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Abstract

We present and study bihamiltonian equations of Euler type which include a n-fields
generalization of the Camassa–Holm equation living on the polynomial generalization
of the Virasoro algebra possessing a wide number of independent central extensions.

1 Introduction

In a recent beautiful paper [6] Khesin and Misio!lek have given a unified description as
bihamiltonian systems of three non linear evolution equations living on the dual of the
Virasoro algebra: the Korteweg–de Vries equation
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u +
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,

the Camassa–Holm equation [2]
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and the Hunter–Saxon equation [4]

∂
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∂x2
= −2
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∂2u

∂x2
− u

∂3u

∂x3
.

The key point in this unified description is that one of the two Poisson structures is the
same for all the three equations and it is provided by the linear canonical Lie–Poisson
bracket. While the other Poisson structure is constant and obtained by “freezing” the
Lie–Poisson structure in a different point for each equation. Moreover all three equations
are Euler equations with respect to three different Hamiltonians.
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The main purpose of this paper is to investigate if the recently appeared in the literature
[10] “coupled” KdV equations living on the dual of polynomial extensions of the Virasoro
Lie algebra:

α∂ul
∂t =

∑l
j=0

(

2αuj
∂ul−j

∂x + α∂uj

∂x ul−j − cj
∂3ul−j

∂x3

)

for l = 0 . . . n − 1,

share the same geometrical properties. More precisely we shall show that these latter equa-
tions have “bihamiltonian companions” which are “coupled” Camassa–Holm and Hunter–
Saxon equations. Moreover it turns out that the more general Euler equation for the
polynomial extensions of the Virasoro Lie algebra mixes up all the three cases. Finally
it has be shown how in this general contest up to some minor technical requirements the
bihamiltonian property of the equations still survives. Nevertheless we should point out
that the interpretation of these coupled equations as geodesics of suitable Riemann metric
is still an open question, being not yet clear if polynomial Virasoro algebras have or not
a corresponding Lie group over them. However since a simliar problem arise when one
consider the complex extension of the Virasoro algebra, it might be possible that such a
Lie groups there exist for the real part of the polynomial Virasoro algebras.

The paper is organized as follows: in the next section we define a class of generalized
Virasoro algebras, the polynomial ones and present their central extensions. The third
section is devoted to compute the canonical Lie–Poisson brackets for these polynomial
Virasoro algebras and the related Euler equations. In the last section we investigate their
bihamiltonian formalism.

2 Polynomial Virasoro algebras

This first section is devoted to present some generalizations of the Virasoro algebras. These
new algebras which we shall call “polynomial Virasoro algebras” to keep the nomenclature
usually used in the literature for similar algebras [7], [1], are here defined as central exten-
sions of tensor products among particular associative rings viewed as abelian Lie algebras
and the Lie algebra vect(S1) of smooth vector fields on the circle. More precisely let us
denote as usual by C[λ] the associative ring of the complex polynomials in a complex
variable λ. Since of course any subspace:

In[λ] = {p(λ) ∈ C[λ]| ∃ q(λ) ∈ C[λ] : p(λ) = λnq(λ)}

is an ideal in the commutative ring C[λ] we can consider the corresponding quotient rings.

Definition 2.1. Let C(n)[λ] be the quotient polynomial ring

C
(n)[λ] = C[λ]/In(λ) (2.1)

where the quotient map Πn can be explicitly written as

Πn : C[λ] −→ C
(n)[λ]

Πn





∞
∑

j=0

pjλ
j



 =
n−1
∑

j=0

pjλ
j . (2.2)
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Now as already outlined above our “polynomial Virasoro algebras” will be defined by

Definition 2.2. Let vect(n)(S1) be the Lie algebra given by the tensor product

vect(n)(S1) = vect(S1) ⊗ C
(n)[λ]. (2.3)

Using the results of [1] and the well known fact that vect(S1) is the Lie algebra of vector
fields u(x)∂x on the circle with Lie bracket (in what follows, to simplify the notations, we
shall use ∂s

x instead of ∂s

∂xs with s ∈ N)

[u(x)∂x, v(x)∂x] = −u(x)∂xv(x) + (∂xu(x))v(x)∂x (2.4)

we may easily prove the following proposition which gives a suitable representation of the
Lie algebra vect(n)(S1).

