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Abstract

Let n be an integer such that n ≥ 3 and Cm denote a cyclic group of order m . It
is proved that there exist exactly 17 non-isomorphic groups of order 22n+1 which can
be represented as a semidirect product (C2n × C2n) ⋋ C2. These groups are given by
generators and defining relations.

1 Introduction

All non-Abelian groups of order < 32 are described in [1] (table 1 at the end of the book).
M.Jr.Hall and J.K.Senior [2] gave a fully description of all groups of order 2n, n ≤ 6. There
exist exactly 51 non-isomorphic groups of order 32. In [2], these groups are numbered by
1, 2,. . . , 51. Among these groups, the groups with numbers 3, 14, 16, 31, 34, 39 and 41
can be presented as a semidirect product (C22 × C22) ⋋ C2, where Cm denotes the cyclic
groups of order m. In this paper we describe all non-isomorphic finite groups which can
be presented in a form (C2n × C2n) ⋋ C2, where n ≥ 3. Each such group G is given by
three generators a, b, c and the defining relations

a2n

= b2n

= c2 = 1, ab = ba, c−1ac = aibj , c−1bc = akbl (1.1)

for some i, j, k, l ∈ Z2n (Z2n – the ring of residue classes modulo 2n).

The aim of this paper is to prove the following theorem:

Theorem 1.1. Let n be an integer such that n ≥ 3. Then there exist exactly 17 non-
isomorphic groups of order 22n+1 which can be presented as a semidirect product (C2n ×
C2n) ⋋ C2. They are:
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G1 =< a, b, c | (∗), c−1ac = a, c−1bc = b >,

G2 =< a, b, c | (∗), c−1ac = a1+2n−1
, c−1bc = b1+2n−1

>,

G3 =< a, b, c | (∗), c−1ac = ab2n−1
, c−1bc = b >,

G4 =< a, b, c | (∗), c−1ac = a1+2n−1
b2n−1

, c−1bc = b1+2n−1
>,

G5 =< a, b, c | (∗), c−1ac = a−1, c−1bc = b−1 >,

G6 =< a, b, c | (∗), c−1ac = a−1+2n−1
, c−1bc = b−1+2n−1

>,

G7 =< a, b, c | (∗), c−1ac = a−1b2n−1
, c−1bc = b−1 >,

G8 =< a, b, c | (∗), c−1ac = a−1+2n−1
b2n−1

, c−1bc = b−1+2n−1
>,

G9 =< a, b, c | (∗), c−1ac = ab2n−1
, c−1bc = a2n−1

b1+2n−1
>,

G10 =< a, b, c | (∗), c−1ac = a, c−1bc = b1+2n−1
>,

G11 =< a, b, c | (∗), c−1ac = a−1b2n−1
, c−1bc = a2n−1

b−1+2n−1
>,

G12 =< a, b, c | (∗), c−1ac = a−1, c−1bc = b−1+2n−1
>,

G13 =< a, b, c | (∗), c−1ac = a, c−1bc = b−1+2n−1
>,

G14 =< a, b, c | (∗), c−1ac = a−1, c−1bc = b1+2n−1
>,

G15 =< a, b, c | (∗), c−1ac = b, c−1bc = a >,

G16 =< a, b, c | (∗), c−1ac = a, c−1bc = b−1 >,

G17 =< a, b, c | (∗), c−1ac = a1+2n−1
, c−1bc = b−1+2n−1

>,

where (∗) denotes the collection {a2n

= b2n

= c2 = 1, ab = ba} of defining relations.

Each group G, given by relations (1.1), is fully characterized by the matrix

A =

∥

∥

∥

∥

i j

k l

∥

∥

∥

∥

∈ GL2(Z2n), (1.2)

where A2 = I (I – the identity matrix) and GL2(Z2n) is the set of all regular (2 × 2)-
matrices over Z2n . Therefore, first we must find all regular (2 × 2)-matrices of order two
over Z2n . We shall do it in the next section.

