 1) because there is an automorphism of S(4;,1)
sending any point x; into zo = 0. Therefore (see [5], sec.4.4)

I[+1 = gllr? _ 1 h—l—lr(S)_r(S)>r(S) 1
g+1 24 g+1 o0 ~ 24 1)

AJir) =

For S(Cy, 1), we have (see 0)

2 g 2
i 2 -
=5 15 | i —r ||°= s+l g 1( fyll>=r?) >
29 11 @+1) I@Bl+3-20-1) I T(S)>T(S) 1

g+1 16 24 g+1 24(1 4 2) 24 24 24 1y
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(v) Systems S(By,1), S(B;,2), S(C;,2). Let k be the total number of indices ¢ such

that n; = 1. Clearly, g = 20 + 2 — k. Consider the set A = (Ao, ..., \;). Then (see sec. 3.9
(1)

2
~ ~ n;
AMz) = ANr) =D (g+m) [ @y —7 7= el Kkl 1=

_ 2 - = _ 2
QHZMH% r?+ (g—i—l g+2)2|m r %,

where ), is the sum over the ¢ such that n; = 1.
1 2 1
Since - > — and || z; —r ||2<|| 7 ||?, we see that
g+1l g+2 g+2

A > A— 4 2 _(2 2y,
A(96)_g+2 g+2\|7“ ——glly " —Cg+k) %)

1
T g+2
Now, let i = (uo, ..., ;) be an arbitrary set of distinct weights. Rearranging the p;,
if needed, we may assume that p; # A; for ¢ # j. Let I be the set of indices such that
i # Ni. For any ¢ € I we have n; = 2 and p; = A\p + A\, where n, = n, = 1. In particular,
= 3(@p + ).
We will say that the index i is good if |[p — ¢| < 1 and bad otherwise; denote by I, and

Ty,

7

I the sets of good and bad indices of I. Set x _ % I gr If k(p) = 2, then
Unip() = (9 +2) | 2o — z |*= (9 +2) 5 (@ — ) II"= g2 [EFEE
Therefore
Afi(z) ZU,uﬁ-p — Uxtp(z) =
iel
g+22 Fu =y I = lax —y

el
If i € I, then n; = 2; hence, z), = 2} and ||z, — y ||>=]| y ||* (see step (iii)). It is easy to
verify that if i is a good index, then || z,, —y ||*>]| v ||* since all the coordinates of the

vector x,, = (), + z,4) are half-integer. Therefore

Afi(2) = AX@) > —#(h) - — 1y -

Finally, we get

Ai(2) = — 5 (4g = #) 1y [* ~(2g+ ) | [P)

Consider consecutively all the systems (except S(Dy,1)).
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(o) S(By, 1), where | > 8 (the cases | < 8 are considered as in (ii)). Then g = 2] — 1,
k=3, #(I) <2, |y |°= g5, 7(S) = 1;

_ 1 LA+ )@+ D1
A“(x)zmﬂ(4(2l_3)'?>2_ (20— 1)24 )_
(20— 1)(20 — 3) — (41 + 1)(21 + 1))%(4;2_1) >
412 — 301 I 1 79 1
iy LA -
W2t 'Tu 3T m on,

(B) S(B1,2), g =2, k=2, #(L) =1, |y |?= &, rs =20 — 1;

! (20 — 1)(20 + 1)
Afi(r) > 5= (4(251) 5 (W+2) 24 o >
Q-1 .5 20-1 1 s 1
P—da?—4l—-1)> —— - .
TS >S5 "
l
(’7) S(Cl72)7 g = 2l7 k= 25 #(Ib) = O’ || Yy ||2 372 rs = [+ ]-7
_ 1 l (I+1)(20+ 1)1
> - B ——— =
A”(“7)—2l+2(81 5 WDy
1 /P—-1 1 (2+1)%1+1) 1, I+1 1
— > _ — i
+1< 8 3 481 >_48l(2l ) =5 -7
because >L
T

4 Sertain automorphic functions on the upper half-plane

4.1. Upper half-plane

Let H = {7 € C | Im7 > 0} be the upper half-plane. On H, the group G = GL*(2,R),
where the superscript “4” singles out the subgroup of matrices with positive determinant,
acts by the formula

()_a7+b forv= [ b
/YT_CT-Fd T=\e a)-

The group PG = GL™(2,R)/R* effectively acts on H.