Proposition 2.3. The Lie algebra vect(n)(S1) of definition 2.3 is equivalent to the Lie
algebra of “matrix” vector fields:

u(n)(x) =



















u0(x)∂x 0 0 . . . 0 0
u1(x)∂x u0(x)∂x 0 . . . 0 0
u2(x)∂x u1(x)∂x u0(x)∂x . . . 0 0

...
...

un−2(x)∂x un−3(x)∂x un−4(x)∂x . . . u0(x)∂x 0
un−1(x)∂x un−2(x)∂x un−1(x)∂x . . . u1(x)∂x u0(x)∂x



















(2.5)

and therefore its Lie bracket are given by

[u(n)(x), v(n)(x)]

=



















w0(x)∂x 0 0 . . . 0 0
w1(x)∂x w0(x)∂x 0 . . . 0 0
w2(x)∂x w1(x)∂x w0(x)∂x . . . 0 0

...
...

wn−2(x)∂x wn−3(x)∂x wn−4(x)∂x . . . w0(x)∂x 0
wn−1(x)∂x wn−2(x)∂x wn−3(x)∂x . . . w1(x)∂x w0(x)∂x



















(2.6)

where wk(x) is

wk(x) =
k

∑

j=0

(−uj(x)∂xvk−j(x) + (∂xuj(x))vk−j(x) k = 0, . . . , n − 1. (2.7)

Proof. In [1] has been proved that the map ρ given by

ρ : C(n)[λ] −→ End(C(n))
ρ(ci ⊗ λi) '→ ciΓi (2.8)

where Γ is the n × n matrix

Γ =
n−1
∑

i=0

ei+1,i (2.9)
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and

(eij)kr =

{

1 if i = k, j = r
0 otherwise

is a ring homomorphism. Therefore representing as usual [6], [8] the Lie algebra vect(S1)
as set of vector fields u(x)∂x with Lie bracket 2.4 one gets immediately that two elements
of vect(n)(S1) of the form uj(x)∂x ⊗ λj and vi(x)∂x ⊗ λi can be respectively represented
in the form Γjuj(x)∂x and Γivi(x)∂x with Lie bracket given by

[

Γju(x)j∂x,Γivi(x)∂x

]

=

{

Γi+j(−uj(x)∂xv(x) + (∂xu(x))v(x)) if i + j ≤ n − 1
0 otherwise.

Thus the statement of the proposition is obtained from these latter two equations by linear
extension. !

We should here remark that also the limit for n goes to infinity of the Lie algebra vect(S1)⊗
C∞[λ] make sense. The resulting algebra, which may be called vect(∞)(S1), is obviously
a subalgebra of loop algebra in vect(S1), i.e. the algebra vect(S1) which depends on one
more parameter. More precisely vect(∞)(S1) will be given by all the polynomial elements
in the parameter λ of the latter loop algebra. The generalization of the results presented
in this paper to this more general setting and in particular the connection between this
Lie algebra and the toroidal Lie algebras [9] are surely worth to be addressed in further
publications. The authors warmly thank the anonymous referee who pointed have pointed
out this aspect of the theory.
For i = 0, . . . , n−1 the Lie algebra vect(n)(S1) admits a 2–cocycle Ci. Indeed computations
similar to those done for the usual Gelfand–Fuchs cocycle [3] show that the maps Ci :
vect(n)(S1) × vect(n)(S1) → R given by the formula:

Ci(u(n), v(n)) =

∫

S1

i
∑

j=0

uj∂
3
xvi−j i = 0, . . . , n − 1 (2.10)

satisfy the 2–cocycle conditions for vect(n)(S1). Since these cocycles are linear indepen-
dent, for any subset {i0, i1, . . . , ik} of {0, 1, . . . , n− 1} with ij ≤ ik if j < k, we can define
k + 1 dimensional extension of vect(n)(S1)

Definition 2.4. For any subset non empty {i0, i1, . . . , ik} of {0, 1, . . . , n− 1} with ij ≤ ik
if j < k, let vir(n)

