Interpolation of entire functions, product formula for basic sine function

Fethi BOUZEFFOUR

Institut Préparatoire Aux Etudes d'Ingénieur de Bizerte, Tunisie
E-mail: bouzeffourfethi@yahoo.fr

Received September 20, 2005; Accepted December 22, 2005

Abstract

We solve the problem of constructing entire functions where $\ln M(r ; f)$ grows like $\ln ^{2} r$ from their values at q^{-n}, for $0<q<1$. As application we give a product formula for the basic sine function.

1 Introduction

In [9], Ismail and Zhang introduced the q-analogue of the exponential and trigonometric functions. They used transform formula to analytically continue to entire functions in the variable ω. Suslov (see [14]) identified a special case which leads to a comprehensive orthogonal system of functions. This opened the door for a comprehensive study of qFourier series, where q-analogues of some results in classical Fourier series have been proved (see [14]). In this paper we give a product formula for the basic sine function.

In this work we mostly follow the terminology of [4]. We will always assume $0<q<1$. We first remind the reader of the notations to be used. A q-shifted factorial is defined by (see [4])

$$
\begin{equation*}
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots \infty \tag{1.1}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{s} ; q\right)_{n}=\prod_{1=0}^{s}\left(a_{k} ; q\right)_{n}, \quad n=0,1,2, \ldots \infty \tag{1.2}
\end{equation*}
$$

A basic hypergeometric series is

$$
\begin{equation*}
{ }_{r} \varphi_{s}\left(a_{1}, \ldots, a_{r+1} ; b_{1}, \ldots, b_{r} ; q, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(b_{1}, \ldots, b_{s}, q ; q\right)_{k}}\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+s-r} z^{k} \tag{1.3}
\end{equation*}
$$

Given a function f defined on $(-1,1)$, we set $\breve{f}\left(e^{i \theta}\right):=f(x), x=\cos \theta$. In other words we think of $f(\cos \theta)$ as a function of $e^{i \theta}$. In this notation the Askey-Wilson finite difference operator \mathcal{D}_{q} is defined by

$$
\begin{equation*}
\left(\mathcal{D}_{q} f\right)(x)=\frac{\breve{f}\left(q^{\frac{1}{2}} e^{i \theta}\right)-\breve{f}\left(q^{-\frac{1}{2}} e^{-i \theta}\right)}{\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) i \sin \theta} \tag{1.4}
\end{equation*}
$$

2 Interpolation of entire functions

In a recent work, M.E.H.Ismail and D.Stanton (see [7]) solved the problem of constructing entire functions from their values at $\frac{1}{2}\left[a q^{n}+\frac{1}{a q^{n}}\right]$, for entire functions satisfying

$$
\begin{equation*}
\lim _{r \longrightarrow \infty} \sup \frac{\ln M(r ; f))}{\ln ^{2} r}=c \tag{2.1}
\end{equation*}
$$

for a particular c which depends upon q. Here $M(r ; f)$ is

$$
M(r ; f)=\sup \{|f(z)|:|z| \leq r\}
$$

In this section, we adopt their method to solve interpolation problem for the sequence

$$
\left\{q^{-n}, n=0,1, \ldots\right\}
$$

Let us begin by the following lemma:
Lemma 1. The Cauchy's kernel $\frac{1}{y-x}$ has the expansion

$$
\frac{1}{y-x}=\frac{(x ; q)_{\infty}}{(y-x)(y ; q)_{\infty}}+\sum_{k=0}^{\infty} \frac{(x ; q)_{k}}{(y ; q)_{k+1}} q^{k}
$$

for all y such that $y \neq x$ and $y \neq q^{-n}, n=0,1, \ldots$
Proof. By induction on n, one proves easily that for $y \neq x$ and $y \neq q^{-n}, n=0,1, \ldots$, we have

$$
\frac{1}{y-x}=\frac{(x ; q)_{n+1}}{(y-x)(y ; q)_{n+1}}+\sum_{k=0}^{n} \frac{(x ; q)_{k}}{(y ; q)_{k+1}} q^{k}
$$

