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New solvable many-body problems in the plane
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Abstract

We revisit an integrable (indeed, superintegrable and solvable) many-body model in-
troduced almost two decades ago by Gibbons and Hermsen and by Wojciechowski,
and we modify it so that its generic solutions are all isochronous (namely, completely
periodic with fixed period). We then show how this model (or rather the more ba-
sic dynamical system that underlies its solvable character, and other avatars of it)
can be conveniently reinterpreted as (rotation-invariant) models in the plane; and we
thereby present several new (solvable, isochronous and rotation-invariant) many-body
problems in the plane.

1 Introduction and main results

Almost two decades ago J. Gibbons and T. Hermsen [16], and almost simultaneously (and
certainly independently) S. Wojciechowski [23], discussed the integrable (indeed solvable)
dynamical system the equations of motion of which we write here as follows:

z̈n = −2

N
∑

m=1, m6=n

gnm gmn

(zn − zm)3
, (1.1a)

ġnm = −

N
∑

ℓ=1, ℓ 6=m,n

gnℓ gℓm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

, n 6= m . (1.1b)

Here we consider theN evolving quantities zn ≡ zn(t) as the main dynamical variables, and
the N(N − 1) evolving quantities gnm ≡ gnm(t), n 6= m, as auxiliary dependent variables;
the rest of the notation is, we trust, self-evident: in particular, superimposed dots always
denote differentiation with respect to the (real) independent variable t (”time”), and
indices such as n,m always run from 1 to N (unless otherwise explicitly indicated).
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This model was introduced [16] [23] as a variation, characterized by additional ”in-
ternal” degrees of freedom (possibly representing spin) associated with the auxiliary de-
pendent variables gnm, of the well-known [18] [7] [10] integrable – indeed solvable [21] –
many-body problem on the line defined by the equations of motion (1.1a) without (1.1b)
and with the quantities gnm time-independent and all equal (say: gnm = i c , ċ = 0). These
models, (1.1), as well as analogous ones, have also been investigated, earlier and later, in
rather different or quite analogous contexts, see for instance [3] [22] [25] [24] [26] [19] [4]
[5] [17] [20] [2] [1] (and additional references cited in these papers). One of the models
we consider here is merely a marginally more general version of the equations of motion
(1.1), namely

z̈n + a żn + b zn = −2
N

∑

m=1, m6=n

gnm gmn

(zn − zm)3
, (1.2a)

ġnm + a gnm = −

N
∑

ℓ=1, ℓ 6=m,n

gnℓ gℓm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

+gnm (fn − fm) , n 6= m . (1.2b)

Note the additional terms in the left-hand sides proportional to the two constants a and
b, and the appearance in the right-hand side of (1.2b) of the source terms fn, which can
be assigned as arbitrary functions of the time t, fn ≡ fn(t), or as arbitrary functions of
the dependent variables zn(t) and gnm(t), without spoiling the solvability of the model,
namely the possibility to reduce its solution to a sequence of purely algebraic operations
(to get the main dependent variables zn(t); and moreover a quadrature, to get the auxiliary
dependent variables gnm(t)). Actually the presence of the quantities fn in (1.2b) could be
eliminated via the “similarity transformation”

gnm(t) = exp [Fn(t) − Fm(t)] ǧnm(t) (1.3a)

with

Ḟn(t) = fn(t) , (1.3b)

which clearly entails that the equations of motion (1.2) become

z̈n + a żn + b zn = −2

N
∑

m=1, m6=n

ǧnm ǧmn

(zn − zm)3
, (1.4a)

�

ǧnm + a ǧnm = −
N

∑

ℓ=1, ℓ 6=m,n

ǧnℓ ǧℓm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

, n 6= m . (1.4b)

An advantage of this simpler version of the equations of motion is to allow the reduction
ǧnm = −ǧmn (since clearly (1.4b) entails that validity of this restriction at the initial
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time, ǧnm(0) = −ǧmn(0) implies its validity for all time, ǧnm(t) = −ǧmn(t)), yielding the
reduced system

z̈n + a żn + b zn = 2
N

∑

m=1, m6=n

ǧ2
nm

(zn − zm)3
, ǧ2

nm = ǧ2
nm , (1.5a)

�

ǧnm + a ǧnm = −

N
∑

ℓ=1, ℓ 6=m,n

ǧnℓ ǧℓm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

,

ǧnm = −ǧmn , n 6= m . (1.5b)

On the other hand the version (1.2) allows reformulations obtained by assigning a specific
expression of fn in terms of the dependent variables: for instance via the assignment

fn = f̆n +
N

∑

ℓ=1, ℓ 6=n

gnℓ

(zn − zℓ)
2 (1.6a)

the evolution equations (1.2b) become

ġnm + a gnm =
N

∑

ℓ=1; ℓ 6=n,m

gnm gnℓ − gnℓ gℓm

(zn − zℓ)
2

−

N
∑

ℓ=1; ℓ 6=n,m

gnm gmℓ − gnℓ gℓm

(zm − zℓ)
2

+gnm

(gnm − gmn)

(zm − zm)2
+ gnm (f̆n − f̆m) , n 6= m , (1.6b)

admitting as a subcase (see (1.2a)), for a = 0 and f̆n = 0, the original model [18] [7]
[10] with the quantities gnm time-independent and all equal, gnm = i c , ċ = 0. But note
that, except in this special case, these equations of motion, (1.6b), as indeed generally
the equations of motion (1.2b) whenever the quantities fn are effectively present, are
incompatible with the assumption that the quantities gnm have a definite symmetry (even
or odd) under the exchange of the two indices n,m.