{i0,i1,...,ik}
denote the k +1–dimensional central extension of the Lie algebra

vect(n)(S1):

vir(n)
{i0,i1,...,ik}

= vect(n)(S1) ⊕ R
k+1

with Lie brackets given by

[

(v(x)(n), (bi0 , . . . , bik)), (u(x)(n), (ci0 , . . . , cik))
]

=
(
[

v(x)(n), u(x)(n)
]

, (Ci0(v(x)(n), u(x)(n)), . . . , Cik(v(x)(n), u(x)(n)))).
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3 Poisson framework for the Euler equations

On each of the Lie algebras vir(n)
{i0,i1,...,ik}

is defined (see [1] for more details) a symmetric

bilinear form 〈·, ·〉(n)
{i0,i1,...,ik}

given by the formula

〈u(n)(x), (ai0 , . . . aik), (v(n)(x), (ai0 , . . . aik))〉(n)
{i0,i1,...,ik}

=
∫

S1

∑n−1
k=0(

∑k
i=0 ui(x)vk−i(x))dx +

∑n−1
j=0 ajbn−j−1

(3.1)

where aj = bj = 0 for j /∈ {i0, i1, . . . , ik}. Let us denote by (vir(n)
{i0,i1,...,ik}

)∗ the (geometri-

cal) dual of vir(n)
{i0,i1,...,ik}

with respect to this pairing.
On it we can define the canonical Lie–Poisson structure as

{f, g}(m) = 〈[df, dg], m〉(n)
{i0,i1,...,ik}

(3.2)

for any m ∈ (vir(n)
{i0,i1,...,ik}

)∗ and any two smooth functions f, g on (vir(n)
{i0,i1,...,ik}

)∗. (Here

the differentials are taken at the point m).

By repeating the proof of Proposition 3.2 in [6] we can state the following

Proposition 3.1. The Poisson vector field on (vir(n)
{i0,i1,...,ik}

)∗ corresponding to a Hamil-
tonian function f and computed with respect to the canonical Lie–Poisson structure has
the form:

dm

dt
= (ad(n)

{i0,i1,...,ik}
)∗dfm

where with (ad(n)
{i0,i1,...,ik}

)∗ we have denoted the coadjoint action of vir(n)
{i0,i1,...,ik}

on its dual.

Since this latter operator will play a crucial role in what follows let us compute it
explicitly.

Proposition 3.2. Let (u(n), a) and (m(n), c) elements of vir(n)
{i0,i1,...,ik}

and (vir(n)
{i0,i1,...,ik}

)∗

respectively (where to keep short the notations we regard b and c as vectors in Rn with
bir = cir = 0 if ir /∈ {i0, . . . , ik}) then

(ad(n)
{i0,i1,...,ik}

)∗
(u(n),a)

(m(n), c)

=

















































2m0∂xu0 + (∂xm0)u0 − c0∂3
xu0

2m1∂xu0 + (∂xm1)u0 + 2m0∂xu1

+ (∂xm0)u1 − c0∂3
xu1 − c1∂3

xu0
...

∑l
j=0(2mj∂xul−j + (∂xmj)ul−j − cj∂3

xul−j)
...

∑n−1
j=0 (2mj∂xun−j−1 + (∂xmj)un−j−1 − cj∂3

xun−j−1)

























, 0

























(3.3)
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Proof. Let (m(n)(x), (ci0 , . . . , cik)) = (m(n), c) a generic element in (vir(n)
{i0,i1,...,ik}

)∗ then

for every (v(n), b) in vir(n)
{i0,i1,...,ik}

by definition we have

(〈v(n)(x), b), (ad(n)
{i0,i1,...,ik}

)∗
(u(n),a)

(m(n), c)〉(n)
{i0,i1,...,ik}

= 〈(ad(n)
{i0,i1,...,ik}

)(u(n),a)(v
(n), b), (m(n), c)〉(n)

{i0,i1,...,ik}
.

