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Abstract

The paper investigates some special Lie type symmetries and associated invariant
quantities which appear in the case of the 2D Ricci flow equation in conformal gauge.
Starting from the invariants some simple classes of solutions will be determined.

1 Introduction

One of the most fruitful models used in study of the black holes and in the attempt
of obtaining a quantum theory of gravity is connected with the Ricci flow equations [2].
Because of the difficulties which appear when a quantum field theory is formulated, various
models in less dimensions were intensively studied. These are the so called ”mechanical
models” and the most known examples are given by the classical model of the Yang-
Mills gauge field [9], as well as some 3-dimensional models of dynamical systems as the
Hénon-Heiles one [5].

We will investigate a 2D model for the Ricci flow equation, a nonlinear parabolic equa-
tion obtained when the components of the metric tensor gαβ are deformed following the
equation:

∂

∂t
gαβ = −Rαβ (1.1)

where Rαβ is the Ricci tensor for the n-dimensional Riemann space. The main interest
will be connected with the integrability of this equation. There are many possible ways to
solve this problem, as for example the reduction of the differential equation to an algebraic
one by finding a sufficient number of Lie symmetries or the application of the Painlevé
test [6]. In this paper we start from the standard form of the Lie operators [10] and we
look for the existence of a sufficient number of Lie symmetries [7]. As is well known,
the Lie symmetries of nonlinear equations may be used to construct exact solutions and
conservation laws [4]. The algorithm we will apply is the same with that from [11]. In a
special case of linearization, we will point out some particular classes of invariants and of
solutions. Some special classes of solutions for the same equations are considered in [3].

The paper is organized as follows: after this introductive section, the 2D model of
the Ricci flow equation is presented in the second section. It will lead to a non-linear
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differential equation of second order. This equation could be seen as describing a non-
autonomous dynamical system and, by its consequences, a specific technique could be
used in order to recover the symmetry operators and the invariant quantities which could
be attached to them. We will discuss all these symmetry matters in the third section of
the paper and we will obtain there special classes of invariants. The paper will end with
some concluding remarks, the most important one regarding the algebra satisfied by the
symmetry operators of the considered model.

2 The mechanical model for the Ricci flow

Let us consider the case of the Ricci flow equation of the type (1.1). The metric tensor of
the space gαβ will be connected with the Riemann metric in the conformal gauge:

ds2 = gαβdxαdxβ =
1

2
exp{Φ(X,Y, t)}(dX2 + dY 2) (2.1)

The ”potential” Φ(X,Y, t) satisfies the equation:

∂

∂t
eΦ = △Φ (2.2)

It has been noticed [1] that the equation (2.2) is pretty similar with the Toda equation
describing the integrable interaction of a collection of two dimensional fields {Φi, i = 1, 2}
coupled by a Cartan matrix (Kij):

∑

j

Kije
Φj(X,Y ) = △Φi(X,Y ) (2.3)

Introducing the field v(x, y, t) given by

v(x, y, t) = eΦ (2.4)

the equation (2.2) takes the form:

vt = (ln v)xy (2.5)

An equivalent form for the previous equation, which will be used in the next sections of
the paper, is:

v2vt + vyvx − vvxy = 0 (2.6)

It is a well-known equation which has been studied as a continuum limit of the Toda-type
equation. Among the main results concerning (2.5) we mention: (i) it could be obtained
as a particular case of the 3D Ricci flow equation which accepts a Killing vector; (ii) by
linearization, it presents various classes of solutions depending on the ”sector” where it
is defined [3]. Up to our knowledge, no effective studies on the Lie symmetries of this
equation were performed. This will be the main objective of the following section of our
paper.
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3 Symmetries and invariants

3.1 The general form of the Lie symmetry operators

The Lie symmetry operator for differential equations with independent variables xi, i = 1, p
and dependent variables vα, α = 1, q has the form [10]:

U =

p
∑

i=1

ξi(xi, vq)
∂

∂xi
+

q
∑

α=1

φα(xi, vq)
∂

∂vα
(3.1)

The n-th extension of (3.1) is the operator:

U (n) = U +

q
∑

α=1

∑

J

φJ
α(xi, v(n))