The first main finding of this paper is to point out the remarkable properties of the
model (1.2) with the special assignment

a = −i µ ω, b =
1

4

(

1 − µ2
)

ω2 , (1.7)

entailing that its equations of motion read

z̈n − i µ ω żn +
1

4

(

1 − µ2
)

ω2 zn = −2

N
∑

m=1, m6=n

gnm gmn

(zn − zm)3
, (1.8a)

ġnm − i µ ω gnm = −
N

∑

ℓ=1, ℓ 6=m,n

gnℓ gℓm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

+gnm (fn − fm) , n 6= m , (1.8b)
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and likewise that (1.6b) becomes

ġnm − i µ ω gnm =
N

∑

ℓ=1; ℓ 6=n,m

gnm gnℓ − gnℓ gℓm

(zn − zℓ)
2

N
∑

ℓ=1; ℓ 6=n,m

gnm gmℓ − gnℓ gℓm

(zm − zℓ)
2

+gnm
(gnm − gmn)

(zm − zm)2
+ gnm (f̆n − f̆m) , n 6= m . (1.9)

Hereafter (except when a different hypothesis is explicitly made, see below) we assume
that the constant ω is real (in fact, without loss of generality, positive, ω > 0), and we
associate to it the period

T =
π

ω
. (1.10)

As for the constant µ, we assume hereafter that it is a rational number,

µ =
p

q
, (1.11)

with p and q two coprime integers and q > 0. We then show that, under these conditions,
the generic solution – which is obtained in Section 2 – of these equations of motion, (1.8),
is isochronous – namely, completely periodic with a fixed period largely independent of
the initial data – a period T̃ which is a simple integer multiple of qT – at least for the
main dependent variables:

zn(t+ T̃ ) = zn(t) . (1.12)

This outcome obtains for any assignment of the time evolution of the source terms fn(t);
indeed it turns out – remarkably, or perhaps obviously, given the possibility to transform
(1.2) into (1.4) via (1.3) – that the time evolution of the main dependent variables zn(t) is
completely independent of the assignment of the source terms fn(t). The time evolution
of the auxiliary variables gnm(t) is instead affected by the time-evolution of the source
terms fn(t), hence it may itself display properties of periodicity only if the source terms
satisfy themselves appropriate periodicity properties – as entailed by the solution of the
problem described in Section 2.

Let us insert here a remark which is applicable to the dynamical systems we just
presented, (1.8) and (1.9), but obviously as well to many others of the systems considered
herein as well as to other ones. Clearly these systems can be generalized by adding to the
right-hand side of (1.8a) an arbitrary (possibly time-dependent) ”external force” f(t), the
only effect of which is to transform the solutions according to the rule zn(t) → zn(t)+z0(t)
with z0(t) defined by the following ODE and initial conditions:

z̈0 − i µ ω ż0 +
1

4

(

1 − µ2
)

ω2 z0 = f(t) , z0(0) = ż0(0) = 0 . (1.13)

The only effect of z0(t) is to cause a corresponding transformation, Z(t) → Z(t) + z0(t),
of the center of mass Z(t) = 1

N

∑N
n=1 zn(t) of the system. Note that this entails that,
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when the force f(t) has a periodicity at resonance with one of those characteristic of the
solution of the homogeneous part of this ODE, (1.13), say f(t) = a sin [(µ+ 1) ω t+ θ] or
f(t) = a sin [(µ− 1) ω t+ θ] (with a and θ arbitrary constants), then the center of mass
Z(t) (and, with it, all the coordinates zn(t)) escapes asymptotically to infinity (namely,
Z(t) diverges, linearly in t, as t→ ∞).

The equations of motion (1.8) appear particularly interesting in the special case µ = 0,
when they become real. But, even in this case (and by necessity whenever instead µ 6= 0),
it is more interesting to focus attention on the solutions of (1.8) in the complex domain, not
only because their behavior is then much richer, but as well because, by identifying in the
standard manner (see, for instance, [9] [10], and the relations (3.49) below) the complex
plane with the real physical plane, these equations of motion, (1.8), can be reformulated
as the following real equations characterizing the motion of particles in the plane:

��

−→r n − µω k̂ ∧
�

−→r n +
1

4

(

1 − µ2
)

ω2 −→r n

= −2
N

∑

m=1, m6=n

r−8
nm

−→
V (7) (−→ρ nm,

−→ρ nm,
−→ρ mn,

−→ρ mn;−→r nm,
−→r nm,

−→r nm) , (1.14a)

�

−→ρ nm −
1

2
µω k̂ ∧ −→ρ nm

= −
1

2
ρ−2

nm

N
∑

ℓ=1, ℓ 6=m,n

[−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ ℓm,

−→ρ ℓm;−→ρ nm,
−→r nℓ,

−→r nℓ)

r4nℓ

−

−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ ℓm,

−→ρ ℓm;−→ρ nm,
−→r mℓ,

−→r mℓ)

r4mℓ

]

+−→ρ nm (f (1)
n − f (1)

m ) + k̂ ∧ −→ρ nm (f (2)
n − f (2)

m ) , n 6= m , (1.14b)

and likewise (1.9) can be reformulated as follows:

�

−→ρ nm −
1

2
µω k̂ ∧ −→ρ nm

=
1

2
ρ−2

nm

N
∑

ℓ=1, ℓ 6=m,n

{[−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ nm,

−→ρ nm;−→ρ nm,
−→r nℓ,

−→r nℓ)

r4nℓ

−

−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ ℓm,

−→ρ ℓm;−→ρ nm,
−→r nℓ,

−→r nℓ)

r4nℓ

]

−

[−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ nm,

−→ρ nm;−→ρ nm,
−→r mℓ,

−→r mℓ)

r4mℓ

−

−→
V (7) (−→ρ nℓ,

−→ρ nℓ,
−→ρ ℓm,

−→ρ ℓm;−→ρ nm,
−→r mℓ,

−→r mℓ)

r4mℓ

]}

+−→ρ nm (f̆ (1)
n − f̆ (1)

m ) + k̂ ∧ −→ρ nm (f̆ (2)
n − f̆ (2)

m ) , n 6= m . (1.15)

Here everything is now real, superimposed arrows denote two-vectors in the horizontal
plane (assumed for convenience embedded in ordinary, three-dimensional, space, say −→r ≡



236 Calogero F and Françoise J-P

(x, y, 0)), the main dependent variables are the N two-vectors −→r n ≡ −→r n(t), the auxiliary
dependent variables are the N(N − 1) two-vectors −→ρ nm ≡ −→ρ nm(t), the symbol k̂ denotes
the vertical unit vector k̂ ≡ (0, 0, 1) so that k̂ ∧−→r ≡ (−y, x, 0) (see (3.49)), the 2N scalar

source terms f
(1)
n ≡ f

(1)
n (t), f

(2)
n ≡ f

(2)
n (t) are arbitrary, and we use (here, and often as

well below) the short-hand notation

−→r nm ≡ −→r n −−→r m , (1.16)

entailing of course r2nm = r2n +r2m−2−→r n ·
−→r m, and the two-vector

−→
V (7) is defined in terms

of its 7 two-vector arguments in the Appendix, see (A.13) – but note the simplifications
entailed by the equality of several of its arguments in these equations of motion (1.14) and