Explicitly recalling definition 2.4 proposition 2.6 and changing the order in the sums we
have

〈(ad(n)
{i0,i1,...,ik}

)(u(n),a)(v
(n)), (m(n), c)〉(n)

{i0,i1,...,ik}

=
∫

S1{
∑n−1

k=0

∑k
i=0

(

∑i
j=0 (−uj∂xvi−j + (∂xuj)vi−j) mk−i

)

+
∑n−1

k=0

∑k
i=0

(

∑i
s=0(us∂3

xvi−s)ck−i

)

}dx

=
∫

S1{
∑n−1

k=0

∑k
i=0

∑i
j=0

(

2uj∂xmk−i + (∂xuj)mk−i − ck−i∂3
xuj

)

vi−j}dx

=
∫

S1{
∑n−1

k=0

∑k
i=0

∑i
j=0

(

2uj∂xmi−j + (∂xuj)mi−j − ci−j∂3
xuj

)

vk−i}dx

=
∑n−1

i=0

∑i
j=0

∫

S1

(

(ad(n)
{i0,i1,...,ik}

)∗
(u(n),a)

(m(n), c)
)

i
vi−jdx

= 〈(v(n), a), (ad(n)
{i0,i1,...,ik}

)∗
(u(n),a)

, (m(n), c)〉.

From the above computation we have that the l-th component of the co–adjoint action of
(u(n), b) evaluated in a generic vector (m(n), c) is:

(

(ad(n)
{i0,i1,...,ik}

)∗(u(n),a)(m
(n), c)

)

l
=





l
∑

j=0

2mj∂xul−j + (∂xmj)ul−j − cj∂
3
xul−j , 0



 .

This proves the statement of the proposition. !

Using equation (3.2) we can canonically associate a Poisson structure with this coadjoint
action. It holds indeed:

Proposition 3.3. For all (m(n), c) ∈ (vir(n)
{i0...ik}

)∗, the operator :

P (m) : vir(n)
{i0...ik}

→ (vir(n)
{i0...ik}

)∗

P (m) =



























P0(m) 0 0 0 . . . 0 0
P1(m) P0(m) 0 0 . . . 0 0
P2(m) P1(m) P0(m) 0 . . . 0 0

...
. . .

. . .
. . . . . . 0 0

Pl(m)
...

. . .
. . .

. . . . . . 0
...

...
...

. . .
. . .

. . .
...

Pn−1(m) Pn−2(m) . . . . . . P2(m) P1(m) P0(m)



























(3.4)

where m = (m(n), c) and Pl(m) := cl∂3
x + (ml∂x + ∂xml), defines a Poisson structure:

{(u(n), a), (v(n), b)}(m) = 〈(v(n), b), P (m)(u(n), a)〉(n)
{i0,...,ik}
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Proof. It is a simple computation to shows that

〈(v(n), b), P (m)(u(n), a)〉(n)
{i0,...,ik}

= 〈(v(n), b), (ad(n)
{i0,...,ik}

)∗(u(n),a)(m
(n), c)〉(n)

{i0,...,ik}

follows directly from the previous proposition. !

Observe that the operator (3.4) is not apparently antisymmetric because the inner product
(3.1) is not diagonal.

We want now use the Poisson tensor (3.4) in order to define the Euler equation on

(vir(n)
{i0,i1,...,ik}

)∗. Following [6] we may define the following 2(n + 1)–parameter family of

quadratic forms “H1
α,β–energies” (α = (α0, . . . , αn), β = (β0, . . . , βn)) on the Lie algebra

vir(n)
{i0,i1,...,ik}

:

〈(v(n)(x), (bi0 , . . . , bik)), (w(n)(x), ci0 , . . . , cik))〉H1
α,β

=
∫

S1(
∑n−1

i=0 (
∑i

j=0 αivjwi−j +
∑i

j=0 βi(∂xvj)∂xwi−j)dx +
∑n

j=0 bjcn−j−1.
(3.5)

where cir = bir = 0 if ik /∈ {i0, i1, . . . , ik}.
Of course the case αi = 1 and βi = 0 (i = 0, . . . , n) correspond to a L2 inner product while
the case αi = 1 βi = 1 (i = 0, . . . , n) to a H1–like one. With each energy form H1

α,β (3.5)

is associated a corresponding “inertia operator”:

Aα,β : (vir(n)
{i0,i1,...,ik}

) → (vir(n)
{i0,i1,...,ik}

)∗ (3.6)

defined by the equation

〈(v(n)(x), (bi0 , . . . , bik)), Aα,β(w(n)(x), ci0 , . . . , cik))〉(n)
{i0,...,ik}

= 〈(v(n)(x), (bi0 , . . . , bik)), (w(n)(x), ci0 , . . . , cik))〉H1
α,β

(3.7)

so that the H1
α,β–energy is given by the formula

Eα,β(v) =
1

2
〈(v(n)(x), (bi0 , . . . , bik)), (Aα,β(v(n)(x), bi0 , . . . , bik))〉(n)

{i0,...,ik}
.

