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Abstract

We study local conservation laws and corresponding boundary conditions for the po-
tential Zabolotskaya-Khokhlov equation in (3+1)-dimensional case. We analyze an
infinite Lie point symmetry group of the equation, and generate a finite number of
conserved quantities corresponding to infinite symmetries through appropriate bound-
ary conditions.

1 Introduction

The Zabolotskaya-Khokhlov equation [Z-K]

vxt − v2
x − vvxx − vyy − vzz = 0

describes the propagation of a confined three-dimensional sound beam in a slightly non-
linear medium without absorption or dispersion. Classical symmetries of the Zabolotskaya-
Khokhlov (Z-K) equation and some invariant solutions were found in [V-K-L], and [Schwarz],
(see also [Sharomet]). Similarity solutions of the Z-K equation (in two dimensions) were
obtained in [Korsunski], and [Z-Z-L]. It was shown in [D-L-W] that the Zabolotskaya-
Khokhlov equation in two dimensions is invariant under the same group of Lie point
transformations as the Kadomtsev-Pertviashvili equation.

Introducing v = ux we get the potential Zabolotskaya-Khokhlov equation

uxt − uxuxx − uyy − uzz = 0, (1.1)

The potential Zabolotskaya-Khokhlov equation can be obtained from the equation of non-
stationary transonic gas flows [L-R-T] for three-dimensional non-steady motion in a com-
pressible fluid

2uxt + uxuxx − uyy − uzz = 0, u = u(x, y, z, t), (1.2)
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by the following transformation: x → −x, t → −2t. The classical Lie point symmetry
group of the equation (1.2) was studied in [Kucharczyk] and [Sukhinin]; see also [Ibragimov
83]. An infinite set of continuity equations for the equation (1.2) constructed by a formal
application of First Noether Theorem to its infinite symmetry group, without regard to
boundary conditions was derived in [Ibragimov 72], see also [Ibragimov 83], and the basis
of these conservation laws has been obtained in [Khamitova]. It was shown in [Rosenhaus
02a] however, that symmetries with arbitrary functions of time can lead only to a finite
number of essential conservation laws (with non-vanishing conserved densities), and each
essential conservation law corresponds to a specific boundary conditions. Local essential
conservation laws for the equation of 2-dimensional transonic gas flows were obtained in
[Rosenhaus 02b].

In the present paper we generate essential conservation laws of potential Zabolotskaya-
Khokhlov equation (1.1). Following the approach proposed in [Rosenhaus 02a], we con-
struct a finite set of conserved quantities for the equation (1.1) associated with its infinite
symmetry subgroups. Each conservation law corresponds to a specific choice of an arbi-
trary function in the group generators, which determines the appropriate boundary con-
dition. We also find boundary conditions for conserved densities corresponding to finite
Lie symmetries.

2 Infinite Symmetries and Essential Conservation Laws

By a conservation law for a differential system

ωa(x, u, ui, . . .) = 0, i = 1, ...,m + 1, a = 1, . . . , n, ua
i ≡ ∂ua/∂xi

is meant a continuity equation

DiKi
.
= 0, Ki = Ki(x, u, uj . . .), i, j = 1, . . . ,m + 1,

(Ki are smooth functions) which is satisfied for any solutions of the original system. We will
exclude from consideration trivial conservation laws [Olver], for which the components of
the vector Ki vanish on the solutions: Ki

.
= 0, (i = 1, . . . ,m+1), or the continuity equation

is satisfied in the whole space: DiKi = 0. Let us further reduce the set of conservation
laws to essential conservation laws. By an essential conservation law [Rosenhaus 03], we
will mean such non-trivial conservation law DiKi

.
= 0, which gives rise to a non-vanishing

conserved quantity

Dt

∫

Kt dx1dx2 · · · dxm .
= 0, Kt

˙6= 0. (2.1)

Let

S =

∫

L(xi, ua, ua
i , · · · ) dm+1x

be the action functional, where L is the Lagrangian density, xi = (x1, x2, ...xm, t). Then
the equations of motion are

Ea(L) ≡ ωa(x, u, ui, uij , . . .) = 0, a = 1, ..., n, i, j = 1, . . . ,m + 1, (2.2)
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where E is the Euler-Lagrange operator