2 Matrices of order two over Z2n

Assume that n ≥ 3. Choose

A =

∥

∥

∥

∥

i j

k l

∥

∥

∥

∥

∈ GL2(Z2n)

and determine the conditions under which A2 = I. Equating the corresponding elements
of A2 and I, we get the following system of equations for determining i, j, k and l:























i2 + jk ≡ 1 (mod 2n),

i2 − l2 ≡ (i − l)(i + l) ≡ 0 (mod 2n),

j(i + l) ≡ 0 (mod 2n),

k(i + l) ≡ 0 (mod 2n).

(2.1)

Next we solve system (2.1).
The second equation of (2.1) implies that i and l are both odd or both even. By the

first equation of (2.1), il and jk have different values modulo 2. Hence we can consider
four different cases for the solution of system (2.1):
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I i and l are even; j and k are odd;
II i and l are odd; j or k is odd;
III i and l are odd; j and k are even; jk ≡ 0 (mod 2n);
IV i and l are odd; j and k are even; jk 6≡ 0 (mod 2n).

Solving system (2.1) in cases I and II, we get the following three sets of matrices of
order two:

M1 =

{
∥

∥

∥

∥

i j

(1 − i2)j−1 −i

∥

∥

∥

∥

| i ∈ 2Z2n , j ∈ Z
∗
2n

}

,

M2 =

{
∥

∥

∥

∥

i j

(1 − i2)j−1 −i

∥

∥

∥

∥

| i ∈ Z
∗
2n , j ∈ Z

∗
2n

}

,

M3 =

{
∥

∥

∥

∥

i (1 − i2)k−1

k −i

∥

∥

∥

∥

| i ∈ Z
∗
2n , k ∈ Z

∗
2n

}

,

where Z
∗
2n denotes the group of invertible elements of the ring Z2n . The numbers of

elements in these sets are

|M1| = |M2| = |M3| = 22n−2.

Let us consider case III. In this case

i, l ∈ Z
∗
2n ; j, k ∈ 2Z2n ; jk ≡ 0 (mod 2n).

Under these conditions the first and second equations of system (2.1) imply i, l ∈ {±1, ±1+
2n−1}. Hence

i + l ∈ {0, 2, −2, 2n−1, 2 + 2n−1, −2 + 2n−1}.

Solving system (2.1) in these six cases for i + l, we get the following six sets of matrices
of order two, respectively:

M4 =

{ ∥

∥

∥

∥

i 2su

2tv −i

∥

∥

∥

∥

|
i ∈ {±1, ±1 + 2n−1}, 1 ≤ s, t ≤ n;
s + t ≥ n; u ∈ Z

∗
2n−s , v ∈ Z

∗
2n−t

}

,

M5 =

{
∥

∥

∥

∥

1 + 2n−1w 2n−1u

2n−1v 1 + 2n−1w

∥

∥

∥

∥

| u, v, w ∈ Z2

}

,

M6 =

{
∥

∥

∥

∥

−1 + 2n−1w 2n−1u

2n−1v −1 + 2n−1w

∥

∥

∥

∥

| u, v, w ∈ Z2

}

,

M7 =

{ ∥

∥

∥

∥

i 2su

2tv −i + 2n−1

∥

∥

∥

∥

|
i ∈ {±1, ±1 + 2n−1}, 1 ≤ s, t ≤ n;
s + t ≥ n; u ∈ Z

∗
2n−s , v ∈ Z

∗
2n−t

}

,

M8 =

{ ∥

∥

∥

∥

1 2n−1u

2n−1v 1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 + 2n−1 2n−1u

2n−1v 1

∥

∥

∥

∥

| u, v ∈ Z2

}

,

M9 =

{ ∥

∥

∥

∥

−1 2n−1u

2n−1v −1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 + 2n−1 2n−1u

2n−1v −1

∥

∥

∥

∥

| u, v ∈ Z2

}

.

The numbers of elements in these sets are

|M4| = |M7| = 2n+1n, |M5| = |M6| = |M8| = |M9| = 8.
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For the purpose of the considerations of section 3, we divide M4 into a union of two
disjoint subsets M1

4 and M2
4, where M1

4 consists of all matrices of M4 in which s + t =
n, i = ±1 + 2n−1 or s + t > n, i = ±1, and M2

4 consists of all matrices of M4 in which
s + t = n, i = ±1 or s + t > n, i = ±1 + 2n−1. Similarly, we divide the set M7 into a
union of two disjoint subsets M1

7 and M2
7, where M1

7 consists of all matrices of M7 in
which s + t = n, i ∈ {−1, 1 + 2n−1} or s + t > n, i ∈ {1, −1 + 2n−1}, and M2

7 consists of
all matrices of M7 in which s+ t = n, i ∈ {1, −1+2n−1} or s+ t > n, i ∈ {−1, 1+2n−1}.