From equation (3.7) we get explicitly

Proposition 3.4. The explicit form of the “inertia operator” Aα,β of vir(n)
{i0,i1,...,ik}

is

Aα,β =

























Λn−1 0 0 0 . . . 0 0
Λn−2 − Λn−1 Λn−1 0 0 . . . 0 0
Λn−3 − Λn−2 Λn−2 − Λn−1 Λn−1 0 . . . 0 0

...
. . .

. . .
. . . . . . 0 0

Λn−i+1 − Λn−i

...
. . .

. . . Λn−1 . . . 0
...

...
...

. . .
. . .

. . .
...

Λ0 − Λ1 Λ1 − Λ2 . . . . . . Λn−3 − Λn−2 Λn−2 − Λn−1 Λn−1
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with Λi = αi − βi∂2
x i.e.:

A
α,β

i,j = 0 if j > i, i, j = 0, . . . , n − 1

A
α,β

i,i = αn−1 − βn−1∂2
x if i = 0, . . . , n − 1

A
α,β

i,j = αn−i+j+1 − αn−i+j − (βn−i+j+1 − βn−i+j)∂2
x if i = 1, . . . , n − 1

j = 0, . . . , i − 1.

Proof. By expanding in components equation (3.7) and by subtracting the contribute
due to the central extension we obtain

∫

S1

n−1
∑

j=0

vj

n−1
∑

k=0

wk

n−j−1
∑

i=0

A
α,β

i,k dx =

∫

S1

n−1
∑

s=0

αs

n−s−1
∑

r=0

vrwr−s +
n−1
∑

s=0

βs

n−s−1
∑

r=0

(∂xvr)∂xwr−sdx.

Then operating by part on the second hand of this equation we obtain the following n2

equations on the entries of Aα,β :

n−j−1
∑

i=0

A
α,β

i,k = γi,k j, k = 0, . . . n − 1,

where

γj,k =

{

0 if j + k > n − 1
αs − βs∂2

x if j + k = s ≤ n − 1.

Since this latter system is lower triangular, it admits the unique solution:

A
α,β

i,j = 0 if j > i, i, j = 0, . . . , n − 1

A
α,β

i,i = αn−1 − βn−1∂2
x if i = 0, . . . , n − 1

A
α,β

i,j = αn−i+j+1 − αn−i+j − (βn−i+j+1 − βn−i+j)∂2
x if i = 1, . . . , n − 1

j = 0, . . . , i − 1.

!

Using the previous construction we may consider the following Euler equations on

(vir(n)
{i0,...,ik}

)∗:

d(Aα,βu)

dt
= (ad(n)

{i0,i1,...,ik}
)∗uAα,βu = P (Aα,βu)u,

which written explicitly in components becomes
∑1

r=l

[

(αn−r − αn−r+1)∂tul−r − (βn−r − βn−r+1)∂t∂2
xul−r

]

+
+αn∂tul − βn∂t∂2

xul =
∑l

j=0

{

2
[

∑j
r=1

(

(αn−r − αn−r+1)uj−r − (βn−r − βn−r+1)∂2
xuj−r

)

+

+αnuj − βn∂2
xuj)

]

∂xul−j +
[

∑j
r=1

(

(αn−r − αn−r+1)∂xuj−r+

−(βn−r − βn−r+1)∂3
xuj−r

)

+ αn∂xuj − βn∂3
xuj

]

ul−j − cj∂3
xul−j

}

(3.8)

for l = 0 . . . n − 1.
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Remark 3.5. When αi
αn−1

= βi

βn−1
= 1 for i = 0 . . . n−1, i.e. Λi = Λ = αn−1−βn−1∂2

x i =

0 . . . n − 1 and therefore the “inertia operator” is diagonal, the system (3.8) becomes:

Λ∂tul =
l

∑

j=0

[

2(Λuj)∂xul−j + (Λ∂xuj)ul−j + cj∂
3
xul−j

]

(3.9)

for l = 0 . . . n − 1.