4.2. Modular groups I'y(p)
Let p=1, 2 or 3. Set

0 1 a b
Vp—<_p 0) and Fo(p)—{<c d>‘a,b,c,d€Z,c€pZ, ad—bc—l}.
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Clearly, 71 € I'g(1) and ~, normalizes the subgroup I'g(p), and it is also clear that in
PG we have ’yg = 1. Denote by fo(p) the subgroup of PG generated by I'g(p) and ~,. It
is known (see, e.g., [15], Ch. XI) that for p = 1, 2, 3 the group fo(p) is isomorphic to the
triangular Hecke group of signature (0;2,7p,00), where r; = 3, 7y =4, 73 = 6, i.e., f‘o(p)
is a subgroup of index 2 in the group generated by reflections with respect to the sides of
the triangle with angles (7, %, 0) in the sense of Lobachevsky geometry on H. This easily
implies that

a) H/ fo(p) is simply connected and isomorphic to C since the one-point compactifica-

tion H/To(p) is isomorphic to P*(C);
b) The order of the stabilizer I'g(p), of 7 is equal to

2 for the points of fo(p)—orbit of the vertex 7 of the right angle;
rp for the points of the To(p)-orbit of the vertex 75 of the angle 7 /rp;
1 for the other points.

4.3. Modular invariant j,

We will consider functions on H which vary in a certain way with respect to Iy (p) and

be interested in the asymptotics of these functions as Im 7 — oo. The notations f ~ g,

f=o0(g9), and f = O(g) mean, respectively, that g — 1 and 5 — 0 asIm7 — oo, and
lim £ <oo.

Imr—00

Denote by O(H) the space of the holomorphic functions on H. If f € O(H) and 7 € H,
then ord,(f) denotes the order of the zero of f at 7.

Statement. There exists a I'o(p)-invariant function j, € O(H) such that

a) jp takes each value at exactly one Lo(p)-orbit in H and ord.(jp — jp(7)) = To(p)+|
for any T € H;

b) j ~ q~ !, where ¢ = exp(2miT).

Proof. Since H/Ty(p) is simply connected, it easily follows that H/T'o(p) is isomorphic
to C. Let j be a fo(p)—invariant function on H that determines this isomorphism. By
definition j satisfies condition a).

Since T (p) contains the transformation 7 — 7 + 1, it follows that j = 3" ¢;¢’; since

€7
J takes each value at exactly one orbit and is not bounded as Im7 — oo, we see that
¢; =0 for i < —1, and c_1 # 0. The function j, = ;.- satisfies conditions a) and b). W

4.4. Statement. There exists a function n, € O(H) such that
a) np does not vanish on H;

b) [np*Im T is Lo (p)-invariant;
pt+1

c) |npl ~ lal =7
Proof. For the Dedekind n-function, set

(1) = n(7) - n(pT).

Since i does not vanish anywhere, || ~ |¢|'/?* and |n|?(Im T)% is To(1)-invariant (see,
e.g., [15], Ch. XI), it follows that 7, satisfies a)—c). |
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4.5. Main Lemma

Denote by A(H) the set of functions F on H which can be represented in the form
F =3 |fil*, where f; € O(H).

Statement. Given a nonzero I'g(p)-invariant function F' € A(H), suppose that
F-yF = o(lg|=¥m), where ri =3, ry = 4, r3 = 6.
Then F does not vanish anywhere.

Proof. (i) If F = 3" |fi|?, where f; € O(H), we set

ord,(F) = minord,(f;).

F(s)

| E is bounded in a
S—T

that is ord, F is equal to the maximal m for which the function
neighborhood of 7.

Lemma. If G € A(H) is a Do(p)-invariant function satisfying G = o(|q|~2%), where d > 0,
then either G =0 or

ord, (G) g
2 ooy “

for any set of points 11, ..., T, belonging to different orbits of fo(p).