(1.15), so that for instance the vector
−→
V (7) appearing in the right -hand side of (1.14a)

can be written as follows:

−→
V (7) (−→ρ nm,

−→ρ nm,
−→ρ mn,

−→ρ mn;−→r nm,
−→r nm,

−→r nm)

= anm
−→r nm + bnm

−→ρ nm + bmn
−→ρ mn , (1.17a)

anm = 16 (−→r nm · −→ρ nm)
2

(−→r nm · −→ρ mn)
2

−2 r2nm

[

3 ρ2
nm (−→r nm · −→ρ mn)

2
+ 3 ρ2

mn (−→r nm · −→ρ nm)
2

+2 (−→r nm · −→ρ nm) (−→r nm · −→ρ mn) (−→ρ nm · −→ρ mn)] + r4nm ρ2
nm ρ2

mn ,

(1.17b)

bnm = −2 r2nm (−→r nm · −→ρ nm)
[

2 (−→r nm · −→ρ mn)
2
− r2nm ρ2

mn

]

. (1.17c)

As for the rest of the notation, we hope it is self-evident, otherwise see Section 3 where
the equivalence is demonstrated of this (real) many-body problem in the horizontal plane
(1.14) with the (complex ) system (1.8).

Note that these equations of motion become somewhat neater in the reduced case (1.5)
(which implies the consistent if somewhat awkward restriction −→ρ nm = k̂∧−→ρ mn; see (3.55)
and (3.57) in Section 3), when for instance the first set, (1.14a), read

��

−→r n − µω k̂ ∧
�

−→r n +
1

4

(

1 − µ2
)

ω2 −→r n = 8
N

∑

m=1, m6=n

r−8
nm·

·
[

−→r nm

{

(

r2nm ρ2
nm

)2
− 2 (−→r nm · −→ρ mn)

2 (

r2nm ρ2
mn

)

+ 2 (−→r nm · −→ρ mn)
4
}

+ k̂ ∧ −→r nm

{

(−→r nm · −→ρ nm)
(

k̂ · −→r nm ∧ −→ρ nm

)

·

·
[

2 (−→r nm · −→ρ nm)
2
− r2nm ρ2

nm

]}]

,−→ρ nm = k̂ ∧ −→ρ mn . (1.18)

Let us emphasize that these equations of motion (1.14) – the second main finding
reported in this paper – are translation-invariant as far as the main dependent variables
−→r n are concerned (namely, they are invariant under the translation −→r n(t) ⇒ −→r n(t)+−→r 0

with −→r 0 an arbitrary constant two-vector,
�

−→r 0 = 0) and, as it is obvious from their
covariant structure, they are rotation-invariant – a nontrivial feature, which is of course
essential for them to acquire physical relevance, at least as toy many-body models.
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As already mentioned, the solution of the initial-value problem for this many-body
system in the plane – in its complex version (1.2) – is provided in the following Section
2, while the relation of the complex version (1.2) to the real two-vector version (1.14)
is provided in Section 3. But the results of these two sections also yield several other
avatars of this model (or rather of the basic dynamical system that underlies its solvabil-
ity), avatars which are obtained in their complex versions (including (1.8)) in Section 2 –
where the solution of the corresponding initial-value problems is also provided – and are
then reformulated as real two-vector models in the plane in Section 3. We now display
without much commentary these (rotation-invariant !) many-body problems in the hori-
zontal plane. Their novelty, as well as their unified treatment, constitute the third main
finding of this paper.

The equations of motion of the first of these models read

��

−→r n − µω k̂ ∧
�

−→r n +
1

4

(

1 − µ2
)

ω2 −→r n = −2

N
∑

m=1,m6=n

r−4
nm

[(

λ(1)
nm λ(1)

mn − λ(2)
nm λ(2)

mn

)

−→r nm +
(

λ(1)
nm λ(2)

mn + λ(2)
nm λ(1)

mn

)

k̂ ∧ −→r nm

]

,

(1.19a)

λ̇(1)
nm + µω λ(2)

nm + 2λ(2)
nm

−→r nm · k̂ ∧
�

−→r nm

r2nm

=
N

∑

ℓ=1;ℓ 6=m,n

[

(

λ
(1)
nℓ λ

(1)
ℓm − λ

(2)
nℓ λ

(2)
ℓm

)

(

−
1

r2nℓ

+
1

r2mℓ

)

+
(

λ
(1)
nℓ λ

(2)
ℓm + λ

(2)
nℓ λ

(1)
ℓm

) −→r nm · k̂ ∧ (−→r nℓ + −→r mℓ)

r2nℓ r
2
mℓ

]

+λ(1)
nm

(

f (1)
n − f (1)

m

)

− λ(2)
nm

(

f (2)
n − f (2)

m

)

, n 6= m , (1.19b)

λ̇(2)
nm − µω λ(1)

nm + 2λ(1)
nm

−→r nm · k̂ ∧
�

−→r nm

r2nm

=

N
∑

ℓ=1;ℓ 6=m,n

[

(

λ
(1)
nℓ λ

(2)
ℓm + λ

(2)
nℓ λ

(1)
ℓm

)

(

−
1

r2nℓ

+
1

r2mℓ

)

−
(

λ
(1)
nℓ λ

(1)
ℓm − λ

(2)
nℓ λ

(2)
ℓm

) −→r nm · k̂ ∧ (−→r nℓ + −→r mℓ)

r2nℓ r
2
mℓ

]

+λ(1)
nm

(

f (2)
n − f (2)

m

)

+ λ(2)
nm

(

f (1)
n − f (1)

m

)

, n 6= m . (1.19c)