Ea =
∂

∂ua
−
∑

i

Di
∂

∂ua
i

+
∑

i≤j

DiDj
∂

∂ua
ij

+ · · · . (2.3)

Consider an infinitesimal transformation with the canonical operator

Xα = αa ∂

∂ua
+
∑

i

(Diα
a)

∂

∂ua
i

+
∑

i≤j

(DiDjα
a)

∂

∂ua
ij

+ · · · , (2.4)

i, j = 1, ...,m + 1

(summation over a is assumed). Variation of the functional S under the transformation
with operator Xα is

δS =

∫

XαL dm+1x . (2.5)

Xα is a variational (Noether) symmetry if

XαL = DiMi, Mi = Mi(x, u, ui, . . .), i = 1, . . . ,m + 1, (2.6)

where Mi are smooth functions. In the future we will use the Noether identity [Rosen],
see also [Ibragimov 83] or [Rosenhaus 02a] for a version used here):

Xα = αaEa +

m+1
∑

i=1

DiRαi, (2.7)

Rαi = αa ∂

∂ua
i

+







∑

k≥i

(Dkα
a) − αa

∑

k≤i

Dk







∂

∂ua
ik

+ · · · . (2.8)

Applying the Noether identity (2.7) to L, and combining with (2.6) and (2.8) we will
obtain

Di(Mi − RαiL) = αaωa. i = 1, . . . ,m + 1. (2.9)

The equation (2.9) applied on the solution manifold (ω = 0,Diω = 0, . . .) leads to a
continuity equation

Di(Mi − RαiL)
.
= 0. i = 1, . . . ,m + 1. (2.10)

Thus, any 1-parameter variational symmetry transformation α (2.6) leads to a conservation
law (2.10) (the First Noether Theorem) with the characteristic α. The Second Noether

Theorem [Noether] deals with a case of an infinite variational symmetry group where the
symmetry vector α is of the form

α = ap(x) + biDip(x) + cijDiDjp(x) + . . . , (2.11)
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and p(x) is an arbitrary function of all base variables of the space. According to the Second
Noether Theorem [Noether] infinite variational symmetries with arbitrary functions of all
independent variables do not lead to non-trivial conservation laws but to a certain relation
between equations of the original differential system (meaning that the system is under-
determined). A general situation when p(x) is an arbitrary function of not all base variables
was analyzed in [Rosenhaus 02a]. In this paper, we will be mostly interested in the case
of arbitrary functions of time γ(t). Consider a variational (Noether) symmetry α of the
form

α = aγ(t) + bγ′(t) + cγ′′(t) + . . . + hγ(l)(t), (2.12)

for a differential equation with the Lagrangian L = L(xi, u, ui), xi = (x1, x2, . . . , xm, t).
For a Noether symmetry transformation Xα we have

δS =

∫

D

δL dm+1x =

∫

D

XαL dm+1x =

∫

D

DiMi dm+1x = 0, x ∈ D. (2.13)

Therefore, the following conditions for Mi (Noether boundary conditions) should be satis-
fied [Rosenhaus 02a]

Mi(x, u, . . .)
∣

∣

∣

xi→∂D
= 0, ∀i = 1, . . . ,m + 1. (2.14)

Equations (2.14) are usually satisfied for a “regular” asymptotic behavior, u, ui → 0
as x → ±∞, or for periodic solutions. Let us consider now another type of boundary
conditions related to the existence of local conserved quantities. Integrating equation
(2.10) over the space (x1, x2, . . . , xm) we get

∫

dx1dx2 . . . dxmDt(Mt − RαtL)
.
=

∫

dx1 . . . dxm
m
∑

i=1

Di(RαiL − Mi). (2.15)

Applying the Noether boundary condition (2.14) and requiring the LHS of (2.15) vanish
on the solution manifold we obtain the “strict” boundary conditions [Rosenhaus 02a]

Rα1L
∣

∣

∣

x1→∂D
= Rα2L

∣

∣

∣

x2→∂D
= . . . = RαmL

∣

∣

∣

xm→∂D
= 0. (2.16)

In the case L = L(x, u, uj), strict boundary conditions (2.16) take a simple form

α
∂L

∂ui

∣

∣

∣

xi→∂D
= 0, ∀i = 1, . . . ,m . (2.17)