Let us show how (7) implies the Statement. Suppose that F'(7) = 0 for some 7 € H.
Set G = F -v,F. Then G = o(|q|~%/"»).
ord,(G) 2 . . -
——————— > —, then the estimate (7) will lead to a contradiction.
ord(Po(p)r 77 A
If v,(7) € Lo(p)7, then ord;G > 2 and ord(I'o(p))- < rp. Now, let v,(7) & L'o(p)7; in
particular, p > 1. Then the stabilizer of 7 in I'g(p) is contained in T'y(p).

The description of stabilizers given in sec. 4.2 implies that ord(To(p)), = 1 or p yielding

Let us prove that

ord,(G) S 1 > 2 2

ord(L(p)), P Tp

(ii) Let us prove the Lemma by induction on the number k of points. For this we prove
at first that if d = 0 in Lemma, then the function G vanishes identically.

Let us identify H/T'o(p) with C and let G’ be the function on C induced by G. The
function G’ is continuous and G'(z) — 0 as Im z — oo since G’ = o(1). If u is any point
of C over which the covering H — C is not ramified, then, in a neighborhood of u, the
function G’ can be represented in the form G’ = > |fi|?, where the f; are holomorphic
functions. Therefore

ofi*
Z 8262 ’fl,Q Z ‘

where A is the Laplace operator. This easily implies that G’ = 0 (see, e.g., [11]).
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(iii) Now let e = ord, (G) and ITo(p)r,| = 7. The function j, — j,(7%) vanishes only
on the orbit I'(p)(7;) and at the points of this orbit the zeros of this function are of

multiplicity r (see sec. 4.3).
G .
Therefore f = (j, — jp(7))Y/" € O(H). Clearly, G; = TS € A(H) and Gy is I'g(p)-
invariant. We also have ord,,(G;) = ord,(G) for i < k and G7 = o(|q|~2%), where
dy =d— ‘ (since |f| ~ |q|~'/"). If dy <0, then Gy = 0 and G = 0. Otherwise applying
T

(7) to Gy and T4, ...,7T;—1 we obtain (7) for G and (71,..., 7). [
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Table

In line x;, there are ¢-many fractions % in each column.



351

Chevalley’s theorem

14 v € € € o
1 I 1 1 I 1
Q» 1 Jvm c..... 15 . Ig vm Aoglf ;l;vm Ailr:;.I;.Ivm AH|N,...;|N;vm .
1 1—1 /1 €—12 1T—18/1 1 c—1 /1 I I-1 1 /1 I ¢—1c /1
vz vz vz vz vz el 418
+ +12) = - +12) = —12)= +12)1—= +12)1=
(T+D(+12)7 (T-r) 1+ (T - 1)1~ (T+12)17 (T+12)17 — (0)n
T+1 1—12 1 i i ()
1z 1z z— 1% 1z 1z ]
1% 1T - 1T T+1 1—12 b
Amk ;mbmv -1z
1 T 1
¢ ¢ bWF..;W ¢ 3 th .AW ¢ ¢ FWT hm ¢ ¢ FWF. hm ¢ ¢ th. BW 2
(0 o) | (o) ) (o) | (o)) (o) ’
ré é
Coeod 3 [ “‘ [N 3 [ "‘ (3 .6 ¢ H
Ao 0 Q Ao 0 L ? 0 & Ao 0 L (0 0°1) x
ADF.. FOV AOFBOV ADﬁ FOV AD» hOv ADFBOV Obu
1 I 1 1 I Ty
e 4 1 T 4 -y
e 4 e 1 4 “u
1 4 1 T T T
1 I 1 1 I ou
NmN GN 124 1713 GN 12 10
>1>
I+23 — 3 ?im — .GVN T+23 — 3 T+23 — 13 T+23 — 13 ! .s.dv I
mm|am|ﬁ ﬂmN|ﬁ mm|~m|ﬂ HmN|H leamlﬂ 00
(1)s (¢1g)s (1q)s (10)8 (17g)8 s