Let us end this section by writing down explicitly the first two non trivial cases of
equation (3.8), namely the case n = 2, n = 3 respectively:



















∂tα1u0 − β1∂t∂2
xu0 = 3α1(∂xu0)u0 − 2β1(∂2

xu0)∂xu0 − β1(∂3
xu0)u0 − c0∂3

xu0

α0∂tu0 − β0∂t∂2
xu0 + α1∂tu1 − β1∂t∂2

xu1

= 3α0(∂xu0)u0 − 2β0(∂2
xu0)∂xu0 − β0(∂3

xu0)u0 − (c1 + c0)∂3
xu0+

+3α1∂x(u0u1) − 2β1∂x((∂xu0)∂xu1) − β1(∂3
xu1)u0 − β1(∂3

xu0)u1 − c0∂3
xu1

(3.10)



































































α2∂tu0 − β2∂t∂2
xu0 = 3α2(∂xu0)u0 − 2β2(∂2

xu0)∂xu0) − β2(∂3
xu0)u0 − c0∂3

xu0

α1∂tu0 − β1∂t∂2
xu0 + α2∂tu1 − β2∂t∂2

xu1 =
= 3α1(∂xu0)u0 − 2β1(∂2

xu0)∂xu0 − β1(∂3
xu0)u0 − (c1 + c0)∂3

xu0+
+3α2∂x(u0u1) − 2β2∂x((∂xu0)∂xu1) − β2(∂3

xu1)u0 − β2(∂3
xu0)u1 − c0∂3

xu1

α0∂tu0 − β0∂t∂2
xu0 + α1∂tu1 − β1∂t∂2

xu1 + α2∂tu2 − β2∂t∂2
xu2

= 3α0(∂xu0)u0 − 2β0(∂2
xu0)∂xu0 − β0(∂3

xu0)u0 − (c2 + c1 + c0)∂3
xu0

+3α1∂x(u0u1) − 2β1∂x((∂xu0)∂xu1) − β1(∂3
xu1)u0 − β1(∂3

xu0)u1

−(c1 + c0)∂3
xu1 + 3α2∂x(u0u2) + 3α2u1∂xu1 − 2β2∂x((∂xu0)∂xu2)

−2β2(∂2
xu1)∂xu1 − β2(∂3

xu0)u2 − β2(∂3
xu2)u0 − β2(∂3

xu1)u1 − c0∂3
xu2

(3.11)

4 Bihamiltonian setting

The equations written in the previous section reduce in the case of n = 0 to the KdV
the Hunter–Saxon and the Camassa–Holm (where αi -= 0, βi = 0 for KdV, and αi = 0,
βi -= 0 for Hunter–Saxon, and finally both αi -= 0, βi -= 0 for Camassa–Holm). These
latter equations own all a bihamiltonian structure (see for example [6] or Camassa Holm
[2]). This suggests to look for a similar bihamiltonian structure in the general case.
Unfortunately in this more general contest, when we have to deal with n > 0 the things
become quite messy. Therefore to make the construction more transparent let us tackle the
most simple case when the inertial operator Aα,β of proposition 3.4 is written in diagonal
form, i.e., when the coefficients αi and βi appearing in the formula of the energy (3.5)
satisfy the relations αi = αj = α and βi = βj = β for all i, j = 0, . . . , n − 1 and ci = δ0i

(i = 0, . . . , n− 1); in spite of the fact that we are confident that up to some very involute
computations the same results should still hold in a more general setting. In this particular
case the Euler equations become (3.9). For these equations when α -= 0 it is easy to prove
the following
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Theorem 4.1. The equations (3.9) for α -= 0 are bihamiltonian on vir(n) with Hamilto-
nians given by

H =
∫

S1(
∑n−1

l=0 (
∑l

i,j,k=0
i+j+k=n−1

α
4 (Λ−1(ui)Λ−1(uj)Λ−1(uk) + 1

4Λ
−1(ui)Λ−1(uj)uk)

+a
2

∑n−1
i,j=0

i+j=n−1

Λ−1(∂xui)Λ−1(∂xuj))dx =
∫

S1 hdx
(4.1)

where Λ = α − β∂2
x and with second Poisson tensor is obtained freezing the canonical one

at the point u0 = 1
2 , uj = 0 for all j = 1, . . . , n − 1.