Finally, let us consider case IV. Then j and k can be presented in the forms

j = 2su, k = 2tv; 1 ≤ s, t ≤ n − 1,

2 ≤ m = s + t ≤ n − 1, u ∈ Z
∗
2n−s , v ∈ Z

∗
2n−t .

Since i2 − 1 = (i − 1)(i + 1) ≡ −jk (mod 2n), we have

i − 1 = 2rp, 1 ≤ r ≤ m − 1, p ∈ Z
∗
2n−r .

Then i + 1 = 2rp + 2 and the first equation of system (2.1) implies

i2 − 1 = 2r+1p(1 + 2r−1p) ≡ −2muv (mod 2n),

p(1 + 2r−1p) ≡ −2m−r−1uv (mod 2n−r−1). (2.2)

For the solvability of equation (2.2), it is necessary that r = m − 1 > 1 or r = 1. In both
cases m ≥ 3. Next we consider these cases separately.

Assume that r = m − 1 > 1, i.e. r = 2, 3, . . . , n − 2. Then, by (2.2),

uv ≡ −p(1 + 2r−1p) (mod 2n−m). (2.3)

Choose the numbers r, p, s, t, u, v as follows. First, let us choose arbitrary r ∈ {2, 3, . . . , n−
2} and p ∈ Z

∗
2n−r . Now choose s and t such that

s + t = m = r + 1, 1 ≤ s, t ≤ n − 1.

After that choose an arbitrary u0 ∈ Z
∗
2n−m , replace u by u0 in (2.3) and solve equation

(2.3) with respect to v. Denote this solution by v0 (v0 ∈ Z
∗
2n−m). Then the pairs (u, v),

satisfying (2.3), are

u = u0 + 2n−mk0, v = v0 + 2n−ml0; k0 ∈ Z2t , l0 ∈ Z2s .

If the numbers r, p, s, t, u, v are chosen in this way, then the corresponding numbers i, j

and k are the solutions of the first equation i2 + jk ≡ 1(mod 2n) of system (2.1). Let us
determine the number of solutions of this equation. For the choice of the pair (u, v) we
have 2t ·2n−r−2 ·2s = 2n−1 possibilities. The number of choices of (r, p, s, t) depends on r:
there are r possibilities for the choice of pairs (s, t) and 2n−r−1 possibilities for the choice
of p. Hence we have

n−2
∑

r=2

r · 2n−r−1 = 3 · 2n−2 − 2n
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possibilities for the choice of (r, p, s, t). Therefore, the number of solutions of the first
equation of (2.1) in the case r = m − 1 > 1 is

2n−1 · (3 · 2n−2 − 2n). (2.4)

Next assume that r = 1. Then (2.2) implies

p(1 + p) ≡ −2m−2uv (mod 2n−m). (2.5)

The number 1 + p can be presented in the form

1 + p = 2m−2q, q ∈ Z
∗
2n−1−(m−2) = Z

∗
2n−m+1 .

Hence (2.5) implies

(1 − 2m−2q)q ≡ uv (mod 2n−m). (2.6)

The choice of triples (i, j, k), satisfying the first equation of system (2.1), proceeds as
follows. First choose m such that 3 ≤ m ≤ n − 1. Next choose s and t such that
s + t = m, 1 ≤ s, t ≤ n − 1. After that choose q ∈ Z

∗
2n−m+1 and calculate p = −1 +

2m−2q, i = 1 + 2p. Now choose an arbitrary u0 ∈ Z
∗
2n−m , replace u by u0 in (2.6) and

solve the equation (2.6) with respect to v. Denote this solution by v0 (v0 ∈ Z
∗
2n−m). Then

the pairs (u, v), satisfying (2.6), are

u = u0 + 2n−mk0, v = v0 + 2n−ml0; k0 ∈ Z2t , l0 ∈ Z2s .