The result follows when we tend n to ∞.
Theorem 2. Let f be an analytic function in a bounded domain D and let C be a contour within D and x belongs to the interior of C. If the contour C is at a positive distance from the set $\left\{q^{-n} ; n=0,1, \ldots\right\}$, then

$$
f(x)=\frac{(x ; q)_{\infty}}{2 i \pi} \int_{C} \frac{f(y)}{(y-x)(y ; q)_{\infty}} d y+\frac{1}{2 i \pi} \sum_{k=0}^{\infty} q^{k} f_{k}(x ; q)_{k}
$$

where

$$
f_{k}=\int_{C} \frac{f(y)}{(y ; q)_{k+1}} d y
$$

Proof. Multiply the first expansion in Lemma 1 by $f(y)$, integrate with respect to y and interchange integration and summation, the result follows from Cauchy's theorem.

Theorem 3. Any entire function f satisfying (2.1) with $c<\frac{1}{2 \ln q^{-1}}$ has a convergent expansion

$$
f(x)=\sum_{n=0}^{\infty} f_{n}(x ; q)_{n}
$$

Moreover any function f is uniquely determined by its values on $\left\{q^{-n}: n \geq 0\right\}$.
To prove Theorem 3, let us first state and prove the following lemma:
Lemma 4. Let $-1<\delta<0$, and f be entire function satisfying (5) with $c<\frac{1}{2 \ln q^{-1}}$. Then

$$
\lim _{n \longrightarrow \infty} \int_{|y|=q^{-n-\delta}} \frac{f(y)}{(y-x)(y ; q)_{\infty}} d y=0
$$

Moreover, the same conclusion holds if

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} q^{n(n+2 \delta+1) / 2} \sup \left\{f\left(q^{-n-\delta} e^{i \theta}\right): 0 \leq \theta \leq 2 \pi\right\}=0 \tag{2.2}
\end{equation*}
$$

Proof. It is clear that $\inf \left\{(y ; q)_{\infty}:|y|=r\right\}=\left|(r ; q)_{\infty}\right|$. Hence for $|y|=q^{-n-\delta}$, we have

$$
\begin{aligned}
\left|(y ; q)_{\infty}\right| & \geq\left|\left(q^{-n-\delta} ; q\right)_{n}\left(q^{-\delta} ; q\right)_{\infty}\right| \\
& =q^{-n(n+2 \delta+1) / 2}\left(q^{\delta+1} ; q\right)_{n}\left(q^{-\delta} ; q\right)_{\infty}
\end{aligned}
$$

and the result follows.
Instead of proving the expansion in Theorem 3 in the basis $\left\{(x ; q)_{n}\right\}$, we shall prove the following equivalent result:

Theorem 5. The expansion formula

$$
f(x)=\sum_{n=0}^{\infty} q^{n} f_{n}(x ; q)_{n}
$$

with

$$
f_{n}=\frac{1}{(q ; q)_{n}} \sum_{k=0}^{n} \frac{(q ; q)_{n}}{(q ; q)_{n-k}(q ; q)_{k}}(-1)^{k} q^{\binom{k}{2}} f\left(q^{-k}\right)
$$

for functions f satisfying the assumptions of Lemma 4.
Proof. Let C_{m} be a circle centered at $y=0$ with radius $q^{-m-\delta}$. The Lemma 4 shows that the first integral in Theorem 2 is small if m is large. We split the remaining terms with $n>m$, and initial terms with $n \leq m$. We will show that the tail is small, leaving
the initial terms. Then a residue calculation establishes the expression for f_{n}, because the poles of $\frac{f(y)}{(y ; q)_{n+1}}$ are at $y=q^{-k}, k=0,1, \ldots, n$.