Proof. Let us first compute the variational derivatives with respect to the variables uj
δh
δu0

, . . . δh
δun−1

of the functional h, because those corresponding to the variables in the
central extension do not play any role in what follows. This amounts to determine the

gradient (h0, . . . , hn−1) in (vir(n)
i0,...,ik

)∗ of the functional h with respect to these variables
which is defined by the following identities holding for any vector ξ = (ξ0, . . . , ξn−1) in

vir(n)
i0,...,ik

:

〈(ξ0, . . . , ξn−1), (h0, . . . , hn−1)〉
(n)
i0,...,ik

=
dh(u0 + εξ0, . . . , un−1 + εξn−1)

dε
|ε=0.

From the definition of our bilinear form (3.1) this equation boils down to the relation

n−1
∑

k=0

k
∑

i=0

ξihk−i =
n−1
∑

k=0

δh

δuk
ξk

where δh
δui

is given by the usual formula δh
δui

=
∑∞

s=0(−∂x)s ∂H
∂(∂s

xuj)
or in turn

n−1
∑

k=0

ξk

n−1
∑

i=k

hk−i =
n−1
∑

k=0

δh

δuk
ξk

which gives

h0 =
δh

δun−1
, hi =

δh

δun−i−1
−

δh

δun−i
. (4.2)

From formulas (4.2) one can easily compute

h2s+1 =
∑s

i=0
3α
2 Λ

−1(Λ−1(ui)Λ−1(u2s+1−i) + 1
2

∑s
i=0 Λ

−1(ui)Λ−1(u2s+1−i)
+1

4

∑2s+1
i=0 Λ−1(Λ−1(ui)u2s+1−i) + aΛ−2∂2

xu2s+1

h2s =
∑s−1

i=0
3α
2 Λ

−1(Λ−1(ui)Λ−1(u2s−i) + 3α
4 Λ

−1(Λ−1(us))2

+1
2

∑s−1
i=0 Λ

−1(ui)Λ−1(u2s−i) + 1
4(Λ−1(us))2

+1
4

∑2s
i=0 Λ

−1(Λ−1(ui)u2s−i) + aΛ−2∂2
xu2s.

Now the frozen tensor P at the point u0 = 1
2 , ui = 0 for i = 1, . . . , n − 1 is the diagonal

n × n matrix:

Pf =















Λ 0 0 . . . 0
0 Λ 0 . . . 0
0 0 Λ . . . 0
...

...
...

. . . 0
0 0 0 . . . Λ
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therefore applying it to (h0, . . . , hn−1) we have

(P (h))i = Λ∂xhi ∀i = 0 . . . n − 1

Performing the same computations of [6] page 132 we obtain that

Λ∂tvr = Λ∂xhr =
r

∑

i=0

3α

4
∂x(vivr−i) +

1

4

r
∑

i=0

Λ∂x(vivr−i) +
1

4

r
∑

i=0

∂x(viur−i) + a∂3
xvr

where vi = Λ−1ui for i = 0, . . . , n − 1. Recalling that Λ = α − β∂2
x and that ci = δ0i

(i = 0 . . . n) we obtain the equations (3.9). !

The obtained equations are exactly, in the KdV case, the polynomial equations of [1]

relatives to the polynomial algebras sl
(n)
2 (C). Therefore it is natural to call “n–polynomial”

the previous bihamiltonian system also in the Camassa–Holm case. The description of the
bihamiltonian structure of the “polynomial Hunter–Saxon” i.e., of the equations (3.9) in
the case when α = 0 turns out to be a little more complicate. Indeed, exactly as in the
case with n = 1 treated by Khesin and Misio!lek [6], problems arise because in this setting
the operator Λ and the inertia operator (3.4) as well fails to be invertible. The key point is
to observe that on the space vir(n) naturally acts the group Sn given by the direct product
of n copies of the group S1 as

Kn × vir(n) → vir(n)

((p0, . . . , pn), (u0(x), . . . , un(x))) '→ (u0(x + p0), . . . , un(x + pn))
(4.3)

Theorem 4.2. The equations (3.9) with α = 0 are bihamiltonian on the quotient space
vir(n)/Sn with Hamiltonian:

H =

∫

S1

n
∑

l=0

(
l

∑

i,j,k=0
i+j+k=n−1

1

4
Λ−1(ui)Λ

−1(uj)uk)dx =

∫

S1
hdx (4.4)

where Λ = −β∂2
x and the second Poisson structure is given by freezing the canonical one

at the point uj = 0 j = 0, . . . n, ci = 0 i = 0, . . . n − 1, and cn = β.

