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Abstract

We introduce perturbative Feynman integrals in the context of q-calculus generalizing
the Gaussian q-integrals introduced by Dı́az and Teruel. We provide analytic as well
as combinatorial interpretations for the Feynman-Jackson integrals.

1 Introduction

Feynman integrals are a main tool in high energy physics since they provide a universal
integral representation for the correlation functions of any Lagrangian quantum field the-
ory whose associated quadratic form is non-degenerated. In some cases the degenerated
situation may be approached as well by including odd variables as is usually done in the
BRST-BV procedure. Despite its power Feynman integrals still await a proper defini-
tion from a rigorous mathematical point of view. The main difficulties in understanding
Feynman integrals are the following

1. The output of a perturbative Feynman integral is a formal power series in infinitely
many variables, i.e., an element of C[[g1, ..., gn, ..]]. This fact goes against our strongly
held believe that the output of an integral should be a number.

2. There is no guarantee that the formal series mentioned above will be convergent,
not even in an asymptotic sense. General statements in this matter are missing.

3. Feynman integrals of greatest interest are performed over spaces of infinite dimen-
sion. In this situation the coefficients of the series in variables C[[g1, ..., gn, ..]] referred
above are given by finite dimensional integrals which might be divergent. In this case
additional care must be taken in order to renormalize the values of these integrals.
The renormalization procedure, when applies, is done in two steps one of analytic
nature called regularization, and a further step of algebraic nature which may be
regarded as a fairly general form of the inclusion-exclusion principle of combinatorics.

4. In process 1 to 3 above a number of choices must be made. No general statements
showing the unicity of the result are known.
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Finite dimensional Feynman integrals are also of interest for example in Matrix theory.
They still present difficulties 1 and 2 above but issues 3 and 4 become null. The goal of this
paper is to construct a q-analogue of Feynman integrals which we call Feynman-Jackson
integrals. We consider only the simplest case of 1-dimensional integrals. Our approach
is to use the q, k-generalized gamma function and the q, k-generalized Pochhamer symbol
introduced in [6] and [5].

The computation of a 1-dimension Feynman integrals, for example an integral of the form∫
eh(x)dx where h(x) =

−x2

2
+

∞∑

j=1

hj
xj

j!
is done in four steps

1. The integral is obtain perturbatively, meaning that the integrand h(x) should be

replaced by a formal power series
−x2

2
+

∞∑

j=1

gjhj
xj

j!
∈ C[[g1, ..., gn, ..]] where {gj}∞j=1

is a countable set of independent variables.

2. One uses the key identity e
−x2

2
+
∑∞

j=1 gjhj
xj

j! = e−
x2

2 e
∑∞

j=1 gjhj
xj

j! .

3. e
∑∞

j=1 gjhj
xj

j! is expanded as a formal power series in C[[g1, ..., gn, ..]] using the series
expansion of ex. This step reduces the computation of the Feynman integrals to
computing a countable number of Gaussian integrals.

4. Compute the Gaussian integrals obtained in step 3 which yield as output an element
in C[[g1, ..., gn, ..]].

Steps 1,3 and 4 can be carried out in q-calculus without much difficulty . The subtle
issue to be tackled is the unpleasant fact that the identity ex+y = exey does not hold in
q-calculus.

This paper is organized as follows: in Section 2 after a quick review of q-calculus we
introduce Gauss-Jackson integrals based on the definition of the function Γq,2 introduced
in [5]. In Section 3 we introduce the combinatorial tools that shall be needed to formulate
our main theorem. In Section 4 we introduce the algebraic properties of the q-exponential
that will allow us to overcome the fact that Ex+y

q 6= Ex
q Ey

q . In Section 5 we shall enunciate
and prove our main result Theorem 16

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 dqx =
∑

Λ∈Ob(Graphq)/∼

hq(Λ)
ωq(Λ)

autq(Λ)

which gives a q-analogue of 1-dimensional Feynman integrals.