Here the 2N(N − 1) auxiliary variables λ
(1)
nm ≡ λ

(1)
nm(t) and λ

(2)
nm ≡ λ

(2)
nm(t) are of course

real, and are to be treated as scalars.
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The equations of motion of the second of these models read

��

−→r n − µω k̂ ∧
�

−→r n +
1

4

(

1 − µ2
)

ω2 −→r n = 2
N

∑

m=1, m6=n

r−2
nm

[−→χ nm (−→χmn · −→r nm) + −→χmn (−→χ nm · −→r nm) −−→r nm (−→χ nm · −→χmn)] , (1.20a)

�

−→χ nm − µω k̂ ∧ −→χ nm

=

−−→χ nm

(

�

−→r nm · −→r nm

)

−
�

−→r nm (−→χ nm · −→r nm) + −→r nm

(

−→χ nm ·
�

−→r nm

)

r2nm

−

N
∑

ℓ=1;ℓ 6=m,n

[−→χ nℓ (−→χ ℓm · −→r nℓ) + −→χ ℓm (−→χ nℓ ·
−→r nℓ) −

−→r nℓ (−→χ nℓ ·
−→χ ℓm)

r2nℓ

+
−→χ nℓ (−→χ ℓm · −→r mℓ) + −→χ ℓm (−→χ nℓ ·

−→r mℓ) −
−→r mℓ (−→χ nℓ ·

−→χ ℓm)

r2mℓ

]

+
[

f (1)
n − f (1)

m +
(

f (2)
n − f (2)

m

)

k̂∧
]

−→χ nm ,

n 6= m . (1.20b)

Here the auxiliary dependent variables are the N(N − 1) two-vectors −→χ nm ≡ −→χ nm(t).

The equations of motion of the third of these models read

��

−→r n − ω k̂ ∧
�

−→r n = 2

N
∑

m=1, m6=n

r−2
nm·

·
[(

u(1)
nm u(1)

mn − u(2)
nm u(2)

mn

)

+
(

u(1)
nm u(2)

mn + u(2)
nm u(1)

mn

)

k̂∧
]

[

�

−→r n

(

�

−→r m · −→r nm

)

+
�

−→r m

(

�

−→r n · −→r nm

)

−−→r nm

(

�

−→r n ·
�

−→r m

)]

, (1.21a)

u̇(j)
nm =

N
∑

ℓ=1;ℓ 6=m,n

{[

r−2
nℓ

{

W
(j)
nℓm

(

�

−→r ℓ ·
−→r nℓ

)

+ (−)jW
(j+1)
nℓm

[

�

−→r ℓ ·
(

k̂ ∧ −→r nℓ

)

]}]

−

[

r−2
mℓ

{

W̃
(j)
nℓm

(

�

−→r ℓ ·
−→r mℓ

)

+ (−)jW̃
(j+1)
nℓm

[

�

−→r ℓ ·
(

k̂ ∧ −→r mℓ

)

]}]}

+
[

u(j)
nm

(

U (1)
nmn − 1

)

− u(2)
nmU

(j+1)
nmn

] ( .
−→r nm · −→r nm

)

+(−)j
[

u(j+1)
nm

(

U (1)
nmn − 1

)

+ u(j)
nmU

(2)
nmn

] [ .
−→r nm ·

(

k̂ ∧ −→r nm

)]

+u(j)
nm

(

f (1)
n − f (1)

m

)

+ (−)ju(j+1)
nm

(

f (2)
n − f (2)

m

)

,

n 6= m, j = 1, 2 mod (2) , (1.21b)

where

W
(j)
nℓm = U

(j)
nℓm − U

(1)
nℓnu

(j)
nm − (−)jU

(2)
nℓnu

(j+1)
nm , n 6= m, j = 1, 2 mod (2) , (1.21c)
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W̃
(j)
nℓm = U

(j)
nℓm −U

(1)
mℓmu

(j)
nm − (−)jU

(2)
mℓmu

(j+1)
nm , n 6= m, j = 1, 2 mod (2) , (1.21d)

U
(j)
nℓm = u

(1)
nℓ u

(j)
ℓm + (−)ju

(2)
nℓ u

(j+1)
ℓm , n 6= m, j = 1, 2 mod (2) . (1.21e)

Here the 2N(N − 1) auxiliary variables u
(1)
nm ≡ u

(1)
nm(t) and u

(2)
nm ≡ u

(2)
nm(t) are of course

real, and are to be treated as scalars. Note that this many-body problem in the plane is
of the (so-called [11] [10] [13] [14]) ”goldfish” type, and indeed it clearly admits , when

f
(1)
n = f

(2)
n = 0, the reduction u

(1)
nm = 1, u

(2)
nm = 0 (entailing U

(1)
nℓm = 1, U

(2)
nℓm = 0,

W
(1)
nℓm = W

(2)
nℓm = W̃

(1)
nℓm = W̃

(2)
nℓm = 0), whereby the equations of motion (1.21b) are

satisfied trivially, while the equations of motion (1.21a) become those of the standard
(integrable indeed solvable [8]) ”goldfish” model [10].

The equations of motion of the fourth of these models read

��

−→r n − ω k̂ ∧
�

−→r n = 2

N
∑

m=1, m6=n

r−6
nm·

·
−→
V (7)

(

�

−→r n,
�

−→r m,
−→v nm,

−→v mn;−→r nm,
−→r nm,

−→r nm

)

, (1.22a)

.
−→v nm =

N
∑

ℓ=1;ℓ 6=m,n









−→
V (5)

(

�

−→r ℓ,
−→v nℓ,

−→v ℓm;−→r nl,
−→r nl

)

r4nℓ

−

−→
V (5)

(

�

−→r ℓ,
−→v nℓ,

−→v ℓm;−→r nl,
−→r nl

)

r4ml









−
(

f̆ (1)
n − f̆ (1)

m

)

−→v nm −
(

f̆ (2)
n − f̆ (2)

m

)

k̂ ∧ −→v nm, n 6= m . (1.22b)

Here the auxiliary dependent variables are the N(N − 1) two-vectors −→v nm, and the two

two-vectors
−→
V (5) respectively

−→
V (7) are defined in terms of their 5 respectively 7 two-vector

arguments in the Appendix, see (A.12) and (A.13). Note that this model might as well
be considered of ”goldfish type”, inasmuch as it features in the right-hand side of (1.22a)
”velocity-dependent” forces – but the reduction to the standard ”goldfish” model is, in

this case, less obvious: it requires a more special choice of the (scalar) source terms f̆
(1)
n

and f̆
(2)
n , as entailed by the treatment of Section 3 (note incidentally the slightly special

notation used here for these terms, which is motivated by consistency with the notation
used in Section 2, see (2.41c)).