In order for the system to possess (Noether) local conserved quantities, both Noether
(2.14) and strict boundary conditions (2.16) have to be satisfied. In this case corresponding
Noether conservation law can be found in the form

∫

dx1dx2 . . . dxm Dt(Mt − RαtL)
.
= 0. (2.18)
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Writing Mt as

Mt = Aγ(t) + Bγ′(t) + Cγ′′(t) + . . . + Hγ(l)(t), (2.19)

from (2.18), we obtain

Dt

∫

dx1dx2 . . . dxm
[

γ(t)A1 + γ′(t)A2 + ... + γ(l)(t)Al

]

.
= 0, (2.20)

where

A1 = (A − a
∂L

∂ut
), A2 = (B − b

∂L

∂ut
), . . . Al = (H − h

∂L

∂ut
).

Since γ(t) is arbitrary we get

∫

dx1dx2 · · · dxm

(

A − a
∂L

∂ut

)

.
=

∫

dx1dx2 · · · dxm

(

B − b
∂L

∂ut

)

.
= . . .

.
=

∫

dx1dx2 · · · dxm

(

H − h
∂L

∂ut

)

.
= 0. (2.21)

Obviously, equations (2.21), in general, determine not a system of conservation laws but

additional constraints. Thus, Noether symmetries (empowered by strict boundary condi-
tions) with arbitrary functions of time instead of conservation laws lead to a set of addi-
tional constraints imposed on the function u and its derivatives. Therefore, the satisfaction
of the strict boundary conditions (2.16), along with the Noether boundary condition (2.14),
becomes critical in the sense of avoiding additional constraints (2.21). Correspondingly,
we have three possible situations:

1) Strict boundary conditions (2.16) (or (2.17)), along with the Noether boundary
condition (2.14), can be satisfied for arbitrary function γ(t). Then the system (2.21),
as a consequence of an infinite symmetry (2.12), provides additional constraints that the
function u and its derivatives must satisfy. No conservation laws are associated with the
symmetry.

2) Strict boundary conditions (2.16) along with the Noether boundary condition (2.14),
can be satisfied for some particular functions γ(t). In this case the (finite) symmetry (2.12)
will lead to the Noether conservation law (2.18) in agreement with the First Noether
Theorem. Additional constraints (2.21) do not appear.

3) Strict boundary conditions cannot be satisfied for any functions γ(t). In this case
a consequence of an infinite symmetry (2.12) will be the fact that the solutions of the
original differential equation with the boundary conditions (2.14), (2.16) do not exist.

Therefore, in order to avoid additional constraints (2.21) we have to find some particu-
lar functions γ(t) (if they exist) leading to different boundary conditions than the ones in
general case (when function γ(t) is arbitrary) [Rosenhaus 02a]. Each choice of such func-
tion γ(t) gives rise to a respective conserved quantity. Let us apply the approach above for
finding non-vanishing conserved densities of the potential Zabolotskaya-Khokhlov equation
(1.1) with boundary conditions on the infinity.



260 V Rosenhaus

3 Essential Conservation Laws for Potential Z-K Equation

uxt − uxuxx − uyy − uzz = 0,

The Lagrangian function of the equation is

L = −
uxut

2
+

u3
x

6
+

u2
y

2
+

u2
z

2
. (3.1)

The Lie point symmetry group of the equation is formed by the following operators:

X1 =
∂

∂t
, X2 = 5t

∂

∂t
+ x

∂

∂x
+ 3y

∂

∂y
+ 3z

∂

∂z
− 3u

∂

∂u
,

X3 = t
∂

∂t
− x

∂

∂x
− 3u

∂

∂u
, X4 = z

∂

∂y
− y

∂

∂z
,

X5 = 5t2
∂

∂t
+ [2tx +

3

2
(y2 + z2)]

∂

∂x
+ 6ty

∂

∂y
+ 6tz

∂

∂z
− (x2 + 6tu)

∂

∂u
,

Xγ = −γ(t)
∂

∂x
+ [γ′(t)x + γ′′(t)(y2 + z2)/4]

∂

∂u
, (3.2)

Xf = 2f
∂

∂y
+ f ′y

∂

∂x
−
[

xyf ′′ + f ′′′
(

y3/3 + z2y
)

/4
] ∂

∂u
,

Xh = 2h
∂

∂z
+ h′z

∂

∂x
−
[

xzh′′ + h′′′
(

z3/3 + zy2
)