If the numbers m, q, s, t, u, v are chosen in this way, then the corresponding numbers
i, j and k are the solutions of the first equation i2 + jk ≡ 1(mod 2n) of system (2.1).
Let us determine the number of solutions of this equation in our case. For the choice of
the pair (u, v) we have 2t · 2n−m−1 · 2s = 2n−1 possibilities. The number of choices of
(m, q, s, t) depends on m: there are m − 1 possibilities for the choice of pairs (s, t) and
2n−m possibilities for the choice of q. Hence we have

n−1
∑

m=3

(m − 1) · 2n−m = 3 · 2n−2 − 2n

possibilities for the choice of (m, q, s, t). Therefore, the number of the solutions of the
first equation of (2.1) in the case r = 1 is also give by (2.4).

We have got all solutions of the first equation of (2.1). In both cases, r > 1 and r = 1,
they can be presented commonly as follows

i = ±1 + 2m−1p, b = 2su, c = 2tv, (2.7)

where p ∈ Z
∗
2n−m+1 and other parameters are described above. The sign + corresponds to

the case r > 1 and the sign - corresponds to the case r = 1. Let us solve now system (2.1)
fully.

The first and second equations of (2.1) imply l2 + jk ≡ 1 (mod 2n). Therefore, similarly
to (2.7), we get

l = ±1 + 2m−1p1, p1 ∈ Z
∗
2n−m+1 . (2.8)
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Assume that in (2.7) and (2.8) the signs are equal. Then i + l = 2(±1 + 2m−2(p + p1))
and the third equation of (2.1) implies 2 ≡ 0 (mod 2n−s), i.e., s = n − 1. This contradicts
t ≥ 1 and m = s + t ≤ n − 1. Hence the signs in (2.7) and (2.8) are different and

(i, l) = (1 + 2m−1p, −1 + 2m−1p1) or (i, l) = (−1 + 2m−1p, 1 + 2m−1p1), (2.9)

i + l = 2m−1(p + p1), i − l = ±2 + 2m−1(p − p1).

By the second equation of (2.1), we have

(i + l)(i − l) = 2m−1(p + p1)2(±1 + 2m−2(p − p1)) ≡ 0 (mod 2n),

i.e.,
p + p1 ≡ 0 (mod 2n−m). (2.10)

Consequently, the two first equations of (2.1) are valid only in the case when conditions
(2.9) and (2.10) hold. But in this case also the two last equations of system (2.1) are valid.
Hence

p + p1 = 2n−mw, w ∈ Z2,

l = ∓1 + 2m−1p1 = ∓1 + 2m−1(−p + 2n−mw) = −i + 2n−1w,

and we have got the set of all matrices of order two in case IV:

M10 =

{ ∥

∥

∥

∥

i = ±1 + 2m−1p 2su

2tv −i + 2n−1w

∥

∥

∥

∥

}

,

where
1 ≤ s, t ≤ n − 1, 3 ≤ m = s + t ≤ n − 1, p ∈ Z

∗
2n−m+1 , w ∈ Z2,

u = u0 + 2n−mk0, v = v0 + 2n−ml0, k0 ∈ Z2t , l0 ∈ Z2s

and v0 is a solution of the equation

u0v ≡ (∓1 − 2m−2p)p (mod 2n−m),

or, equivalently,

u ∈ Z
∗
2n−s , v ∈ Z

∗
2n−t , uv + (±1 + 2m−2p)p ≡ 0 (mod 2n−m).

Hence M10 can be presented as a disjoint union M10 = M1
10 ∪ M2

10 ∪ M3
10 ∪ M4

10 of
its subsets M1

10, M
2
10, M

3
10 and M4

10, where M1
10 consists of all matrices of M10 which

satisfy the equalities w = 0 and uv + (±1 + 2m−2p)p ≡ 0 (mod 2n−m+1), M2
10 consists

of all matrices of M10 which satisfy the equalities w = 0 and uv + (±1 + 2m−2p)p ≡
2n−m (mod 2n−m+1), M3

10 consists of all matrices of M10 which satisfy the equalities
w = 1, i = 1+2m−1p, uv+(1+2m−2p)p ≡ 0 (mod 2n−m+1) or w = 1, i = −1+2m−1p, uv+
(−1 + 2m−2p)p ≡ 2n−m (mod 2n−m+1), and, finally, M4

10 consists of all matrices of M10

which satisfy the equalities w = 1, i = 1+2m−1p, uv+(1+2m−2p)p ≡ 2n−m (mod 2n−m+1)
or w = 1, i = −1 + 2m−1p, uv + (−1 + 2m−2p)p ≡ 0 (mod 2n−m+1).

It is easy to check that

|M10| = 2 · 2 · 2n−1 · (3 · 2n−2 − 2n) = 2n+1 · (3 · 2n−2 − 2n).

If we sum up the numbers of elements of sets M1, . . . , M10, we obtain |M| = 4n−1+32.

We have proved the following theorem:
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Theorem 2.1. Assume that n ≥ 3. Then the set M of all (2×2)-matrices A over Z2n, sat-
isfying A2 = I, is the disjoint union of the sets M1, M2, . . . ,

M10. The number of these matrices is 9 · 4n−1 + 32.

3 Conjugate classes of matrices of order two

Let us consider the group G, given by (1.1) or, equivalently, by the corresponding matrix
A ∈ M, where the set M is described in section 2 (see (1.2)). Denote this group by G(A).
The matrix A determines an automorphism α of the subgroup < a, b >=< a > × < b >

of G(A): aα = aibj, bα = akbl. Then the composition rule in G(A) is

cug · cvh = cu+v · gαv · h; u, v ∈ Z2; g, h ∈< a, b > . (3.1)

Lemma 3.1. Let A, B ∈ M, and assume that A and B are conjugate: B = C−1AC.
Then the groups G(A) and G(B) are isomorphic.

Proof. Assume that A and B belong to M and they are conjugate, B = C−1AC.
Denote by α, β and γ, respectively, the automorphisms of < a, b > that correspond to
these matrices. Using (3.1), it is easy to check that the map

T : G(A) −→ G(B); (cug)T = cu · gγ; u, v ∈ Z2; g, h ∈< a, b >,

is isomorphism between groups G(A) and G(B). The lemma is proved.

By lemma 3.1, it is clear that to prove theorem 1.1, we need to divide the set M into con-
jugacy classes C1, . . . , Cm of matrices, choose a representative Ai from each conjugacy class
Ci, and, finally, check the isomorphism or non-isomorphism of groups G(A1), . . . , G(Am).

Theorem 3.1. For a fixed n ≥ 3, there exist 17 conjugacy classes of matrices in M.
They are

1) C1 =

{
∥

∥

∥

∥

1 0
0 1

∥

∥

∥

∥

}

, 2) C2 =

{
∥

∥

∥

∥

1 + 2n−1 0
0 1 + 2n−1

∥

∥

∥

∥

}

,

3) C3 =

{∥

∥

∥

∥

1 2n−1

0 1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 0
2n−1 1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 + 2n−1 2n−1

2n−1 1 + 2n−1

∥

∥

∥

∥

}

,

4) C4 =

{
∥

∥

∥

∥

1 2n−1

2n−1 1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 + 2n−1 2n−1

0 1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 + 2n−1 0
2n−1 1 + 2n−1

∥

∥

∥

∥

}

,

5) C5 =

{
∥

∥

∥

∥

−1 0
0 −1

∥

∥

∥

∥

}

, 6) C6 =

{
∥

∥

∥

∥

−1 + 2n−1 0
0 −1 + 2n−1

∥

∥

∥

∥

}

,

7) C7 =

{∥

∥

∥

∥

−1 2n−1

0 −1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 0
2n−1 −1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 + 2n−1 2n−1

2n−1 −1 + 2n−1

∥

∥

∥

∥

}

,

8) C8 =

{
∥

∥

∥

∥

−1 + 2n−1 2n−1

0 − 1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 + 2n−1 0
2n−1 − 1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 2n−1

2n−1 −1

∥

∥

∥

∥

}

,

9) C9 =

{
∥

∥

∥

∥

1 2n−1

2n−1 1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

1 + 2n−1 2n−1

2n−1 1

∥

∥

∥

∥

}

, 10) C10 = M8 \ C9,
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11) C11 =

{∥

∥

∥

∥

−1 2n−1

2n−1 −1 + 2n−1

∥

∥

∥

∥

,

∥

∥

∥

∥

−1 + 2n−1 2n−1

2n−1 −1

∥

∥

∥

∥

}

,

12) C12 = M9 \ C11, 13) C13 = M1
7 ∪M3

10, 14) C14 = M2
7 ∪M4

10,

15) C15 = M1 ∪M2 ∪M3, 16) C16 = M1
4 ∪M1

10, 17) C17 = M2
4 ∪M2

10.

Proof. Calculating the values of the pair (|A|, Tr(A)) for each A ∈ M, we get six
different values (Tr(A) – the trace of A):

(1, 2), (1, −2), (1 + 2n−1, 2 + 2n−1),

(1 + 2n−1, −2 + 2n−1), (−1 + 2n−1, 2n−1), (−1, 0).

Denote by K1, . . . , K6 the sets of all matrices A of M, for which the values of (|A|, Tr(A))
are these six pairs, respectively. It is easy to check that

K1 = M5, K2 = M6, K3 = M8, K4 = M9,

K5 = M1
7 ∪M2

7 ∪M3
10 ∪M4

10,

K6 = M1 ∪M2 ∪M3 ∪M4 ∪M1
10 ∪M2

10.

Assume that A, B ∈ M. If A and B are conjugate, then they have the same determi-
nants and traces. Therefore, each set Ki is a union of some conjugacy classes. Our aim is
to find these unions for sets K1, . . . , K6.

First we divide K1 into conjugacy classes. Matrices

A1 =

∥

∥

∥

∥

1 0
0 1

∥

∥

∥

∥

and A2 =

∥

∥

∥

∥

1 + 2n−1 0
0 1 + 2n−1

∥

∥

∥

∥

belong to the centre of GL2(Z2n). Hence we get conjugacy classes C1 = {A1} and C2 =
{A2}. Choose

A3 =

∥

∥

∥

∥

1 2n−1

0 1

∥

∥

∥

∥

∈ K1 \ (C1 ∪ C2).

Calculating the products C−1A3C for each C ∈ GL2(Z2n), we get a conjugacy class
C3 ⊂ K1. Since C1 ∪ C2 ∪ C3 6= K1, choose

A4 =

∥

∥

∥

∥

1 + 2n−1 2n−1

0 1 + 2n−1

∥

∥

∥

∥

∈ K1 \ (C1 ∪ C2 ∪ C3).

Calculating the products C−1A4C for each C ∈ GL2(Z2n), we get a conjugacy class
C4 ⊂ K1. Since K1 = C1 ∪ C2 ∪ C3 ∪ C4, we have finished the dividing of K1 into conjugacy
classes.

Similarly, we obtain the conjugacy classes for sets K2, K3 and K4:

K2 = C5 ∪ C6 ∪ C7 ∪ C8, K3 = C9 ∪ C10, K4 = C11 ∪ C12,

where C5, C6, . . . , C12 are the conjugacy classes with representatives

A5 =

∥

∥

∥

∥

−1 0
0 −1

∥

∥

∥

∥

, A6 =

∥

∥

∥

∥

−1 + 2n−1 0
0 −1 + 2n−1

∥

∥

∥

∥

,
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A7 =

∥

∥

∥

∥

−1 2n−1

0 −1

∥

∥

∥

∥

, A8 =

∥

∥

∥

∥

−1 + 2n−1 2n−1

0 −1 + 2n−1

∥

∥

∥

∥

,

A9 =

∥

∥

∥

∥

1 2n−1

2n−1 1 + 2n−1

∥

∥

∥

∥

, A10 =

∥

∥

∥

∥

1 0
0 1 + 2n−1

∥

∥

∥

∥

,

A11 =

∥

∥

∥

∥

−1 2n−1

2n−1 −1 + 2n−1

∥

∥

∥

∥

, A12 =

∥

∥

∥

∥

−1 0
0 −1 + 2n−1

∥

∥

∥

∥

,

respectively.
Let us divide now K5 into conjugacy classes. Choose two matrices A13, A14 ∈ K5:

A13 =

∥

∥

∥

∥

1 0
0 −1 + 2n−1

∥

∥

∥

∥

, A14 =

∥

∥

∥

∥

−1 0
0 1 + 2n−1

∥

∥

∥

∥

.

Our aim is to find all matrices that are conjugate with these matrices. Assume that

C =

∥

∥

∥

∥

x y

z w

∥

∥

∥

∥

is an arbitrary element of GL2(Z2n). Denote d = xw − yz. Since C ∈ GL2(Z2n), we have
d = xw − yz ≡ 1 (mod 2) and x0w − y0z ≡ 1 (mod 2n), where y0 = yd−1, x0 = xd−1. All
matrices which are conjugate with A13 have the form

C−1A13C =
1

d
·

∥

∥

∥

∥

w −y

−z x

∥

∥

∥

∥

·

∥

∥

∥

∥

1 0
0 −1 + 2n−1

∥

∥

∥

∥

·

∥

∥

∥

∥

x y

z w

∥

∥

∥

∥

=

=

∥

∥

∥

∥

1 + y0z · 2(1 − 2n−2) 2y0w(1 − 2n−2)
−2x0z(1 − 2n−2) −i0 + 2n−1

∥

∥

∥

∥

, (3.1)

where i0 = 1 + y0z · 2(1 − 2n−2). Since the system

{

1 + y0z · 2(1 − 2n−2) = −1, 2y0w(1 − 2n−2) = 0,

−2x0z(1 − 2n−2) = 0, −i0 + 2n−1 = 1 + 2n−1

has no solution (x0, y0, z, w) in Z
4
2n , the matrices A13 and A14 are not conjugate.

Assume that

B =

∥

∥

∥

∥

i 2su

2tv −i + 2n−1

∥

∥

∥

∥

∈ M7.

Here i ∈ {±1, ±1 + 2n−1}, 1 ≤ s, t ≤ n; s + t ≥ n; u ∈ Z
∗
2n−s , v ∈ Z

∗
2n−t . By (3.1), B is

conjugate with A13 if and only if the system

{

1 + y0z · 2(1 − 2n−2) = i, 2y0w(1 − 2n−2) = 2su,

−2x0z(1 − 2n−2) = 2tv, x0w − y0z = 1
(3.2)

has a solution (x0, y0, z, w) in Z
4
2n . Let us consider the case i = 1. It follows from (3.2)

that
{

y0z ≡ 0 (mod 2n−1), y0w ≡ 2s−1u(1 − 2n−2)−1 (mod 2n−1),

x0z ≡ −2t−1v(1 − 2n−2)−1 (mod 2n−1), x0w − y0z ≡ 1 (mod 2n)
(3.3)
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(the inverse elements are taken in Z
∗
2n). Clearly, x0w ≡ 1 (mod 2) and, therefore, (3.3)

implies






















y0 ≡ 2s−1uw−1(1 − 2n−2)−1 (mod 2n−1),

z ≡ −2t−1vx−1
0

(1 − 2n−2)−1 (mod 2n−1),

y0z ≡ −2s+t−2uvx−1
0

w−1(1 − 2n−2)−2 ≡ 0 (mod 2n−1),

x0w − y0z ≡ 1 (mod 2n).

(3.4)

Hence it is necessary that s + t − 2 ≥ n − 1, i.e. s + t > n. Assume that s + t > 2. Then,
by (3.4), system (3.3) has a solution:

w = 1, x0 = 1 + 2s+t−2,

y0 = 2s−1u(1 − 2n−2)−1, z = −2t−1vx−1
0

(1 − 2n−2)−1.

We have proved that if i = 1, then B is conjugate with A13 if and only if s+t > n. Similary
calculations show that if i = −1, i = 1+2n−1, i = −1+2n−1, then system (3.2) is solvable
and B is conjugate with A13 if and only if s + t = n, s + t = n, s + t > n, respectively.
Consequently, the matrix B ∈ M7 is conjugate with A13 if and only if B ∈ M1

7. Similarly,
the matrix B ∈ M7 is conjugate with A14 if and only if B ∈ M2

7. We have divided the
set M7 into two part, one part consisting of elements which are conjugate with A13 and
other part consisting of elements which are conjugate with A14.

Carrying out analogous calculations for B ∈ M10, we obtain the following result:
B is conjugate with A13 if and only if B ∈ M3

10, and B is conjugate with A14 if and
only if B ∈ M4

10. Therefore, we have divided the set K5 into two conjugacy classes
C13 = M1

7 ∪M3
10 and C14 = M2

7 ∪M4
10 with representatives A13 and A14, respectively.

Finally, we must divide K6 into conjugacy classes. Choose three matrices A15, A16, A17 ∈
K6:

A15 =

∥

∥

∥

∥

0 1
1 0

∥

∥

∥

∥

, A16 =

∥

∥

∥

∥

1 0
0 −1

∥

∥

∥

∥

, A17 =

∥

∥

∥

∥

1 + 2n−1 0
0 −1 + 2n−1

∥

∥

∥

∥

.

The centres of the groups G(A15), G(A16) and G(A17) are C2n , C2 ×C2n and C2 ×C2n−1 ,
respectively. In view of lemma 3.1, these three matrices belong to different conjugacy
classes. Similarly to the considerations in connection of matrices A13 and A14, we obtain
conjugacy classes C15, C16 and C17 which are represented by matrices A15, A16 and A17,
respectively: C15 = M1 ∪M2 ∪M3, C16 = M1

4 ∪M1
10, C17 = M2

4 ∪M2
10. The theorem is

proved.

4 Proof of Theorem 1.1

By theorem 3.1, M consists of 17 conjugacy classes C1, . . . , C17. We preserve the no-
tions A1, . . . , A17 given in the proof of theorem 3.1 for the representives of these conju-
gacy classes. Each group G which is given by defining relations (1.1) is isomorphic to
a group G(Ai) for suitable i. Theorem 1.1 will be proved if we show that the groups
G(A1), . . . , G(A17) are non-isomorphic to each other (Gi = G(Ai) in this theorem). Let
us prove that in this section.

Calculating the centres of the groups G(A1), . . . , G(A17), we obtain the following re-
sults:
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Z(G) G

C2 × C2n × C2n G(A1)
C2n G(A15)

C2 × C2n G(A13), G(A16)
C2 × C2n−1 G(A14), G(A17)

C2n−1 × C2n−1 G(A2), G(A4), G(A9)
C2n−1 × C2n G(A3), G(A10)

C2 × C2 G(A5), G(A6), G(A7), G(A8), G(A11), G(A12)

Hence depending on the centre, the groups G(A1), . . . , G(A17) can be divided into seven
classes. Two groups of different classes are non-isomorphic to each other. To prove that two
groups inside of a class are non-isomorphic we find the numbers of automorphisms of groups
G(A2), . . . , G(A14), G(A16),
G(A17). Doing that we get the following results:

G G(A2) G(A3) G(A4) G(A5) G(A6) G(A7)

|Aut(G)| 3 · 24n−1 24n 24n−1 3 · 26n−3 3 · 26n−5 26n−4

G G(A8) G(A9) G(A10) G(A11) G(A12) G(A13)

|Aut(G)| 26n−5 3 · 24n−2 24n−1 3 · 26n−6 26n−5 23n

G G(A14) G(A16) G(A17)

|Aut(G)| 23n+1 23n+1 23n

Since |Aut(G(A8)| = |Aut(G(A12)|, it is still necessary to check that the groups G(A8)
and G(A12) are non-isomorphic. Since the numbers of elements of order two in groups
G(A8) and G(A12) are 3+22n−2 and 3+22n−1, respectively, the groups G(A8) and G(A12)
are non-isomorphic. Theorem 1.1 is proved.

References

[1] Coxeter, H.S.M. and Moser, W.O.J., Generators and relations for discrete groups, Springer-
Verlag, 1972.

[2] Hall, M., Jr. and Senior, J.K., The groups of order 2n, n ≤ 6, Macmillan, New York; Collier-
Macmillan, London, 1964.