2 Gauss-Jackson integrals

In this section we review several definitions in q-calculus. The reader may find more infor-
mation in [5], [3], [12] and [4] . We focus upon the q, k-generalizations of the Pochhammer
symbol, the gamma function and its integral representations [5].
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Let us fix 0 < q < 1 and let f : R −→ R be any map. The q-derivative ∂q(f) of f is

given by ∂q(f) =
dqf

dqx
=

Iq(f) − f

(q − 1)x
, where Iq : R −→ R is given by Iq(f)(x) = f(qx) for

all x ∈ R, and dq(f) = Iq(f) − f .
The definite Jackson integral (see [10] and [11]) of a map f : [0, b] −→ R is given by

∫ b

0
f(x)dqx = (1 − q)b

∞∑

n=0

qnf(qnb).

The improper Jackson integral of a map f : [0,∞) −→ R is given by

∫ ∞/a

0
f(x)dqx = (1 − q)

∑

n∈Z

qn

a
f

(
qn

a

)
.

For all t ∈ Z
+ the q-factorial is given by [t]q! = [t]q[t − 1]q · · · [1]q, where [t]q =

(1 − qt)

(1 − q)
is the q-analogue of a real number t. The q-factorial is an instance of the q, k-generalized
Pochhammer symbol which is given by

[t]n,k = [t]q[t + k]q[t + 2k]q . . . [t + (n − 1)k]q =

n−1∏

j=0

[t + jk]q, for all t ∈ R.

In this paper we shall mainly use the q, 2- generalized Pochhamer symbol evaluated at
t = 1, namely

[1]n,2 = [1]q[3]q[5]q . . . [2n − 1]q =

n−1∏

j=0

[1 + 2j]q. (2.1)

We remark that [1]n+1,2 = [2n+1]q[1]n,2. We shall use the following notation. Let x, y, t ∈
R and n ∈ Z

+ we set

(x + y)nq,2 :=

n−1∏

j=0

(x + q2jy) and (1 + x)tq,2 :=
(1 + x)∞q,2

(1 + q2tx)∞q,2

,

where (1 + x)∞q,2 :=

∞∏

j=0

(1 + q2jx)

Recall that one can define two q-analogues of the exponential function given as follows

Ex
q,2 =

∞∑

n=0

qn(n−1)xn

[n]q2 !
= (1 + (1 − q2)x)∞q,2

ex
q,2 =

∞∑

n=0

xn

[n]q2 !
=

1

(1 − (1 − q2)x)∞q,2

.

The q, 2-gamma function Γq,2(t) is given by the explicit formula Γq,2(t) =
(1 − q2)

t
2
−1

q,2

(1 − q)
t
2
−1

for a real number t > 0, and has a representation in terms of Ex
q,2 given by the following



368 R D́ıaz and E Pariguan

Jackson integral

Γq,2(t) =

∫ (
[2]q

(1−q2)

) 1
2

0
xt−1E

− q2x2

[2]q

q,2 dqx, t > 0. (2.2)

Similarly one can define γ
(a)
q,2 (t) for a > 0 using ex

q,2 by the following Jackson integral

γ
(a)
q,2 (t) =

∫ ∞/a(1−q2)
1
2

0
xt−1e

− x2

[2]q

q,2 dqx, t > 0. (2.3)

Both integral representations are related by Γq,2(t) = c(a, t)γ
(a)
q,2 (t), where the function

c(a, t) is given by

c(a, t) =
at[2]

t
2
q

1 + [2]qa2

(
1 +

1

[2]qa2

) t
2

q,2

(
1 + [2]qa

2
)1− t

2

q,2
, for a > 0 and t ∈ R.

We proceed to introduce two different q-analogues of the Gaussian integral and give a
Jackson integral representation for each one. The Gaussian integrals are related to each
other by the function c(a, t) in a similar way as the integral representations of the q, 2-
generalized gamma functions are related to each other.

Definition 1. Let ν =
(

[2]q
(1−q2)

) 1
2

and ε(a) = ∞/a(1−q2)
1
2 , the Gaussian-Jackson integrals

are given by

G(t) :=
1

2

∫ ν

−ν
xt−1E

− q2x2

[2]q

q,2 dqx =
1

2

∫ ν

0
xt−1E

− q2x2

[2]q

q,2 dqx +
1

2

∫ 0

−ν
xt−1E

− q2x2

[2]q

q,2 dqx, t > 0.