/4
] ∂

∂u
,

where γ(t), f(t), h(t) are arbitrary functions. Let us analyze infinite subgroups of the
symmetry group (3.2). In order to apply the approach above we have to rewrite our
symmetry operator in canonical form. For an operator

X = ξt ∂

∂t
+ ξx ∂

∂x
+ ξy ∂

∂y
+ . . . + η

∂

∂u
(3.3)

a corresponding canonical operator will take a form

Xα = X − ξiDi = α
∂

∂u
+ ζi

∂

∂ui
+ σij

∂

∂uij
. . . , (3.4)

where

α = η − ξiui, ζi = Diα, σij = Dijα, , . . . . (3.5)

3.1 Conserved densities associated with Xγ

We will start with the symmetry Xγ and find corresponding conserved densities ([Rosen-
haus 05])

Xγ = −γ(t)
∂

∂x
+ [γ′(t)x + γ′′(t)(y2 + z2)/4]

∂

∂u
, (3.6)



Conserved densities for Zabolotskaya-Khokhlov equation 261

γ(t) is arbitrary. We have

ξx = −γ(t), ξt = ξy = ξz = 0, η = γ′(t)x + γ′′(t)(y2 + z2)/4

α = γ′x + γ′′(y2 + z2)/4 + γux, XαL = DiMi, Mt = −uγ′/2,

Mx = γL − xuγ′′/2 − (y2 + z2)uγ′′′/8, My = yuγ′′/2, Mz = zuγ′′/2, (3.7)

a = ux, b = x, c = (y2 + z2)/4, A = C = 0, B = −u/2.

The form of Noether and strict boundary conditions depends on the function γ(t).

A. γ(t) is arbitrary

Noether boundary conditions (2.14) for Xα are

Mi(x, u, . . .)
∣

∣

∣

xi→∞

xi→−∞
= 0, ∀i = 1, . . . , 4,

or

ui →
x→±∞

0, xu →
x→±∞

0, yu →
y→±∞

0, zu →
z→±∞

0, u →
t→±∞

0. (3.8)

Strict boundary conditions (2.17) take the form

xut, xu2
x →

x→±∞
0, y2uy →

y→±∞
0, z2uz →

y→±∞
0. (3.9)

Thus, for the case of arbitrary γ(t) we have the following boundary conditions:

xu, xut, xu2
x, uy, uz →

x→±∞
0, yu, y2uy →

y→±∞
0, zu, z2uz →

z→±∞
0, u →

t→±∞
0. (3.10)

No local conservation laws are associated with the Noether transformation Xα (3.6) for
arbitrary γ(t).

Let us consider now some specific forms of γ(t) for which we can weaken our boundary
conditions (3.8)-(3.9) in order to avoid restrictions (2.21).

B. γ′(t) = 0, γ(t) = const.

Noether conditions are

ui →
x→±∞

0, i = 1, . . . , 4. (3.11)
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Strict boundary conditions, in addition to (3.11) will have

uxuy →
y→±∞

0, uxuz →
z→±∞

0. (3.12)

According to (2.18) we will get the following conservation law:

Dt

∫

u2
x dxdydz

.
= 0, (3.13)

or

∫

u2
x dxdydz

.
= const.

(conservation of the x−component of momentum Px). Corresponding continuity equation
(2.10) has the form

Dx

(

−2u3
x/3 + u2

y + u2
z

)

+ Dy(−2uxuy) + Dz(−2uxuz) + Dt(u
2
x)

.
= 0. (3.14)

C. γ′′(t) = 0 , γ(t) = at , a = const 6= 0.

Noether conditions are

u →
t→±∞

0. ui →
x→±∞

0, i = 1, . . . , 4. (3.15)

For strict boundary conditions we get

xut, xu2
x →

x→±∞
0, uy, uxuy →

y→±∞
0, uz, uxuz →

z→±∞
0. (3.16)

The conservation law associated with the boundary conditions (3.15)-(3.16) takes the form

Dt

∫

[xux − u + tu2
x] dxdydz

.
= 0. (3.17)

As we can see, strict boundary conditions (3.16) together with Noether conditions (3.15)
determined a nontrivial conservation law (3.17) with the characteristic α = x + tux.