∂

∂vα
J

(3.2)

where v(n)denotes the set of variables which includes v and the partial derivatives of v up
to n-th order and

vα
J =

∂mvα

∂xj1∂xj2..∂xjm
(3.3)

Also, in (3.1) the second summation refers to the all multi-indices J = (j1, ...jm),with
1 ≤ jm ≤ p, 1 ≤ m ≤ n.The coefficient functions φJ

α of (3.2) are given by the following
formula:

φJ
α(xi, v(n)) = DJ [φα −

p
∑

i=1

ξivα
i ] +

p
∑

i=1

ξivα
J,i (3.4)

where

vα
i =

∂vα

∂xi
, i = 1, p (3.5)

vα
J,i =

∂vα
J

∂xi
=

∂m+1vα

∂xi∂xj1∂xj2 ..∂xjm
(3.6)

DJ = Dj1Dj2 ...Djm
,Dj =

d m

dxj1dxj2 ..dxjm
(3.7)

A differential equation of n-th order should remain invariant in respect with a point trans-
formation if the action of n-th order extended operator (3.2) upon the equation would
vanish.

3.2 Lie operators for 2D Ricci flow

Let us come back to the equation (2.6). Because it is a partial differential equation of
second order, which has three independent variables x, y, t and one dependent variable v,

the Lie operator which leaves (2.6) invariant, has the form:

U(x, y, t, v) = ξ1(x, y, t, v)
∂

∂x
+ ξ2(x, y, t, v)

∂

∂y
+ ξ3(x, y, t, v)

∂

∂t
+ φ(x, y, t, v)

∂

∂v
(3.8)
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Following the general formula (3.2), the second extension of (3.8) has the form:

U (2) = U + φx ∂

∂vx

+ φy ∂

∂vy

+ φt ∂

∂vt

+ φ2x ∂

∂v2x

+ φxy ∂

∂vxy

+ φxt ∂

∂vxt

+

+φ2y ∂

∂v2y

+ φyt ∂

∂vyt

+ φ2t ∂

∂v2t

(3.9)

We impose the invariance condition for the Ricci flow equation. In other words, we ask
for the vanishing of the action of operator (3.9) upon the equation (2.6). We obtain the
condition:

φ[2vvt − vxy] + φxvy + φyvx + φtv2 − φxyv = 0 (3.10)

Using (3.4), the function φx from (3.10) has the form:

φx = φx + [φv − ξ1
x]vx − ξ1

vv
2
x − ξ2

xvy − ξ3
xvt − ξ2

vvxvy − ξ3
vvxvt (3.11)

If we should substitute vt from (2.6) into (3.11), we would obtain:

φx = φx + [φv − ξ1
x]vx − ξ1

vv
2
x − ξ2

xvy + [v−2ξ3
x − ξ2

v ]vxvy −

−v−1ξ3
vvyv

2
x − v−1ξ3

vvxvxy (3.12)

Similarly, after the substitution of vt, the function φy has the expression:

φy = φy + [φv − ξ2
y ]vy − ξ1

yvx + [−ξ1
v + v−2ξ3

y ]vxvy − ξ2
vv

2
y −

−v−1ξ3
yvxy + v−2ξ3

vvxv2
y − v−1ξ3

vvyvxy (3.13)

Following the same procedure, we obtain for the functions φt and φxy the forms:

φt = φt − v−2[φv − ξ3
t ]vxvy + v−1[φv − ξ3

t ]vxy − ξ1
t vx + v−2ξ1

vvyv
2
x −

−v−1ξ1
vvxvxy − ξ2

t vy + v−2ξ2
vvxv2

y − v−1ξ2
vvyvxy − v−4ξ3

vv2
xv

2
y − (3.14)

−v−2ξ3
vv2

xy + 2v−3ξ3
vvxvyvxy

φxy = φxy + [φxv − ξ2
xv]vy + [φyv − ξ1

xy]vx +

+[φ2v − ξ1
vx − ξ2

yv + ξ3
xyv

−2]vyvx + [φv − ξ1
x − ξ2

y − v−1ξ3
xy]vxy −

−− ξ1
vyv

2
x + [−ξ1

2v + v−2ξ3
vy − 2v−3ξ3

y ]vyv
2
x + [−2ξ1

v − v−1ξ3
vy + 2v−2ξ3

y ]vxvxy −

−ξ1
yv2x + [−ξ1

v + v−2ξ3
y ]vyv2x − ξ2

xvv
2
y + [−ξ2

2v + v−2ξ3
xv − 2v−3ξ3

x]vxv2
y −

−ξ2
xv2y + [−ξ2

v + v−2ξ3
x]v2yvx + [−2ξ2

v − v−1ξ3
xv + 2v−2ξ3

x]vyvxy +

+[v−2ξ3
2v − 4v−3ξ3

v ]v
2
xv2

y + [−v−1ξ3
2v + 5v−2ξ3

v ]vyvxvxy + v−2ξ3
vv2

xv2y −

−v−1ξ3
xvxyy − v−1ξ3

vvxvxyy − v−1ξ3
yvxxy − v−1ξ3

vvyvxxy + v−2ξ3
vv

2
yv2x − v−1ξ3

vv
2
xy

(3.15)

Substituting the relations (3.12)-(3.15) into (3.10) and equalizing the coefficients of the
various monomials in the first and second order partial derivatives of v,we find a system
with 18 equations which can be reduced to the following:
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−vφ2v + ξ3
t + φv − ξ2

y − ξ1
x − 2v−1φ = 0

−vφyv − ξ1
t v

2 + φy = 0

−vφxv − ξ2
t v2 + φx = 0 (3.16)

φ − vξ3
t + vξ1

x + vξ2
y = 0

φtv − φxy = 0

By solving (3.16), we conclude that the most general symmetry generator of the Ricci flow
equation, has coefficient functions of the form:

ξ1(x), ξ2(y), arbitrary functions;

ξ3(x) = c1t + c2; c1, c2 arbitrary constants; (3.17)

φ(x, y, t, v) = v[ξ3
t (t) − ξ1

x(x) − ξ2
y(y)]

Thereby, the Lie symmetry operator for (2.6) has the final form:

U = ξ1(x)
∂

∂x
+ ξ2(y)

∂

∂y
+ [c1t + c2]

∂

∂t
+ v[c1 − ξ1

x(x) − ξ2
y(y)]

∂

∂v
(3.18)

As U contains coefficients in the form of 2 arbitrary functions {ξi, i = 1, 2}, we deal with an
infinite number of symmetry operators. The action of U can be split in various ”sectors”,
depending on the concrete form we might choose for the functions {ξi, i = 1, 2}.

3.3 The linear sector of invariance

One of the simplest cases we could consider for the action of the symmetry operator U

given by (3.18) is the case when

Φ ≡ v[c1 − ξ1
x(x) − ξ2

y(y)] = k v (3.19)

The condition k = const. imposes in fact that ξ1 and ξ2 should be linear in their arguments:

ξ1(x) = c5x + c3; ξ2(y) = c6y + c4 (3.20)

This case corresponds to the situation when the variables are not ”melt” in the action
of the symmetry U. On the sector given by the curves (3.20), the 2D Ricci flow equation
(2.6) admits a 6-parameters family of Lie operators. It creates 6 independent operators of
the form:

U1 = t
∂

∂t
+ v

∂

∂v
; U2 =

∂

∂t
;U3 =

∂

∂x
; U4 =

∂

∂y
(3.21)

U5 = x
∂

∂x
− v

∂

∂v
; U6 = y

∂

∂y
− v

∂

∂v

The forms of the operators Ui, i = 1, 6 suggest their significations: U1 represents a dilata-
tion, U2 describes the symmetry of time translation and U3, U4 generate the symmetry of
space translations, U5, U6 are associated with the scaling transformation [8].
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When the Lie algebra of these operators is computed, the only non-vanishing relations
are obtained in the form:

[U2, U1] = U2; [U3, U5] = U3; [U4, U6] = U4 (3.22)

It is interesting to remark the coupling of the operators in three independent pairs with
similar action on the equation. This means that the whole algebra splits in a direct sum of
3 subalgebras. Each of them is 2-dimensional and, following Ado’s theorem, is generated
by the only one non-commutative 2-dimensional algebra of matrices generated by

E11 =

(

1 0
0 0

)

;E12 =

(

0 1
0 0

)

(3.23)

The associated Lie group has the form:

(

a b

0 1

)

.

Let us pass now to the problem of the invariant quantities associated with the symmetry
operators {Ui, i = 1, ..., 6}. They will be solutions of the system of equations having the
form:

Uj [Ik] = 0; j = 1, 6, k = 1, 2, ... (3.24)

We will consider by turns the expressions (3.21) of Ui, i = 1, 6.

• The invariants associated to the symmetry operator U1, are obtained by integrating
the characteristic equations:

dy

0
=

dx

0
=

dt

t
=

dv

v
(3.25)

and have the forms x, y, v
t
. Taking into account the last invariant, we assume a

similarity solution of the form:

v = f(x, y)t (3.26)

and we substitute it into (2.6) to determine the form of the function f(x, y). We
obtain that f(x, y) is a solution for the following differential equation:

f3 + fxfy − ffxy = 0 (3.27)

• The invariants induced by U5 are obtained in a similar way from the equalities:

dy

0
=

dt

0
=

dx

x
=

dv

−v
(3.28)

They are t, y, vx. By direct computation, when we impose the similarity condition
vx = g(t, y),we see that, in fact, g(y, t) has to depend on y only, that is to say it is
an arbitrary function of the form g(y). The 2D Ricci flow equation (2.5) admits in
this case the stationary solution:

v =
g(y)

x
(3.29)
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• Because (2.6) is symmetric in x and y, it has a similarity solution of the form:

v =
g1(x)

y
(3.30)

• By similar arguments, the invariants generated by the operators Ui, i = 2, 3, 4 are
respectively the arbitrary functions h(x, y, v), k(t, y, v); p(x, t, v).

4 Conclusions

The aim of this paper was to study the Lie symmetries and the associated invariants of
the two dimensional model for the Ricci flow equation. Apart from its intrinsic impor-
tance, this model allows the application of an interesting algorithm for analyzing the Lie
symmetries of the non-autonomous dynamical systems. It starts from the general form
of the symmetry operators (3.8), continues with the computation of its extensions till the
order equal to the one of the differential equation and concludes by imposing the invari-
ance condition on the evolution equation. By applying this approach, we obtained some
interesting results which can be synthesized as follows: (i) the Lie operator has the general
form given by (3.18). It depends on the 2 constants and 2 arbitrary functions ξ1(x), ξ2(y);
(ii) choosing linear expressions for ξ1(x), ξ2(y), a set of 6 symmetry operators can be gen-
erated. They have the expressions (3.21) and satisfy the algebra (3.22). It can be split
in a direct sum of 3 independent subalgebras admitting an interesting matriceal represen-
tation; (iii) the Lie operators generate interesting forms of invariant quantities, from the
simplest (the coordinates themselves) to arbitrary functions. Using these invariants and
imposing the similarity condition, we were able to obtain very simple solutions of the 2D
Ricci flow equation, as for example stationary solutions (3.29) and (3.30) or solutions that
propagate linearly in time, as (3.26).

As an alternative investigation, the invariants could be obtained by the extension of
the evolutionary operator in the form

UQ =

q
∑

α=1

Qα

∂

∂vα
, (4.1)

where Qα(xi, v, vxi) = (Q1, ..., Qq), i = 1, p are referred to as the characteristics of the
operator (4.1) and have the expression:

Qα = φα(xi, v) −

p
∑

i=1

ξi
(

xi, v
)

vα
i , α = 1, q (4.2)

This approach will be tackled with in a next to come paper.
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[6] Hone A N W, Painlevé tests, singularity structure and integrability, preprint arXiv:

nlin.SI/0502017v1.

[7] Leach P G L, Flessas G P and Cotsakis S, J. Nonlinear Math. Phys. 7 (2000), 445–479.

[8] Leach P G L, Flessas G P and Cotsakis S, J. Math. Anal. Appl. 251 (2001), 587–608.

[9] Matincan S G, Savvidi G K and Savvidi N G T, Sov. Phys. JETP 53 (1981), 421.

[10] Olver P J, Application of Lie groups to differential equations, Springer, New York, 1993.

[11] Struckmeier J and Riedel C, Phys. Rev. E 66 (2002), 066605.