G(a)(t) :=
1

2

∫ ε(a)

−ε(a)

xt−1e
− x2

[2]q

q,2 dqx =
1

2

∫ ε(a)

0
xt−1e

− x2

[2]q

q,2 dqx+
1

2

∫ 0

−ε(a)

xt−1e
− x2

[2]q

q,2 dqx, t > 0.

Notice that if t − 1 is an odd integer both integrals in Definition 1 are zero because then

xt−1 is an odd function while E
− q2x2

[2]q

q,2 and e
− x2

[2]q

q,2 are even functions.

3 Combinatorial interpretation of [1]n,2

In this section we introduce the combinatorial tools that will be needed in order to describe
q-analogue of 1-dimensional Feynman integrals. The interested reader may consult [1], [2],
[8] for further information.

Definition 2. A partition of a ∈ Z
+ is a finite sequence of positive integers a1, a2, . . . , ar

such that
r∑

i=1

ai = a. For a, d ∈ Z
+, pd(a) denotes the number of partitions of a into less

than d parts.



Feynman-Jackson integrals 369

Definition 3. Let n ∈ Z
+ and a1, a2, . . . , an be a partition of a. The q-multinomial

coefficient is given by
[

a1 + a2 + · · · + an

a1, a2, . . . , an

]

q

=
[a1 + a2 + . . . an]q!

[a1]q![a2]q! . . . [an]q!
.

Denote by [[n]] the set {1, . . . , n} ordered in the natural way. |X| denotes the cardinality
of set X and SX denotes the group of permutations on X.

Definition 4. Let a1, . . . , an be a partition of a. We denote by S(a1, . . . , an) the set of all
maps f : [[a]] −→ [[n]] such that |f−1(i)| = ai for all i ∈ [[n]]. We set inv(f) := |{(i, j) ∈
[[a]] × [[a]] : i < j and f(i) > f(j)}|.
The following result is proved using induction.

Theorem 5.
[

a1 + a2 + · · · + an

a1, a2, . . . , an

]

q

=
∑

f∈S(a1,...,an)

qinv(f).

Notice that this result implies that

[n]q! =

[
1 + 1 + · · · + 1

1, 1, . . . , 1

]

q

=
∑

f∈S(1,...,1)

qinv(f) =
∑

f∈S[[n]]

qinv(f).

Definition 6. A paring α on a totally ordered set R of cardinality 2n is a sequence
α = { (ai, bi) }n

i=1 ∈ (R2)n such that

1. a1 < a2 < · · · < an.

2. ai < bi, i = 1, . . . , n.

3. R =

n⊔

i=1

{ai, bi}.

We denote by P (R) the set of pairings on R.

Definition 7. For α ∈ P ([[2n]]) we set

1. ((ai, bi)) = {j ∈ [[2n]] : ai < j < bi} for all (ai, bi) ∈ α.

2. Pi(α) = {bj : 1 ≤ j < i}.

3. w(α) =

n∏

i=1

q|((ai,bi))\Pi(α)| = q
∑n

i=1 |((ai,bi))\Pi(α)|. We call w(α) the weight of α.

Example 8. Let α be the pairing on [[12]] shown in Figure 1. The weight w(α) can be
computed as follows

q|((a1,b1))\P1(α)| = q8, q|((a2,b2))\P2(α)| = q5, q|((a3,b3))\P3(α)| = q0,

q|((a4,b4))\P4(α)| = q6−2, q|((a5,b5))\P5(α)| = q4−2, q|((a6,b6))\P6(α)| = q1−1.

Hence w(α) = q19.
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Figure 1. Example of a pairing α on [[12]]

Theorem 9. Given n ∈ N the following identity holds

[1]n,2 =
∑

α∈P ([[2n]])

w(α). (3.1)

Proof. We use induction on n. For n = 1, we have [1]1,2 = 1. Suppose identity (3.1)
holds for n, we prove it for n + 1 as follows

∑

α∈P ([[2n+2]])

w(α) =
∑

α∈P ([[2n+2]])

w(α − {(a1, b1)})q|((a1,b1))|

=
∑

2≤b1≤2n+2

qb1−2
∑

β∈P ([[2n+2]]\{(a1,b1)})

w(β)

=
∑

2≤b1≤2n+2

qb1−2
∑

β∈P ([[2n]])

w(β)

=
∑

2≤b1≤2n+2

qb1−2 [1]n,2

= [2n + 1]q[1]n,2 = [1]n+1,2.