D. γ′′(t) 6= 0

In this case Noether and strict boundary conditions have the same form (3.8), (3.9) as in
case A. and lead to no essential conservation laws.
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3.2 Conserved densities associated with Xf

Xf = 2f
∂

∂y
+ f ′y

∂

∂x
−
[

xyf ′′ + f ′′′
(

y3/12 + yz2/4
)] ∂

∂u
, (3.18)

f(t) is arbitrary function. For a corresponding canonical operator Xα we get

α = 2fuy + f ′yux + f ′′xy + f ′′′(y3/12 + yz2/4), (3.19)

ξx = −f ′y, ξy = −2f, η = f ′′′
(

y3/12 + yz2/4
)

Calculating XαL we obtain

XαL = DiMi,

Mx = f ′yL − f ′′′xyu/2 − f (IV )(y3/3 + yz2)u/8,

My = 2fL + f ′′xu + f ′′′(y2 + z2)u/4, (3.20)

Mz = f ′′′yzu/2, Mt = −f ′′yu/2.

As in the previous case the form of strict and Noether boundary conditions depend on the

function f(t).

A. f(t) is arbitrary.

¿From the Noether and strict boundary conditions we will get

ui, xu, x2ux →
x→±∞

0, ui, y
2u, y3uy →

y→±∞
0, zu, z2uz →

z→±∞
0, u →

t→±∞
0. (3.21)

No local conservation laws are associated with the Noether transformation Xα (3.18) with
arbitrary function f(t). Let us consider now some specific forms of f(t) for which we can
weaken boundary conditions (3.21) .

B. f ′ = 0, f(t) = c = const.

We have

Mx = 0, My = 2cL, Mz = Mt = 0, α = 2cuy. (3.22)

Noether conditions look as follows:

ui →
y→±∞

0. (3.23)

The strict boundary conditions have a form

utuy, u
2
xuy →

x→±∞
0, uy →

y→±∞
0, uyuz →

z→±∞
0. (3.24)

According to (2.18), the associated conservation law has a form:
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Dt

∫

uxuy dxdydz
.
= 0, (3.25)

and the characteristic α = uy. Expression (3.25) is a conservation of y-component of the
momentum of the system, Py with regular boundary conditions (3.23)-(3.24).

C. f ′′ = 0, f ′ 6= 0 . f(t) = at , a = const 6= 0.

We have

Mx = ayL, My = 2atL, Mz = Mt = 0, α = 2atuy + ayux. (3.26)

Noether conditions are

ui →
x→±∞

0, ui →
y→±∞

0, i = 1, . . . , 4. (3.27)

and the strict boundary conditions (2.17) read

ui →
x→±∞

0, yuxuy, uy →
y→±∞

0, uz →
z→±∞

0. (3.28)

Boundary conditions (3.27)-(3.28) are weaker than the ones for the general case (3.21),
and from (2.18) we obtain the following conserved quantity

Dt

∫

[2tuxuy + yu2
x] dxdydz

.
= 0. (3.29)

D. f ′′′ = 0, f ′′ 6= 0 : f(t) = bt2/2..

We have

Mx = btyL, My = bt2L + bxu, Mz = 0, Mt = −byu/2, (3.30)

α = bt2uy + btyux + bxy.

Noether boundary conditions are

ui →
x→±∞

0, u, ui →
y→±∞

0, u →
t→±∞

0, i = 1, . . . , 4. (3.31)

The strict boundary conditions read

xut, xu2
x, ui →

x→±∞
0, ux, yuy →

y→±∞
0, uz →

z→±∞
0. (3.32)

Thus, the boundary conditions for this case, (3.31)-(3.32) are weaker than in the general
case (3.24). The following conservation law (2.18) is associated with the symmetry Xα

(3.19):

Dt

∫

[t2uxuy + tyu2
x + xyux − yu] dxdydz

.
= 0. (3.33)
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E. f ′′′(t) 6= 0

In this case Noether and strict boundary conditions have the same form (3.21) as in case
A. and lead to no essential conservation laws.

3.3 Conserved densities associated with Xh

Note that the symmetry operator

Xh = 2h
∂

∂z
+ h′z

∂

∂x
−
[

xzh′′ + h′′′
(

z3/12 + zy2/4
)] ∂

∂u
, (3.34)

where h = h(t) is arbitrary function can be obtained from Xf by the interchange y ↔ z.
Therefore, from the analysis of Xf we obtain the following cases:

A. h(t) is arbitrary.

No local conservation laws are associated with the Noether transformation Xα (3.34) with
arbitrary function h(t).

B. h′ = 0, h(t) = c = const.

The associated conservation law has a form:

Dt

∫

uxuz dxdydz
.
= 0, (3.35)

(conservation of z-component of the momentum of the system, Pz) with relatively relaxed
boundary conditions

ui →
z→±∞

0, utuz, u
2
xuz →

x→±∞
0, uyuz →

y→±∞
0, i=1,. . . , 4. (3.36)

C. h′′ = 0, h′ 6= 0 . h(t) = at , a = const 6= 0.

We get

Dt

∫

[2tuxuz + zu2
x] dxdydz

.
= 0, (3.37)

with the boundary conditions

ui →
x→±∞

0, uy →
y→±∞

0, uz, zuxuz →
z→±∞

0, i=1,. . . ,4. (3.38)

D. h′′′ = 0, h′′ 6= 0 : h(t) = bt2/2.
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The associated essential conservation law

Dt

∫

[t2uxuz + tzu2
x + xzux − zu] dxdydz

.
= 0, (3.39)

corresponds to the following boundary conditions:

xut, xu2
x, ui →

x→±∞
0, uy →

y→±∞
0, u, ui, zuz →

z→±∞
0, u →

t→±∞
0. (3.40)

E. h′′′(t) 6= 0

As earlier, this case leads to no essential conservation laws.

4 Conservation Laws Associated with Finite Symmetries

Let us discuss now boundary conditions and essential conservation laws of the equation
(1.1) corresponding to its finite symmetries: X1,X2,X3,X4,X5 (3.2)

1) X1 =
∂

∂t
(4.1)

We have

ξt = 1, ξx = ξy = ξz = η = 0, α = η − ξiui = −ut. (4.2)

δS =

∫

(XL + (Diξ
i)L)dm+1x = 0. (4.3)

Clearly, X1 is a Noether symmetry and

XαL = (X − ξiDi)L = XL − DtL = −DtL. (4.4)

Thus,

Mt = −L, Mx = My = Mz = 0, RαiL = α
∂L

∂ui
. (4.5)

see (2.6) and (2.8). The continuity equation (2.10) here reads

−Dt

(

u3
x

6
+

u2
y + u2

z

2

)

+ Dx

(

−u2
t + u2

xut

2

)

+ Dy [utuy] + Dz [utuz]
.
= 0 (4.6)

([Khamitova]). The associated conservation law (of energy) (2.18)

Dt

∫

dxdydz

(

u3
x

6
+

u2
y + u2

z

2

)

.
= 0. (4.7)



Conserved densities for Zabolotskaya-Khokhlov equation 267

corresponds to the following boundary conditions: Noether conditions (2.14)

L
∣

∣

∣

t→→∞

t→→−∞
= 0 : (4.8)

ux, uy, uz, utux →
t→±∞

0, (4.9)

and strict boundary conditions (2.17)

ut, utu
2
x →

x→±∞
0, utuy →

y→±∞
0, utuz →

z→±∞
0. (4.10)

2) X2 = 5t
∂

∂t
+ x

∂

∂x
+ 3y

∂

∂y
+ 3z

∂

∂z
− 3u

∂

∂u
(4.11)

We have

ξt = 5t, ξx = x, ξy = 3y, ξz = 3z, η = −3u,

α = η − ξiui = −3u − 5tut − xux − 3yuy − 3zuz , (4.12)

δS =

∫

(XL + (Diξ
i)L) dxdydzdt = 0, (4.13)

therefore, X2 is a Noether symmetry and

XαL = (X − ξiDi)L = −Di(ξ
iL). (4.14)

Thus (see (2.6)),

Mt = −5tL, Mx = −xL, My = −3yL, Mz = −3zL. (4.15)

The continuity equation (2.10) here is

Di

(

ξiL + α
∂L

∂ui
− Mi

)

.
= 0. (4.16)

The associated conservation law (2.18)