Note that if $n>m$ then

$$
\begin{aligned}
\min \left\{\left|(y ; q)_{n+1}\right|\right. & \left.:|y|=q^{-m-\delta}\right\} \\
& =\left(q^{-m-\delta} ; q\right)_{m}\left(q^{-\delta} ; q\right)_{n+1-m} \\
& =q^{-m(m+2 \delta+1)}\left(q^{\delta+1} ; q\right)_{m}\left(q^{-\delta} ; q\right)_{n+1-m} \\
& \geq q^{-\left((m+\delta)^{2}+1-\delta^{2}\right) / 2} A,
\end{aligned}
$$

where A is a positive constant independent of n and m. Therefore for sufficiently large m, and $|y|=q^{-m-\delta}$,

$$
\ln \left[M\left(q^{-m-\delta}, \frac{f(y)}{(y ; q)_{n+1}}\right] \leq\left[c_{1}+\frac{1}{2 \ln q}\right] \ln ^{2}\left(q^{-m-\delta}\right)+O(m)\right.
$$

for some $c_{1}, c \leq c_{1} \leq \frac{1}{2 \ln q^{-1}}$.
This is a uniform bound of $e^{-D\left(\ln q^{-m-\delta}\right)^{2}}, D>0$, for each integral for $n>m$. Since $(x ; q)_{n} \longrightarrow(x ; q)_{\infty}$, there is a uniform bound B for $(x ; q)_{n}$ on compact sets. Thus the tail is bounded by

$$
\sum_{n=m+1}^{\infty} B q^{n} e^{-D\left(\ln q^{-m-\delta}\right)^{2}} \leq B \frac{q^{m+1}}{1-q} e^{-D\left(\ln q^{-m-\delta}\right)^{2}}
$$

which is small for m large.
Theorem 6. Let f be entire function satisfying (2.1) with $c<\frac{1}{2 \ln q^{-1}}$. Then

$$
\frac{f(x)}{(x ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n+1}{2}}}{(q ; q)_{n}(q ; q)_{\infty}} \frac{f\left(q^{-n}\right)}{1-q^{n} x}
$$

Proof. Consider

$$
I_{m}:=\int_{|y|=q^{-m-\delta}} \frac{f(y)}{(y-x)(y ; q)_{\infty}} d y
$$

¿From Lemma $4, I_{m} \longrightarrow 0$ as $m \longrightarrow \infty$. On the other hand

$$
I_{m}=\frac{f(x)}{(x ; q)_{\infty}}-\sum_{n=0}^{m} \frac{(-1)^{n} q^{\binom{n+1}{2}}}{(q ; q)_{n}(q ; q)_{\infty}} \frac{f\left(q^{-n}\right)}{1-q^{n} x}
$$

and the Theorem follows.
Theorem 7. Let the complex numbers $b_{1}, \ldots b_{m}$, satisfy the estimate

$$
\left|b_{1} \ldots b_{m}\right| q^{\frac{m(1-m)}{2}}<1, \quad m=0,1, \ldots
$$

Let f be an entire function satisfying

$$
M\left(q^{-m s-\delta}, f\right) \leq M\left(q^{m s-\delta},\left(b_{1} z, \ldots, b_{m} z ; q^{m}\right)_{\infty}\right)
$$

Then

$$
\frac{f(x)}{(x ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{\binom{n+1}{2}}}{(q ; q)_{n}(q ; q)_{\infty}} \frac{f\left(q^{-n}\right)}{1-q^{n} x}
$$

Proof. We have

$$
\begin{aligned}
M\left(q^{-m s-\delta} ;\left(b_{1} z, \ldots, b_{m} z ; q^{m}\right)_{\infty}\right) & \leq \prod_{j=1}^{m}\left(-\left|b_{j}\right| q^{-m s-\delta} ; q^{m}\right)_{\infty} \\
& \leq \prod_{j=1}^{m}\left(-\left|b_{j}\right| q^{-m s-\delta} ; q^{m}\right)_{s}\left(-\left|b_{j}\right| q^{-\delta} ; q^{m}\right)_{\infty}
\end{aligned}
$$

so that

$$
M\left(q^{-m s-\delta} ; f\right) q^{m s(m s+2 \delta+1) / 2} \leq C\left(\left|b_{1} \ldots b_{m}\right| q^{\frac{m(1-m)}{2}}\right)^{s}
$$

where C is a constant depending only on $b_{1}, \ldots, b_{m}, \delta$ but not on s.