�

Notices that as q −→ 1 we recover the well known identity

(2n − 1)(2n − 3) . . . 1 = |{pairings on [[2n]]}|.

Example 10. By definition [1]2,2 = [1]q[3]q = [3]q. Consider the pairings of a four ele-
ments ordered set. Figure 2 shows that there are 3 such pairings and that the sum of their
weights is 1 + q + q2 as it should.

4 Algebraic properties of the q-exponentials

The q-exponential maps ex
q and Ex

q are good q-analogues of the exponential map ex since
they satisfy ∂qe

x
q = ex

q , e0
q=1 and lim

q−→1
ex
q = ex, and ∂qE

x
q = Eqx

q , E0
q = 1 and lim

q−→1
Ex

q = ex.

From a differential point of view ex
q is the right q-analogue of ex. However both ex

q and Ex
q

lack the fundamental algebraic property of the exponential, namely that ex : (R,+) −→
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Figure 2. Combinatorial meaning of [1]2,2

(R, ·) is a group homomorphism. Indeed one checks that ex+y
q 6= ex

qey
q and also that

Ex+y
q 6= Ex

q Ey
q . Nevertheless we still have the remarkable identity (ex

q )−1 = E−x
q .

A possible algebraic solution to this problem is to assume that yx = qxy. Using this
relation one verifies that ex+y

q = ex
qey

q and Ex+y
q = Ex

q Ey
q . However we still have to deal

with the fact that ex+y
q 6= ex

qey
q and Ex+y

q 6= Ex
q Ey

q for commuting variables x, y ∈ R.
Theorems 11 and 12 below provide tools that allow us to overcome this obstacle in the
process of computing Feynman integrals, as discussed in the Introduction.

Theorem 11. Ex+y
q,2 = Ex

q,2




∑

c,d≥0

λc,dx
cyd



, where λc,d =

c∑

k=0

(−1)c−k
(d+k

k

)
q(d+k)(d+k−1)

[d + k]q2 ![c − k]q2 !
.

Proof.

Ex+y
q,2 e−x

q,2 =

(
∞∑

n=0

qn(n−1)(x + y)n

[n]q2!

)(
∞∑

m=0

(−1)mxm

[m]q2 !

)

=
∑

n,m,k≤n

(−1)m
(n
k

)
qn(n−1)

[n]q2 ![m]q2 !
xm+kyn−k

Making the change c = m + k and d = n − k, we get

Ex+y
q,2 e−x

q,2 =
∑

c,d≥0

(
c∑

k=0

(−1)c−k
(d+k

k

)
q(d+k)(d+k−1)

[d + k]q2 ![c − k]q2 !

)

xcyd. (4.1)

�

Theorem 12. ex+y
q,2 = ex

q,2




∑

c,d≥0

κc,dx
cyd



, where κc,d =
c∑

k=0

(−1)c−k
(
d+k

k

)
q(c−k)(c−k−1)

[d + k]q2 ![c − k]q2 !
.

Proof.

ex+y
q,2 E−x

q,2 =

(
∞∑

n=0

(x + y)n

[n]q2 !

)(
∞∑

m=0

(−1)mqm(m−1)xm

[m]q,2!

)

=
∑

n,m,k≤n

(−1)m
(
n
k

)
qm(m−1)

[n]q2 ![m]q2 !
xm+kyn−k



372 R D́ıaz and E Pariguan

Fixing c = m + k and d = n − k, we have

ex+y
q,2 E−x

q,2 =
∑

c,d≥0

(
c∑

k=0

(−1)c−k
(d+k

k

)
q(c−k)(c−k−1)

[d + k]q2 ![c − k]q2 !
xcyd

)
. (4.2)

�

Lemma 13. For c, d ∈ N, lim
q→1

λc,d =
1

d!
δc,0.

Proof.

lim
q→1

λc,d =

c∑

k=0

(−1)c−k

(d+k
k

)

(d + k)!(c − k)!
=

1

d!c!

c∑

k=0

(−1)c−k

(
c

k

)
=

1

d!
δc,0.