Dt

∫

(5tL − αux/2) dxdydz
.
= 0 (4.17)

corresponds to the following boundary conditions: Noether conditions (2.14)

xL
∣

∣

∣

x→→∞

x→→−∞
= 0, yL

∣

∣

∣

y→→∞

y→→−∞
= 0, zL

∣

∣

∣

z→→∞

z→→−∞
= 0, tL

∣

∣

∣

t→→∞

t→→−∞
= 0, (4.18)

and (partially overlapping with them) strict boundary conditions (2.17)

uut, uu2
x, xu3

x, xuxut →
x→±∞

0, uuy, yu2
y →

y→±∞
0, uuz, zu2

z →
z→±∞

0. (4.19)
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3) X3 = t
∂

∂t
− x

∂

∂x
− 3u

∂

∂u
. (4.20)

δS =

∫

(XL + (Diξ
i)L)dxdydzdt = −6S 6= 0, (4.21)

and X3 is a non-Noether transformation.

4) X4 = z
∂

∂y
− y

∂

∂z
. (4.22)

We have

ξy = z, ξz = −y, α = −zuy + yuz, δS = 0,

XαL = −zuy + yuz, (4.23)

Mt = Mx = 0, My = −zu, Mz = yu.

The conservation law (2.18) in this case is:

Dt

∫

ux (yuz − zuy) dxdydz
.
= 0. (4.24)

(according to [Khamitova] continuity equations corresponding to (4.24) and (4.7) form a
basis of an infinite set of continuity equations constructed by a formal application of First
Noether Theorem to an infinite group (3.2) [Ibragimov 83]). Corresponding Noether and
strict boundary conditions are, respectively:

u →
y→±∞

0, u →
z→±∞

0, (4.25)

uzu
2
x, uzut, uyu

2
x, uyut →

x→±∞
0, uy, yuzuy →

y→±∞
0, uz, zuyuz →

z→±∞
0. (4.26)

5) X5 = 5t2
∂

∂t
+ [2tx +

3

2
(y2 + z2)]

∂

∂x
+ 6ty

∂

∂y
+ 6tz

∂

∂z
− (x2 + 6tu)

∂

∂u
. (4.27)

ξx = 2tx +
3

2
(y2 + z2) ξy = 6ty, ξz = −6tz, η = −− (x2 + 6tu),

α = −(x2 + 6tu) − ux(2tx +
3

2
(y2 + z2)) − 6tyuy − 6tzuz , (4.28)

Mt = xu, Mx = 3u2/2, My = Mz = 0.

The continuity equation (2.10) ((4.17)) leads to the following conserved quantity:

Dt

∫

(

5t2L − αux/2 − xu
)

dxdydz
.
= 0. (4.29)
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Corresponding Noether and strict boundary conditions are, respectively:

u →
t→±∞

0, u2 →
x→±∞

0, (4.30)

αu2
x, αut →

x→±∞
0, αuy →

y→±∞
0, αuz →

z→±∞
0, (4.31)

out of which the most essential conditions are

u →
t→±∞

0, u, ui, x
2u2

x, x2ut →
x→±∞

0,

u, uy, y
2uxuy, yu2

y →
y→±∞

0, u, uz , z
2uxuz, zu2

y →
z→±∞

0. (4.32)

5 Conclusions

We have generated a finite number of conserved densities for the (3+1)-dimensional po-
tential Zabolotskaya-Khokhlov equation (1.1), associated with its infinite Lie point sym-
metries. We have found those continuity equations for the potential Z-K equation (out of
an infinite set of all possible continuity equations, corresponding to its infinite symmetry
group [Ibragimov 83]) that lead to non-vanishing conserved densities (essential conserva-
tion laws): (3.13), (3.17), (3.25), (3.29), (3.33), (3.35), (3.39), (along with (4.7), (4.17),
(4.24), (4.29)). Each essential conservation law is related to a specific boundary condition.
As expected ([Rosenhaus 02a]) symmetries with arbitrary functions of t lead to essential
local conservation laws only in special cases when boundary conditions are weaker than
those in general case. We have derived boundary conditions corresponding to our essen-
tial conservation laws and have shown that for potential Zabolotskaya-Khokhlov equation
known conservation laws of momentum and energy (3.13), (3.25), (3.35), (4.7)) correspond
to the weakest boundary conditions, with vanishing (or periodic) function and its deriva-
tives on the boundary (infinity). Other essential conservation laws were demonstrated to
have stricter asymptotic behavior.
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