In all the models exhibited above we utilized the (a priori arbitrary, possibly complex )
constants a, b when we obtained them in Section 2, but we employed the special assign-
ment (1.7) of these two constants – which entails (see (1.10) and (1.11)) the property of
isochronicity, as discussed above and in Section 2 – when writing these models here as
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many-body problems in the horizontal plane. Let us now mention that another remarkable
case obtains if the assignment (1.7) is replaced by

a = −i ω + γ, b = 0 , (1.23)

with γ > 0 (this correspond to (1.7) with µ = 1 and ω replaced by ω + i γ). The only
modification on the equations of motion entailed by this change is that the left-hand sides
of all the first sets of equation, (1.14a), (1.18), (1.19a), (1.20a), (1.21a), (1.22a), then read
��

−→r n − ω k̂ ∧
�

−→r n + γ
�

−→r n, featuring the additional term γ
�

−→r n

clearly interpretable as a friction force, while the left-hand side of (1.14b) reads
�

−→ρ nm−

1
2 ω k̂ ∧ −→ρ nm + 1

2 γ
−→ρ nm, the left-hand side of (1.19b) reads λ̇

(1)
nm + 2 k̂·

�

−→r nm∧−→r nm

r2
nm

λ
(2)
nm +

ω λ
(2)
nm − γ λ

(1)
nm and that of (1.19c) reads λ̇

(2)
nm − 2 k̂·

�

−→r nm∧−→r nm

r2
nm

λ
(1)
nm −ω λ

(1)
nm − γ v

(2)
nm, the left

hand side of (1.20b) reads
�

−→χ nm − ω k̂ ∧−→χ nm + γ−→χ nm, and the left-hand sides of (1.21b)
and (1.22b) are unchanged. And it is easily seen from the solution reported in Section 2
that, in this case, the (complex) coordinates zn(t) – related to the real two-vectors −→r n(t)
by the standard formulas (3.49) – spiral asymptotically, as t → ∞, toward finite values
zn(∞) which are the N (complex) eigenvalues of the N ⊗ N matrix X(∞) given by the
following explicit formula in terms of the initial data:

[X(∞)]nn = zn(0) +
i

ω
żn(0) , (1.24a)

[X(∞)]nm = − [zn(0) − zm(0)] Mnm(0), n 6= m , (1.24b)

where the initial off-diagonal values Mnm(0) are given in terms of the initial values of the
auxiliary variables by the simple explicit expressions entailed by the results of Sections 2
and 3, see (2.36), (2.38), (2.40), (3.51), (3.55), (3.57), (3.59), (3.60).

Some considerations about these results and about prospects of future work – including
a terse discussion of the Hamiltonian character of these models – are proffered in Section 4,
and several identities relevant to the transition from complex numbers to real two-vectors
are reported in the Appendix.

2 Derivation and solution of the basic dynamical system

In this section we review the manner to arrive at a dynamical system, which can then
be specialized, as shown below, to yield the various models reported above. We thereby
ascertain the technique to find the general solution to the initial-value problem of all these
models.

Let us take as starting point the linear matrix evolution equation

Ẍ + a Ẋ + bX = 0 , (2.25a)

whereX ≡ X(t) is the evolving (N⊗N)-matrix and a, b are two arbitrary scalar constants.
The general solution of the initial-value problem for this equation is of course explicitly
known:

X(t) = exp(α t)
{

X(0) cos(β t) + β−1
[

Ẋ(0) − αX(0)
]

sin(β t)
}

(2.25b)
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with

α = −
a

2
, β =

√

b−
a2

4
. (2.25c)

Next, introduce the diagonal (N ⊗N)-matrix featuring the eigenvalues – which we call
zn(t) – of the matrix X(t):

Z(t) = diag [zn(t)] , (2.26a)

X(t) = R(t) Z(t) [R(t)]−1 . (2.26b)

Given the matrix X(t), the evaluation of its eigenvalues zn(t) – namely of the diago-
nal matrix Z(t), see (2.26) – is a purely algebraic task, as well as the evaluation of the
diagonalizing matrix R(t), which is however defined up to an arbitrary diagonal matrix
D(t),

D(t) = diag [dn(t)] , (2.27a)

according to the formula

R(t) = R̃(t) D(t) , (2.27b)

since clearly it makes no difference to use R(t) or R̃(t) in (2.26b).
It is now convenient (see below) to introduce the (N ⊗N)-matrix

M(t) = [R(t)]−1 Ṙ(t) . (2.28)

And let us note that the freedom of choice (2.27b) gets reflected in the gauge freedom for
the matrix M(t) represented – in self-evident notation – by the formula

M(t) = [D(t)]−1 M̃(t) D(t) + [D(t)]−1 Ḋ(t) , (2.29a)

where of course

M̃(t) =
[

R̃(t)
]−1 ·

R̃(t) . (2.29b)

Here and below the matrix R̃(t), see (2.27), denotes any matrix that diagonalizes the

matrix X(t), X(t) = R̃(t) Z(t)
[

R̃(t)
]−1

, see (2.26) – including, say, the “most natural”

one that emerges from the diagonalization process.
Note that, via an appropriate assignment of the diagonal matrix D(t), one can always

cause the matrix M(t) to have preassigned diagonal elements, say fn(t), since the diagonal
part of the matrix formula (2.29a) reads

fn(t) ≡Mnn(t) = M̃nn(t) +
ḋn(t)

dn(t)
. (2.29c)

Let us now see what are the evolution equations satisfied by the eigenvalues zn(t) of
the matrix X(t) and by the (off-diagonal) elements of the matrix M(t), entailed by the
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evolution equation (2.25a) satisfied by the matrix X(t). To this end we time-differentiate
(2.26b), getting, via (2.28), firstly