Proof. Since the actually computations are the same of those of the previous theorem, it
remains only to check that the Hamiltonian is well defined on the space vir(n)/Sn. But
this latter claim follows almost immediately from the observation that Λ is invertible on
this space. !

A slightly generalization of the diagonal case exists at least in the case of 2 coupled
equations. To perform the computation we need the following technical restriction:

α0

α1
=

β0

β1
= γ. (4.5)

Let us consider now the Hamiltonian density:

h = α1
4 (Λ−1u)30 + 1

4(Λ−1u)20u0 + a1
2 (Λ−1ux)20

+3α1
4 (Λ−1u)20(Λ

−1u)1 + 1
4(Λ−1u)20u1 + 1

2(Λ−1u)20(Λ
−1u)1u0

+a1(Λ−1ux)0(Λ−1ux)1 + a0
2 (Λ−1ux)20 + 2α0−α1

4 (Λ−1u)30
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where Λ indicates the inertia operator (3.4) in this particular case:

Λ :=

(

Λ1 0
Λ0 − Λ1 Λ1

)

=

(

α1 − β1∂2
x 0

α0 − β0∂2
x − (α1 − β1∂2

x) α1 − β1∂2
x

)

and

v0 = (Λ−1u)0 = Λ−1
1 u0

v1 = (Λ−1u)1 = Λ−1
1 u1 − (Λ0 − Λ1)Λ

−2
1 u0.

where we used explicitly the commutativity of the operators Λ0 and Λ1 for a good definition
of the inverse of Λ. From (4.2) we obtain for the gradient components:

h0 = δh
u1

= 3α1
4 Λ

−1
1 v2

0 + 1
4(Λ0 − Λ1)Λ

−2
1 v2

0 + 1
2Λ

−1
1 (v0Λ1v0) − a1Λ−1∂2

xv0

h1 = δh
u0

− δh
u1

= 3α1
2 Λ

−1
1 (v0v1) −

3α1
2 v2

0 + 1
2Λ

−1
1 (v0u1) + 1

2v0v1

+1
2Λ

−1
1 (v1Λ1v0) −

1
2(Λ0 − Λ1)Λ

−2
1 (v0Λ1v0) − a1Λ

−1
1 ∂2

xv1

−(Λ0 − Λ1)Λ
−2
1 ∂2

xv0 − a0Λ
−1
1 ∂2

xv0 + 6α0−3α1
4 Λ−1

1 (v2
0).

Using the same freezing points as in the diagonal case, i.e. u0 = 1
2 , u1 = 0, c0 = β1 = a0

and c1 = β0 − β1 = a1, the Poisson structure becomes equal to Λ∂x and the equations in
the case (4.5) are:

Λ1u0 = Λ1∂xh0

(Λ0 − Λ1)u0 + Λ1u1 = (Λ0 − Λ1)∂xh0 + Λ1∂xh1

or






















α1∂tu0 − β1∂t∂2
xu0 = 3α1(∂xu0)u0 − 2β1(∂2

xu0)∂xu0 − β1(∂3
xu0)u0 − c0∂3

xu0

α0∂tu0 − β0(∂t∂2
xu0) − (α1∂tu0 − β1∂t∂2

xu0) + α1∂tu1 − β1∂t∂2
xu1

= 3(α0 − α1)(∂xu0)u0 − 2(β0 − β1)(∂2
xu0)∂xu0 − (β0 − β1)(∂3

xu0)u0 − c1∂3
xu0+

+3α1∂x(u0u1) − 2β1∂x(∂x(u0x)∂xu1) − β1(∂3
xu1)u0 − β1(∂3

xu0)u1 − c0∂3
xu1

which, after some algebraic manipulations, becomes (3.10) as expected.
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