�

5 Feynman-Jackson integrals

We denote by Graph the category whose objects Ob(Graph) are graphs. Recall that
a graph Λ is triple (V,E, b) where V and E are finite sets, called the set of vertices and
the set of edges respectively, and b is a map that assigns to each edge e ∈ E a subset of
V a cardinality one or two. To each graph we associate a map val : V −→ N defined by
val(s) = |{e : s ∈ b(e)}|. All graphs considered in this paper are such that val(s) ≥ 1 for
all s ∈ V . Morphisms in Graph from Λ1 to Λ2 are pairs (ϕV , ϕE) such that

1. ϕV : V (Λ1) −→ V (Λ2).

2. ϕE : E(Λ1) −→ E(Λ2).

3. b(Λ2)(ϕE(e)) = ϕV (b(Λ1)(e)), for all e ∈ E(Λ1).

The essence of 1-dimensional Feynman integrals, see [7], may be summarized in the fol-
lowing identity

1√
2π

∫
e

−x2

2
+
∑∞

j=1 gjhj
xj

j! =
∑

Λ∈Ob(Graph)/∼

h(Λ)
ω(Λ)

aut(Λ)
. (5.1)

In identity (5.1) the following notation is used

1. Ob(Graph)/ ∼ denotes the set of isomorphisms classes of graphs.

2. h(Λ) =
∏

s∈V hval(s).

3. ω(Λ) =
∏

s∈V gval(s).

4. aut(Λ) = |Aut(Λ)| where Aut(Λ) denotes the set of isomorphisms from graph Λ into
itself, for all Λ ∈ Ob(Graph).

Theorem 16 below provides a q-analogue of identity (5.1). We first prove the following
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Theorem 14.

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 dqx =

∞∑

m=0

χmqm

where

χm =
∑

α,c,d,j,k,l,f

(−1)kglhl

[2]cq[2j]q ![d + k]q2 ![c − k]q2 !

(
d + k

k

)
.

The sum above runs over all c, d, j, k ∈ Z
+, such that k ≤ c, l ∈ pd(2j), f ∈ S(l1, . . . , ld),

α ∈ P ([[2c + 2j]]) and

c+j∑

i=1

|((ai, bi)) \ Pi(α)| + inv(f) + (d + k)(d + k − 1) + 2c = m.

Proof. Making the changes x −→ −q2x2

[2]q
and y −→

∞∑

j=1

gjhjx
j

[j]q!
in Theorem 11, we get

E
−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 = E
−q2x2

[2]q

q,2

∞∑

c,d=0




λc,d(−1)cq2cx2c

[2]cq




∞∑

j=1

gjhj
xj

[j]q!




d




= E
−q2x2

[2]q

q,2

∞∑

c,d=0



λc,d(−1)cq2cx2c

[2]cq




∞∑

j=1




∑

l∈pd(j)

[j]q!gl1 . . . gldhl1 . . . hld

[l1]q![l2]q! . . . [ld]q!



 xj

[j]q !









= E
−q2x2

[2]q

q,2

∑

c,d,j,l

λc,d(−1)cq2cgl1 . . . gldhl1 . . . hld

[2]cq

[
j

l1, . . . , ld

]

q

x2c+j.

Using the expression given in Theorem 11 for λc,d and using the convention that gl =
gl1 . . . gld and hl = hl1 . . . hld for l ∈ pd(j) we get

E
−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 = E
−q2x2

[2]q

q,2

∑

c,d,j,k,l

(−1)2c−kglhlq
(d+k)(d+k−1)+2c

[2]cq[j]q![d + k]q2 ![c − k]q2 !

(
d + k

k

)[
j

l1, . . . , ld

]

q

x2c+j.

(5.2)

Multiply by 1
Γq,2(1)

and integrate both sides of the equation (5.2) from −ν to ν (which

cancels out all terms with j odd), one gets for l ∈ pd(2j)

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 dqx (5.3)

=
∑

c,d,j,k,l

(−1)2c−kglhlq
(d+k)(d+k−1)+2c

(d+k
k

)

[2]cq[2j]q ![d + k]q2 ![c − k]q2 !

[
2j

l1, . . . , ld

]

q

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q

q,2 x2c+2jdqx(5.4)

=
∑

c,d,j,k,l

(−1)kglhlq
(d+k)(d+k−1)+2c

(
d+k

k

)

[2]cq[2j]q ![d + k]q2 ![c − k]q2 !