Ẋ = R
{

Ż − [Z, M ]
}

R−1 , (2.30)

and then

Ẍ = R
{

Z̈ − 2
[

Ż, M
]

−
[

Z, Ṁ
]

+ [[Z, M ] , M ]
}

R−1 . (2.31)

Here and throughout we use of course the standard notation for the commutator of two
matrices,

[

M (1), M (2)
]

≡M (1)M (2) −M (2)M (1). Hence from equation (2.25a) we get

z̈n + a żn + b zn = −2

N
∑

m=1,m6=n

MnmMmn (zn − zm) , (2.32a)

(zn − zm) Ṁnm + 2(żn − żm)Mnm + a (zn − zm)Mnm

=

N
∑

ℓ=1;ℓ 6=m,n

(zn + zm − 2zℓ)MnℓMℓm + (zn − zm)Mnm (fn − fm) ,

n 6= m , (2.32b)

where we have written separately the diagonal and off-diagonal parts of this matrix equa-
tion, denoting as fn the diagonal elements of the matrix M , see (2.29c).

This is the basic dynamical system, which will now be presented under various con-
venient avatars (still others might, of course, be envisaged). But before doing so, let us
emphasize that, in these equations of motion, (2.32), we consider the quantities fn(t) as
”source terms”, which can be assigned as (arbitrarily) given functions of the independent
variable t, or as (appropriately) given functions of the other dependent variables, zn and
Mnm. We shall occasionally take advantage of this freedom below. Note however that (as
already remarked above) the presence of the quantities fn(t) in these equations of motion
(2.32) is relatively redundant, since via the position

Mnm(t) = M̌nm(t) exp [Fn(t) − Fm(t)] (2.33a)

with

Ḟn(t) = fn(t) (2.33b)

they get reformulated in completely analogous form, except for the elimination of the fn

terms:

z̈n + a żn + b zn = −2

N
∑

m=1,m6=n

M̌nm M̌mn (zn − zm) , (2.34a)

(zn − zm)
�

M̌nm + 2(żn − żm) M̌nm + a (zn − zm) M̌nm

=
N

∑

ℓ=1;ℓ 6=m,n

(zn + zm − 2zℓ) M̌nℓ M̌ℓm , n 6= m . (2.34b)
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It is nevertheless convenient to continue to use the version (2.32) of these equations of
motion.

The first avatar of the equations of motion (2.32) is obtained via the introduction of
the auxiliary dependent variables gnm defined as follows:

Mnm(t) = [zn(t) − zm(t)]−2 gnm(t), n 6= m . (2.35)

We thereby get the equations of motion (1.2).
The second avatar of the equations of motion (2.32) is obtained via the introduction of

the auxiliary dependent variables γnm defined as follows:

Mnm(t) = [zn(t) − zm(t)]−1 γnm(t), n 6= m . (2.36)

We thereby get the following equations of motion

z̈n + a żn + b zn = 2

N
∑

m=1, m6=n

γnm γmn

(zn − zm)
, (2.37a)

γ̇nm + γnm

żn − żm

zn − zm
+ a γnm

= −
N

∑

ℓ=1;ℓ 6=m,n

γnℓ γℓm

(

1

zn − zℓ
+

1

zm − zℓ

)

+ γnm (fn − fm) ,

n 6= m . (2.37b)

The third avatar of the equations of motion (2.32) is obtained via the introduction of
the auxiliary dependent variables unm defined as follows:

Mnm(t) = −
√

żn(t) żm(t) [zn(t) − zm(t)]−1 unm(t), n 6= m . (2.38)

Note the introduction in the right-hand side of the square-root term (the appropriateness
of this choice can be traced to [6]). We thereby get the following equations of motion:

z̈n + a żn = 2

N
∑

m=1, m6=n

żn żm unm umn

(zn − zm)
, (2.39a)

u̇nm =

N
∑

ℓ=1;ℓ 6=m,n

żℓ

[

unℓ (uℓm − uℓn unm)

zn − zℓ
+
uℓm (unℓ − unm umℓ)

zm − zℓ

]

+unm

[

(żn − żm) (unm umn − 1)

zn − zm
+ fn − fm

]

, n 6= m . (2.39b)

To get these equations we did set, for simplicity, b = 0; and note that, to get (2.39b), we
also used (2.39a).

The fourth and last avatar of the equations of motion (2.32) that we exhibit here is
obtained via the introduction of the auxiliary dependent variables ηnm defined as follows:

Mnm(t) =
√

żn(t) żm(t) [zn(t) − zm(t)]−2 ηnm(t), n 6= m . (2.40)
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(Note again the square-root term in the right-hand side). We thereby get the following
equations of motion:

z̈n + a żn = −2

N
∑

m=1, m6=n

żn żm ηnm ηmn

(zn − zm)3
, (2.41a)

η̇nm =

N
∑

ℓ=1;ℓ 6=m,n

żℓ ηnℓ ηℓm

[

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

]

−ηnm



fn −

N
∑

ℓ=1,ℓ 6=n

żℓ ηnℓ ηℓn

(zn − zℓ)
3 − fm +

N
∑

ℓ=1,ℓ 6=m

żℓ ηmℓ ηℓm

(zm − zℓ)
3



 ,

n 6= m . (2.41b)

Again, to get these equations we did set, for simplicity, b = 0, and to get (2.41b) we also
used (2.41a). To get a neater version of these equations of motion, we now set

fn = f̆n +

N
∑

ℓ=1,ℓ 6=n

żℓ ηnℓ ηℓn

(zn − zℓ)
3 , (2.41c)

so that the second set, (2.41b), of these equations read

η̇nm =

N
∑

ℓ=1;ℓ 6=m,n

żℓ ηnℓ ηℓm

[

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

]

−ηnm

(

f̆n − f̆m

)

, n 6= m . (2.41d)

Let us now indicate, step-by-step, how the initial-value problem for these various equa-
tions of motion can be solved.