3 Product formula for q-sine function

We start by a q-exponential function, defined in [9] as

$$
\begin{align*}
\mathcal{E}_{q}(\cos \theta, \omega)= & \frac{\left(\alpha^{2} ; q^{2}\right)_{\infty}}{\left(q \alpha^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty}\left(-i e^{\iota \theta} q^{\frac{(1-n)}{2}},-i e^{-\iota \theta} q^{\frac{(1-n)}{2}} ; q\right)_{n} \tag{3.1}\\
& \frac{(i \omega)^{n}}{(q ; q)_{n}} q^{\frac{n^{2}}{4}}
\end{align*}
$$

The following functions $C_{q}(x ; \omega)$ and $S_{q}(x ; \omega)$ given by

$$
\begin{align*}
C_{q}(x ; \omega)= & \frac{\left(-\omega^{2} ; q^{2}\right)_{\infty}}{\left(-q \omega^{2} ; q^{2}\right)_{\infty}} \tag{3.2}\\
& { }_{2} \varphi_{1}\left(-q e^{2 i \theta},-q e^{-2 i \theta} ; q ; q^{2},-\omega^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
S_{q}(x ; \omega)= & \frac{\left(-\omega^{2} ; q^{2}\right)_{\infty}}{\left(-q \omega^{2} ; q^{2}\right)_{\infty}} \tag{3.3}\\
& \frac{2 q^{\frac{1}{4}} \omega}{1-q} \cos \theta_{2} \varphi_{1}\left(-q^{2} e^{2 i \theta},-q^{2} e^{-2 i \theta} ; q^{3} ; q^{2},-\omega^{2}\right)
\end{align*}
$$

were discussed recently in [14] as q-analogues of $\cos \omega x$ and $\sin \omega x$ on a q-quadratic lattice $x=\cos \theta$. The functions $C_{q}(x ; \omega)$ and $S_{q}(x ; \omega)$ are defined for $|\omega|<1$ only. For an analytic continuation of these functions in a large domain see $[9],[14]$. For example,

$$
\begin{align*}
C_{q}(x ; \omega)= & \frac{\left(q \omega^{2} e^{2 i \theta}, q \omega^{2} e^{-2 i \theta} ; q^{2}\right)_{\infty}}{\left(q,-q \omega^{2} ; q^{2}\right)_{\infty}} \tag{3.4}\\
& \times{ }_{2} \varphi_{2}\left(-\omega^{2},-q \omega^{2} ; q \omega^{2} e^{2 i \theta}, q \omega^{2} e^{-2 i \theta} ; q^{2}, q\right) \\
S_{q}(x ; \omega)= & \frac{\left(q^{2} \omega^{2} e^{2 i \theta}, q^{2} \omega^{2} e^{-2 i \theta} ; q^{2}\right)_{\infty}}{\left(q^{3},-q \omega^{2} ; q^{2}\right)_{\infty}} \frac{2 q^{\frac{1}{4}} \omega}{1-q} \tag{3.5}\\
& \times{ }_{2} \varphi_{2}\left(-\omega^{2},-q \omega^{2} ; q^{2} \omega^{2} e^{2 i \theta}, q^{2} \omega^{2} e^{-2 i \theta} ; q^{2}, q^{3}\right),
\end{align*}
$$

The notation for $S_{q}(x ; \omega)$ is the same as the ones proposed by Suslov in [14]. The q-sine function satisfies the q-difference equation (see[14])

$$
\begin{equation*}
\mathcal{D}_{q}^{2} S_{q}(x ; \omega)=-\frac{\omega^{2} q^{\frac{1}{2}}}{(1-q)^{2}} S_{q}(x ; \omega) \tag{3.6}
\end{equation*}
$$