[
2j

l1, . . . , ld

]

q

[1]c+j,2. (5.5)
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Notice that equation (5.5) is obtained from equation (5.4) using Definition 1. Using
Theorem 9 and (4) in the right-hand side of (5.5) one obtains

∑

α,c,d,j,k,l,f

(−1)2c−kglhl

(d+k
k

)

[2]cq[2j]q ![d + k]q2 ![c − k]q2 !
q
∑c+j

i=1 |((ai,bi))\Pi(α)|+inv(f)+(d+k)(d+k−1)+2c. (5.6)

Which yields the desired result. �

Using Lemma 13 one notices that the limit as q goes to 1 of (5.6) is

∑ glhl

(2j)!d!

(
2j

l1, . . . , ld

)
|pairings on [[2j]]|

which is well known to be equivalent to formula (5.1)

Definition 15. We denote by Graphq the category whose objects Ob(Graphq) are planar
q-graphs (V,E, b, f) such that

1. V = {•} ⊔ V 1 ⊔ V 2 where V 1 = {⊗1, . . . ,⊗|V1|} and V 2 = {◦1, . . . , ◦|V2|}.

2. E = E1 ⊔ E2 ⊔ E3.

3. b is a map that assigns to each edge e ∈ E a subset of V a cardinality two.

4. Set F◦ = {(◦i, e) : i ∈ [[|V 2|]] and • /∈ b(e)}. We require that |F◦| be even. f : F◦ −→
[[|V 2|]] is any map.

5. |b−1({⊗i, •})| ∈ {0, 1} for all i ∈ [[|V 1|]] and |b−1(◦i, •)| = 1 for all i ∈ [[|V 2|]]. If
|b−1({⊗i, •})| = 1 then |b−1({⊗i, •})| = 1 for all i ≥ j; and • ∈ b(e) for any e ∈ E3.

6. val(⊗i) ∈ {2, 3}. If val(⊗i) = 3 then val(⊗j) = 3 for all i ≥ j, and |E2| ≤ |V 1|.

Morphisms in Graphq are defined in the obvious way. Figure 3 shows an example of a
planar q-graph with n = 4 and m = 5. Edges in E1 (E2, E3) are depicted by dark (dotted,
regular) lines, respectively. The map f can be read off the numbering of half-edges in E3

attached to vertices {◦1, . . . , ◦m}.
Notice that associated to any graph Λ ∈ Ob(Graphq) there exists a pairing α on the
naturally ordered set {(v, e) : v ∈ V 1 ⊔ V 2 and • /∈ b(e)}. Similarly, associated to any
graph there is a map f̂ : [[|F◦|]] −→ [[|V 2|]] which is constructed from f and the natural
ordering on F◦. For Λ ∈ Ob(Graphq) we set

1. hq =

|V 2|∏

i=1

hval(◦i)−1.

2. ωq = (−1)|E
2|q2|V 1|+(|V

2|+|E2|
2 )ω(α) inv(f̂)

|V 2|∏

i=1

gval(◦i)−1.

3. autq(Λ) = [2]nq [|F◦|]q! [|V 2| + |E2|]q2 ! [|V 1| − |E2|]q2 !
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Figure 3. Feynman q-diagram

Using the notion of planar q-graphs introduced above Theorem 14 may be rewritten as
follows

Theorem 16.

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q
+
∑∞

j=1 gjhj
xj

[j]q !

q,2 dqx =
∑

Λ∈Ob(Graphq)/∼

hq(Λ)
ωq(Λ)

autq(Λ)

Setting hj = 1 in Theorem 16 one gets

Corolary 17.

1

Γq,2(1)

∫ ν

−ν
E

−q2x2

[2]q
+
∑∞

j=1 gj
xj

[j]q !

q,2 dqx =
∑

(−1)|E
2|q2|V 1|+(|V

2|+|E2|
2 )ω(α) inv(f̂)

|V 2|∏

i=1

gval(◦i)−1

[2]nq [|F◦|]q! [|V 2| + |E2|]q2 ! [|V 1| − |E2|]q2 !

where the sum runs over all Λ ∈ Ob(Graphq)/ ∼.

Acknowledgments. Many thanks to Carolina Teruel.
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