The first step is to obtain the initial data for the matrix X(t). The relevant formulas
read

X(0) = diag [zn(0)] , [X(0)]nm = δnm zn(0) , (2.42)

[

Ẋ(0)
]

nn
= żn(0) , (2.43a)

[

Ẋ(0)
]

nm
= − [zn(0) − zm(0)] Mnm(0), n 6= m . (2.43b)

These formulas follow clearly from (2.26b) and (2.30), thanks to the assignment

R(0) = 1, [R(0)]nm = δnm , (2.44)

which of course implies that we assume the matrix X to be initially diagonal, see (2.42).
Note that this assignment, (2.44), is permissible, and that it still leaves the freedom to
assign the initial value M(0) of the matrix M(t), which is just given by the time-derivative
of the matrix R(t) at t = 0, M(0) = Ṙ(0) (see (2.28) and (2.44)). Of course, for the various
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avatars of the equations of motion displayed above, the initial values of the off-diagonal
elements of the matrix M(t), namely Mnm(0) with n 6= m, are given in terms of the
relevant initial data for the auxiliary variables by the appropriate relations, see (2.35),
(2.36), (2.38), (2.40).

The second step is to obtain X(t) from these initial data, and this is accomplished
via the explicit formulas (2.25b) with (2.25c). Note that, if the assignment (1.7) of the
constants a, b is made – as we indeed generally do – one gets from (2.25c)

α =
iµ ω

2
, β =

ω

2
, (2.45a)

so that (2.25b) reads

X(t) = exp

(

iµ ω t

2

)

·

·

{

X(0) cos

(

ω t

2

)

+

[(

2

ω

)

Ẋ(0) − iµX(0)

]

sin

(

ω t

2

)}

.

(2.45b)

This formula demonstrates that X(t) is in this case periodic in t with period qT , see (1.10)
and (1.11). Let us also take note of the special assignment

µ = 1, a = −i ω, b = 0 (2.46a)

– which might be used in all cases, but must be used in the last two models, see (2.39)
and (2.41), characterized by b = 0. When this special assignment (2.46a) is made, it
is interesting to consider the possibility that ω acquire also a (positive) imaginary part,
ω ⇒ ω + i γ, γ > 0, so that (2.45b) become

X(t) = X(0) +

(

i

ω

)

Ẋ(0) {1 − exp [(i ω − γ) t]} , (2.46b)

entailing of course

X(∞) = X(0) +

(

i

ω

)

Ẋ(0) . (2.46c)

The third step is to find the eigenvalues zn(t), see (2.26), of this matrix X(t): a purely
algebraic task. Note that one thereby concludes that the time-evolution of these quantities
– the main dependent variables zn(t) – does not depend at all on the “source terms” fn(t)
(see (2.32b), (1.2b), (2.37b), (2.39b), (2.41b)) or f̆n(t) (see (2.41d)). This is not surprising,
given the possibility to eliminate altogether this type of terms via the transformation
(2.33), see (2.34).

The fourth step is to compute a matrix R̃(t) that diagonalizes the matrix X(t), see
(2.26) and (2.27). The ambiguity inherent in the definition of this matrix, see (2.27b),
shall be taken care of at the end; for the moment any choice of this matrix R̃ is permissible,
provided it does diagonalize X(t).

The fifth step is to compute from R̃(t) the corresponding matrix M̃(t), see (2.29b).
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The sixth step is to compute from M̃(t) the auxiliary variables Mnm(t) via (see (2.27),
(2.28) and (2.29))

Mnm(t) = dn(t) M̃nm(t) [dm(t)]−1 , n 6= m . (2.47)

Note that, since the main dependent variables zn(t) are by now known, once the auxil-
iary dependent variable Mnm(t) for the model (2.32) are known, the auxiliary dependent
variables featured by the other models – namely gnm(t) (see (1.2)), γnm(t) (see (2.37)),
unm(t) (see (2.39)), ηnm(t) (see (2.41)) – are immediately obtained via their relations with
the quantities Mnm(t), see (2.35), (2.36), (2.38), (2.40). Hence this formula, (2.47), would
conclude the task, were it not for the fact that the diagonal elements dn(t) of the matrix
D(t) are not yet known.

Hence a seventh step is finally required to complete the job, namely to integrate the
ODEs (see (2.29c))

ḋn = dn

(

fn − M̃nn

)

, (2.48a)

via the quadrature

dn(t) = exp







t
∫

0

dt′
[

fn(t′) − M̃nn(t′)
]







. (2.48b)

Here the functions fn(t) are either given as explicit functions of time (”source terms”), or
they may be given, in some case (see (2.41c)) as functions of the dependent variables –
but note that, in all these cases, they can be expressed in terms of the variables zn(t) and
M̃nm(t), for instance (2.41c) can be clearly re-written as follows (see (2.40) and (2.47)):

fn = f̌n +

N
∑

ℓ=1,ℓ 6=n

(zn − zℓ) M̃nℓ M̃ℓn

żn
. (2.48c)

This completes the solution – via purely algebraic operations, and a quadrature (to
obtain the time-dependent quantities dn(t), see (2.48b)) – of the initial-value problem for
the dynamical systems displayed above, see (2.32), (1.2), (2.37), (2.39), (2.41).

Let us reemphasize in conclusion that, if the assignment (1.7) of the constants a, b
(entailing (2.45)) is made, the matrix X(t) evolves periodically in time with period qT

(see the sentence after (2.45b)), hence the time evolution of each of its eigenvalues is as
well periodic, with a period T̃ which can be at most N ! times larger than qT (due to the
possibility that the eigenvalues get reshuffled through the motion). The statement made
in the introductory Section 1 about the isochronicity phenomenon is thereby proven. The
only nonperiodic solutions are the (nongeneric) ones that become singular at a finite time
tc, generally due to a collision of two – or, more exceptionally, more than two – of the
moving particles (namely they become singular at a time tc – if any – such that zn(tc) =
zm(tc) for some value of n and m); for a better understanding of this phenomenology,
including its relation to the actual periodicity of the generic (nonsingular) solutions, see
the discussion [12] [13] of this mechanism in somewhat analogous situations.

Also note that the results (2.46c) confirm the behavior of certain many-body systems
”with friction”, as reported at the end of Section 1, see in particular (1.24).
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3 Real many-body problems in the plane

In this section we indicate how the (rotation-invariant !) many-body models in the plane
reported in Section 1 are related to the various solvable avatars of the main dynamical
systems the solution of which is described in the previous Section 2. Some useful identities
relevant to this development are confined to the Appendix.

The main trick [9] [10] is to identify appropriately a point, say z, in the complex
plane, with a real two-vector −→r in a physical plane, which for convenience we identify
with the horizontal plane in three-dimensional space. This identification is performed via
a correspondence for which we use the notation

z
.
= −→r , (3.49a)

the meaning of which is specified by the formulas

z ≡ x+ i y , −→r ≡ (x, y, 0) , k̂ ≡ (0, 0, 1) , (3.49b)

where the components x, y are of course real. In the last of these formulas, (3.49b), we
moreover introduce the convenient unit vector k̂ orthogonal to the horizontal plane, so
that there hold the self-evident relations

i zn = i x− y
.
= k̂ ∧ −→r n = (−y, x, 0) , (3.49c)

as well as all the others conveniently collected in the Appendix.
This transformation from complex numbers to vectors in the real plane shall now be

applied to the avatars of the dynamical system identified in the previous Section 2. It
shall, or it shall not – as the case may be, see below – be accompanied by an analogous
transformation of complex numbers into real two-vectors for the auxiliary dependent vari-
ables featured by each of these models, as displayed in the previous Section 2; the goal is
of course to reformulate in every case the equations of motion in covariant form, so that
their rotation-invariant character be apparent.

Let us emphasize that, in performing this transformation, we always assume the con-
stants a and b to be assigned according to (1.7), with ω and µ both real constants (and
µ = 1 when b = 0), and we set

fn = f (1)
n + i f (2)

n , (3.50)

with the quantities f
(1)
n ≡ f

(1)
n (t) and f

(2)
n ≡ f

(2)
n (t) (sometimes decorated with some kind

of hat) obviously real and to be always treated as scalars. We moreover often use the
short-hand notation (1.16).

The first equations of motion to which we apply this kind of transformation are those
of the main dynamical system itself, see (2.32), via the definition

Mnm(t) = µ(1)
nm(t) + i µ(2)

nm(t) , n 6= m , (3.51)

where the 2N(N−1) auxiliary dependent variables µ
(1)
nm(t) and µ

(2)
nm(t) are hereafter treated

as real scalars. Then clearly (2.32) become

��

−→r n − µω k̂ ∧
�

−→r n +
1

4

(

1 − µ2
)

ω2 −→r n = −2
N

∑

m=1,m6=n
[(

µ(1)
nm µ(1)

mn − µ(2)
nm µ(2)

mn

)

+
(

µ(1)
nm µ(2)

mn − µ(2)
nm µ(1)

mn

)

k̂∧
]

−→r nm , (3.52a)
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[

µ̇(1)
nm + µω µ(2)

nm +
(

µ̇(2)
nm − µω µ(1)

nm

)

k̂∧
]

−→r nm

+2
[

µ(1)
nm + µ(2)

nm k̂∧
]

�

−→r nm

=
N

∑

ℓ=1;ℓ 6=m,n

[(

µ
(1)
nℓ µ

(1)
ℓm − µ

(2)
nℓ µ

(2)
ℓm

)

+
(

µ
(1)
nℓ µ

(2)
ℓm − µ

(2)
nℓ µ

(1)
ℓm

)

k̂∧
]

(−→r nℓ + −→r mℓ)

+
{

µ(1)
nm

(

f (1)
n − f (1)

m

)

− µ(2)
nm

(

f (2)
n − f (2)

m

)

+
[

µ(1)
nm

(

f (2)
n − f (2)

m

)

+ µ(2)
nm

(

f (1)
n − f (1)

m

)]

k̂∧
}

−→r nm , n 6= m .

(3.52b)

It is now convenient to multiply (”scalar product”) the second, (32b), of this set of equa-
tions of motion by −→r nm respectively by k̂ ∧ −→r nm , and to introduce the new (real and

scalar) 2N(N − 1) auxiliary variables λ
(1)
nm ≡ λ

(1)
nm(t), λ

(2)
nm ≡ λ

(2)
nm(t) by setting

λ(1)
nm(t) + i λ(2)

nm(t) =
[

µ(1)
nm(t) + i µ(2)

nm(t)
]

r2nm(t) = Mnm(t) r2nm(t), n 6= m. (3.53)

The equations of motion (3.52) then yield the many-body model in the plane (33).
Next, we transform the avatar (2.37) of the equations of motion, by setting

γnm(t)
.
= −→χ nm(t) . (3.54)

We thus get (using (A.3) and (A.10)) the equations of motion of the many-body model in
the plane (1.20).

The next complex avatar of the equations of motion we now transform into real two-
vector form is (1.8). To this end we firstly set

gnm = ψ2
nm (3.55)

so that these equations of motion read as follows:

z̈n − i µ ω żn +
1

4

(

1 − µ2
)

ω2 zn = −2

N
∑

m=1, m6=n

ψ2
nm ψ2

mn

(zn − zm)3
, (3.56a)

ψ̇nm −
1

2
i µ ω ψnm = −

1

2

N
∑

ℓ=1, ℓ 6=m,n

ψ2
nℓ ψ

2
ℓm

ψnm

(

1

(zn − zℓ)
2 −

1

(zm − zℓ)
2

)

+
1

2
ψnm (fn − fm) . (3.56b)

The advantage of this trivial substitution is that these equations are now invariant under
the rescaling transformation zn ⇒ c zn, ψnm ⇒ cψnm where c is an arbitrary constant.
Hence [9] [10] we introduce now the real vectors −→ρ nm by setting

ψnm(t)
.
= −→ρ nm(t), n 6= m . (3.57)
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It is then easily seen (via the relevant identities reported in the Appendix) that, via this
position (3.57), the equations of motion (3.56) become the equations (1.14), and likewise
that (1.9) becomes (1.15) while (1.6a) becomes

f (1)
n = f̆ (1)

n +

N
∑

ℓ=1, ℓ 6=n

2 (−→r nℓ ·
−→ρ nℓ)

2
− r2nℓ ρ

2
nℓ

r4nℓ

, (3.58a)

f (2)
n = f̆ (2)

n + 2

N
∑

ℓ=1, ℓ 6=n

(−→r nℓ ·
−→ρ nℓ)

(

k̂ · −→r nