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Abstract

We clarify and extend some remarks raised in [5] [Constantin A, J. Math. Phys. 46

(2005), 023506] about the evolution of compactly supported initial data under the
Camassa-Holm flow.

1 Introduction

The equation of Camassa and Holm [3, 4] is an approximate one-dimensional description
of long waves in shallow water. It reads

mt + 2mux + mxu = 0 , x ∈ R, t ≥ 0. (1.1)

in which m := u − uxx: in extenso,

ut − utxx + 3uux = 2uxuxx + uuxxx , x ∈ R, t ≥ 0. (1.2)

Its Eulerian form is more attractive: In terms of the Green’s function (1 − ∂2
x)G = δ, i.e.

G := e|·|/2, it reads

ut + uux + px = 0 with the “pressure” p := G ∗ [u2 +
1

2
u2

x] , (1.3)

i.e. a conservation law with nonlocal flux reminiscent of the three-dimensional incompress-
ible equations

ut + (u · grad)u + grad p = 0 ,

in which −△p ≡ trace{(∂u/∂x)2} and G = 1/(4π| · |) is inverse to −△ so that p =
G ∗ [trace{(∂u/∂x)2}]. It is important to emphasize the Lagrangian standpoint, tracking
the moving “fluid” in the natural characteristic scale ϕ = ϕ(t, x) determined by

ϕt = u(t, ϕ) = u(t) ◦ ϕ(t) , ϕ(0, x) = x , x ∈ R, t ≥ 0. (1.4)
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i.e. a diffeomorphism of the real line issuing from the identity. In this language, the CH
equation is expressed by a dynamical system for (ϕ, v := u ◦ ϕ) from which, following the
seminal papers of Arnold [1] and Marsden and Ebin [13], the initial value problem is most
easily studied cf. [12] and the references therein. The Lagrangian view point has also been
exploited to produce explicit formulas for the updated profile in terms of initial data (cf.
[16, 17, 19]).

This model was first noticed by Fokas and Fuchssteiner [14], by the method of recursion
operators, as a formally integrable bi-Hamiltonian generalization of KdV, but it became
the subject of serious study after it was revamped from physical principles by Camassa
and Holm [3], see also Johnson [15]. Unlike this well-known ancestor, which is produced by
approximation at the leading edge, CH was found in the course of approximating directly
in the Hamiltonian for Euler’s equations in the shallow water regime (more recently, (1.3)
has risen also as a model for nonlinear waves in cylindrical axially symmetric hyperbolic
rods, with v representing the radial stretch relative to a pre-stressed state [11]). It is a
good approximation for the full inviscid water wave equation, just as consistent in the
small amplitude, shallow water regime, as KdV. But more is true, the CH equation is
remarkable, as compared to KdV, (a) for its peaked solitons (which are stable and thus
physically observable [10]) and the simplicity of their interactions (cf. [2] for explicit
formulas describing them), (b) for its equivalence to the geodesic flow in the group of
compressible diffeomorphisms of the line, and (c) for the presence of breaking waves.
Nonetheless, in the case where no solitons are present, KdV and CH share a deeper
kindship than their respective derivations might have suggested, as was elegantly unveiled
by McKean [20], who established via a Liouville-Lagrangian map how the series of CH
invariants and their respective flows, alias the CH hierarchy, correspond to their KdV
counterparts.

Here we will not entertain with any of these. The present note is to clarify and extend
some remarks about the finite propagation speed for the Camassa-Holm equation discussed
by Constantin [5]. Due to the nonlocal nature of (1.3), which is equivalent to the extended
version (1.2), it is not a priori clear that a localized initial data u0 := u(0, ·), namely one
which is compactly supported, will not spread out eventually (or even instantly) to the
whole spatial domain. Below we give a concise proof of this property refining the argument
of [5], and elaborate on some of its implications.

2 Main Results

As mentioned implicitly in the introduction, CH satisfies the least-action principle as it
corresponds to geodesic flow, on the group of compressible diffeomorphism on the line,
with respect to the right-invariant Sobolev H1-metric assimilated as the energy. Now
Noether’s theorem guarantees the existence of a first integral from each one-parameter
subgroup that leaves the energy functional unchanged. By right invariance, the elements
of every orbit issuing from the identity constitute such a subgroup and since these are
plenty (one such for each initial direction in the tangent space at the identity alias the
Lie algebra associated to the group) the infinite collection of associated invariants actually
corresponds to an identity, cf. [8, 9].
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Theorem 1. Let u denote a solution of the Camassa-Holm equation (1.2), the latter being
a re-expression of geodesic flow in the group of compressible diffeomorphisms of the line ϕ
satisfying (1.4). Then, as seen by Noether’s principle, the expression ϕ2

x(t, x)m(t, ϕ(t, x))
where m = u − uxx is time-invariant, i.e. it is identically equal to m0 := u0 − (u0)xx.

Indeed, it follows by direct computation that [ϕ2
xm ◦ ϕ]t = ϕ2

x · {(1.1)} ◦ ϕ = 0, i.e.
as long as the diffeomorphism of the line holds (i.e., as long as ϕx > 0), the existence of
the aforementioned first integral is a direct consequence of the fact that m satisfies the
Camassa-Holm equation (1.1), and conversely, every solution of (1.1) gives rises (via the
diffeomorphism of the line [issuing from the identity] specified by (1.4) with u = G ∗ m)
to such an integral of motion.

In other words,

ϕ2
x(t, x)m(t, ϕ(t, x)) = m0(x) , x ∈ R , 0 ≤ t < T , (2.1)

where T > 0 denotes the maximal time of existence of a smooth solution of (1.1). It is
clear from (2.1) that as long as the diffeomorphism of the line holds or, what is the same
as long as breaking of the wave has not occurred (cf. [18] and [19]), the support of m0 is
contained in the interval [x−, x+] if and only if, for any 0 ≤ t < T , the support of m(t, ·)
is contained in the interval [ϕ(t, x−), ϕ(t, x+)].

Remark. Differentiating (1.4) once with respect to the spatial variable, switching the order
of differentiations and integrating with respect to the time variable yields

ϕx(t, x) = e
∫

t

0
ux(s,ϕ(s,x))ds x ∈ R , 0 ≤ t < T ,

which is consistent with the fact that breakdown of the wave (in finite time) is signaled
by ux ↓ −∞ as t ↑ T , cf. [18]. On the other hand, combining suitably the first couple of
spatial differentiations of (1.4) and employing the invariant (2.1) produces

ϕ2
xϕt − ϕtxx + ϕtxϕxx/ϕx = m0 ,

i.e. an interesting (inhomogeneous) PDE expressing the initial data in terms of the dif-
feomorphism.

Amplification. For a classical solution of (1.2), singularities can only arise in the the
form of breaking waves [6]. Moreover, breakdown of solutions of (1.2) depends on the sign
disposition of the initial profile m0 (cf. [7], [18]). Hence, the PDE of the last display
offers the possibility to translate the curious sign condition signaling breakdown purely in
terms of the geodesic.

We summarize the above in the following

Corollary 1. Let T > 0 denote the maximal time of existence of the smooth solution
m(t, x), 0 ≤ t < T , x ∈ R, of the initial value problem (1.1) with compactly supported
initial data m0, itself a real valued smooth function on the real line. Then for any 0 ≤ t <
T , m(t, x) has compact support.
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The point is that, as long as breakdown has not occurred, the solutions of the Camassa-
Holm equation (1.1) propagate at finite speed. Indeed, this is a direct consequence of
the fact that for any given x ∈ R and 0 ≤ t < T , the speed of propagation of ϕ is
commensurate with the size of u (cf (1.4)), which is pointwise bounded by the Sobolev
H1-norm E[u] :=

∫
R
(u2 + u′2) < +∞, (alias the energy functional) which is preserved

under the flow (1.3). Now, were a smooth velocity profile u verifying (1.3) of compact
support for any given 0 ≤ t < T , so would be the corresponding m = u − uxx solution of
(1.1), i.e. for any 0 ≤ t < T , supp(m(t, ·)) ⊂ supp(u(t, ·)). In particular, if u0 has compact
support, so would have m0. Let us assume for simplicity that the initial data consists of a
single isolated lump, i.e. that the compactly supported u0 is such that m0 has connected
compact support on which it is sign definite, say nonnegative. For such smooth initial
data, the profile never breaks down [18], so in this case T > 0 is arbitrarily large. So let
u0 be of compact support such that supp(m0) = [x−, x+] where m0 > 0. By corollary (1)
and the fundamental identity (2.1), supp(m(t, ·)) = [ϕ(t, x−), ϕ(t, x+)] where m(t, ·) > 0.
Hence upon spelling out the relation u = G ∗ m it develops

2u(t, x) = e−x

∫ x

ϕ(t,x
−

)
eym(t, y)dy + ex

∫ ϕ(t,x+)

x

e−ym(t, y)dy . (2.2)

The above display implies that u(t, ·) can not be of compact support. For suppose that
u(t, x) ≡ 0 for x > α+ ≥ x+ for some α+ < +∞. For this set of values, the second term on
the r.h.s. of (2.2) vanishes since the domain of integration lies beyond the support of m(t, ·)

as supp(m(t, ·)) ⊂ supp(u(t, ·)), while the first term reduces to e−x
∫ ϕ(t,x+)
ϕ(t,x

−
) eym(t, y)dy > 0

which is a contradiction since the l.h.s. of (2.2) is zero by assumption. Hence u(t, ·) can
not vanish identically to the right. By the same reckoning we establish that u(t, ·) can
not vanish identically to the left of some −∞ < α− ≤ x−. In short, the condition that
the smooth initial profile u0 is of compact support and such that the corresponding m0

constitutes an isolated positive lump, implies that u(t, ·) is not of compact support.
In other words, the solution u(t, ·) of the CH equation (1.3) instantly loses the property

of having compact support.
Now, it is known that the long time development of suitable class of initial data (com-

prising the type employed in the argument above) run by the CH flow produces a train
of solitons escaping at speeds conmensurate with the spectral values of the associated
spectral problem, fxx = (1/4 − λm0)f (cf. [19] for more details), and thus becoming
widely separated as they disperse. Hence it was reasonable to expect that for a suitable
class of compactly supported initial data, the corresponding updates would eventually fall
out of this category. What is remarkable is that for the aforementioned initial data, the
spreading of the profile over the whole real line switches on immediately thereafter.
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