Suslov established the continuous orthogonality relations for the q-sine function(see [14]),

$$
\int_{0}^{\pi} S_{q}(\cos \theta ; \omega) S_{q}\left(\cos \theta ; \omega^{\prime}\right) \frac{\left(e^{2 i \theta}, e^{-2 i \theta} ; q\right)_{\infty}}{\left(q^{\frac{1}{2}} e^{2 i \theta}, q^{\frac{1}{2}} e^{-2 i \theta} ; q\right)_{\infty}} d \theta=0
$$

and

$$
\begin{aligned}
& \int_{0}^{\pi} S_{q}^{2}(\cos \theta ; \omega) \frac{\left(e^{2 i \theta}, e^{-2 i \theta} ; q\right)_{\infty}}{\left(q^{\frac{1}{2}} e^{2 i \theta}, q^{\frac{1}{2}} e^{-2 i \theta} ; q\right)_{\infty}} d \theta \\
= & \pi \frac{\left(q^{\frac{1}{2}},-q^{\frac{1}{2}} \omega^{2} ; q\right)_{\infty}}{\left(q,-\omega^{2} ; q\right)_{\infty}} \frac{\left(-\omega^{2} ; q^{2}\right)_{\infty}}{\left(-q \omega^{2} ; q^{2}\right)_{\infty}} \\
& \times_{2} \varphi_{1}\left(-q^{\frac{1}{2}}, \omega^{2} ;-q^{\frac{1}{2}} \omega^{2} ; q, q\right)
\end{aligned}
$$

Here ω and ω^{\prime} are different solutions of the equation

$$
S\left(\frac{1}{2}\left(q^{\frac{1}{4}}+q^{-\frac{1}{4}}\right) ; \omega\right)=0
$$

The continuous q-Hermite polynomials is defined by (see [13])

$$
\begin{equation*}
H_{n}(\cos \theta \mid q)=\sum_{k=0}^{n} \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} e^{i(n-2 k) \theta} \tag{3.7}
\end{equation*}
$$

The continuous q-Hermite polynomials satisfy the q-difference equation (see [13])

$$
\frac{1}{w(x)} \mathcal{D}_{q}\left[w(x) \mathcal{D}_{q} y(x)\right]=-4 q^{-n+1} \frac{1-q^{n}}{(1-q)^{2}} y(x)
$$

and the product formula (see [12])

$$
\begin{align*}
H_{n}(x & \mid q) H_{n}(y \mid q)=\frac{(q ; q)_{\infty}}{2 \pi t^{n}} \int_{0}^{\pi} K_{t}(\cos \theta, \cos \phi, \cos \psi) \tag{3.8}\\
\times H_{n}(\cos \psi & \mid q)\left(e^{2 i \psi}, e^{-2 i \psi} ; q\right)_{\infty} d \psi
\end{align*}
$$

where

$$
\begin{align*}
& K_{t}(\cos \theta, \cos \phi, \cos \psi) \tag{3.9}\\
= & \frac{\left(t^{2} e^{2 i \psi} ; q\right)_{\infty}}{\left(e^{-2 i \psi}, t e^{i(\theta+\phi+\psi)}, t e^{i(\theta-\phi+\psi)}, t e^{i(\phi+\psi-\theta)}, t e^{i(-\theta-\phi+\psi)} ; q\right)_{\infty}} \\
& \times{ }_{6} \varphi_{5}\left(\left.\begin{array}{c}
t e^{i(\theta+\phi+\psi)}, t e^{i(\theta-\phi+\psi)}, t e^{i(\psi+\phi-\theta)}, t e^{i(-\theta-\phi+\psi)}, 0,0 \\
q e^{2 i \psi}, t e^{i \psi},-t e^{i \psi}, \sqrt{q} t e^{i \psi},-\sqrt{q} t e^{i \psi}
\end{array} \right\rvert\, q, q e^{i \psi)}\right) \\
& + \text { a similar terms with } \psi \text { replaced by }-\psi .
\end{align*}
$$

In the following proposition, we show that the function $\tilde{S}_{q}(x ; \omega)$ defined by

$$
\tilde{S}_{q}(x ; \omega)=\frac{(1-q)\left(q^{3}, q \omega^{2} ; q^{2}\right)_{\infty} S_{q}(x ; i \omega)}{2 q^{1 / 4} x\left(-q^{2} e^{2 i \theta},-q^{2} e^{-2 i \theta} ; q^{2}\right)_{\infty}}
$$

is a nonterminating extension of the continuous q-Hermite polynomials.
Proposition 8. For $n=0,1,2, \ldots$ we have

$$
\tilde{S}_{q}\left(x ; q^{-n}\right)=i q^{-n^{2}} H_{2 n}(x \mid q)
$$

Proof. ¿From (Theorem 2.2, [8]), we have

$$
H_{n}(x \mid q)=\sum_{k=0}^{n} c_{k} \psi_{k}(x)
$$

where

$$
c_{k}=\frac{q^{\frac{k^{2}-k}{4}}(1-q)^{k}}{2^{k}(q ; q)_{k}}\left(\mathcal{D}_{q}^{k} H_{n}(x \mid q)\right)(0)
$$

and

$$
\psi_{k}(x)=\left(1+e^{2 i \theta}\right)\left(-q^{2-n} e^{2 i \theta} ; q^{2}\right)_{n-1} e^{-i n \theta}
$$

In the other hand

$$
H_{2 n+1}(0 \mid q)=0, \quad H_{2 n}(0 \mid q)=(-1)^{n}\left(q ; q^{2}\right)_{n}
$$

and

$$
\mathcal{D}_{q}^{k} H_{n}(x \mid q)=\left(\frac{2}{1-q}\right)^{k} q^{\left.-\frac{1}{2}\binom{n}{2}-\binom{n-k}{2}\right)} \frac{(q ; q)_{n}}{(q ; q)_{n-k}} H_{n-k}(x \mid q) .
$$

Therefore $H_{2 n}(x \mid q)$ has the q-Taylor expansion

$$
H_{2 n}(x \mid q)=\sum_{k=0}^{n}(-1)^{n-k} \frac{(q ; q)_{2 n} q^{2 k(k-n)}}{(q ; q)_{2 k}\left(q^{2} ; q^{2}\right)_{n-k}} \psi_{2 k}(x)
$$

After some computations we get the proposition.

Now put

$$
k(\omega ; q)=\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{2 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{2}\right)_{\infty}} \frac{\left(\omega^{2} ; q^{2}\right)_{\infty}}{1-q^{n} \omega^{2}}
$$

is no difficult to see that the function $k(\omega ; q)$ is entire and satisfy

$$
k\left(q^{-n} ; q\right)=q^{n^{2}}, n=0,1, \ldots
$$

In the following proposition we establish a product formula for the basic function.

Proposition 9. The q-sine function satisfy the product formula

$$
\begin{aligned}
S_{q}(\cos \theta ; \omega) S_{q}(\cos \phi ; \omega)= & \int_{0}^{\pi} \Delta(\cos \theta, \cos \phi, \cos \psi) \\
& \times S_{q}(\cos \psi ; \omega)\left(e^{2 i \psi}, e^{-2 i \psi} ; q\right)_{\infty} d \psi
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta(\cos \theta, \cos \phi, \cos \psi)= & \frac{2 i q^{1 / 4}\left(-q^{2} e^{2 i \theta},-q^{2} e^{-2 i \theta},-q^{2} e^{2 i \phi},-q^{2} e^{-2 i \phi} ; q^{2}\right)_{\infty}}{\pi k(\omega ; q)(1-q)\left(q^{3}, q \omega^{2} ; q^{2}\right)_{\infty}\left(-q^{2} e^{2 i \psi},-q^{2} e^{-2 i \psi} ; q^{2}\right)_{\infty}} \\
& \frac{\cos \theta \cos \phi}{\cos \psi} K_{1}(\cos \theta, \cos \phi, \cos \psi)
\end{aligned}
$$

Proof. Put

$$
\begin{aligned}
g(\omega)= & k\left(i \omega^{5} ; q^{5}\right) \tilde{S}_{q^{5}}\left(\cos \theta ; \omega^{5}\right) \tilde{S}_{q^{5}}\left(\cos \phi ; \omega^{5}\right) \\
& -\int_{0}^{\pi} i K_{1}\left(\cos \theta, \cos \phi, \cos \psi, q^{10}\right) \\
& \times \tilde{S}_{q^{5}}\left(\cos \psi ; \omega^{5}\right)\left(e^{2 i \psi}, e^{-2 i \psi} ; q^{10}\right)_{\infty} d \psi
\end{aligned}
$$

It is easy to show that the function g is entire and from proposition 9 and the product formula (13), we have

$$
g\left(q^{-n}\right)=0, \quad n=0,1,2, \ldots \ldots
$$

By (3.5), we have

$$
M\left(q^{-s-\delta / 10}, g\right) \leq C M\left(q^{-10 s-\delta},\left(q^{5} z ; q^{10}\right)_{\infty}^{10}\right)
$$

Then according to the Theorem 7, we have

$$
g=0
$$

References

[1] Boas R P, Entire functions, Academic Press, New York, 1954.
[2] Boas R P and Buck R C, Polynomial Expansions of Analytic Functions, Springer-Verlag, Berlin, 1964.
[3] Brown B M, Evans W D and Ismail M E H, The Askey-Wilson polynomials and q-Sturm-Liouville problems, Math. Proc. Cambridge Philosophical Society 119 (1996), 1-16.
[4] Gasper G and Rahman M, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[5] Olde Daflhuis A B, Asymptotic Expansions for q-Gamma, q-Exponential, and q-Bessel Functions, J. Math. Anal. Appl. 186 (1994), 896-913.
[6] Ismail M E H, Classical and Quantum Orthogonal Polynpmioals in One Variable, Cambridge University Press, Cambridge, 2005.
[7] Ismail M E H and Stanton D, q-Taylor theorems, polynomial expansions, and interpolation of entier functions, J. Approx. Theory 123 (2003), 125-146.
[8] Ismail M E H and Stanton D, Applications of q-Taylor theorems, in Proceeding of the Sixth International Symposium on orthogonal Polynomials, Special Functions and their Applications (Rome), 153 (2001), 259-279.
[9] Ismail M E H and Zhang R, Diagonalisation of certain integral operators, Adv. Math. 109 (1994), 1-33.
[10] Ismail M E H, Rahman M and Stanton D, On the Askey-Wilson and Rogers polynomials, Canad. J. Math. 40 (1988), 1025-1045.
[11] Ismail M E H and Station D, Addition theorems for the q-exponential function, in q-Series From a Contemporary Perspective, Editors: M E H Ismail and D R Stanton, Contemporary Mathematics 254, American Mathematical Society, Providence, 2000, 235-245.
[12] Ismail M E H and Stanton D, q-Integral and moment representations for q-orthogonal polynomials, Canad. J. Math. 54, 709-735.
[13] Koekoek R and Swarttouw R F, The Askey schema of hypergeometric orthogonal polynomials and its q-analogues, Report 94-05, Delft University of Technology, 1994.
[14] Suslov S K, Some expansions in basic Fourier series and related topics, J. Approx. Theory 115 (2002), 289-353.
[15] Suslov S K, Some orthogonal very-well-poised ${ }_{8} \varphi_{7}$-functions that generalize the AskeyWilson polynomials, to appear in Ramanujan J..
[16] Whittaker E T and Watson G N, Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1927.
[17] Whittaker J M, Interpolatory Function Theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 33, Cambridge, 1935.
[18] Whittaker J M, Sur les Séries de Base de Polynômes Quelconques, Gauthier-Villars, Paris, 1949.

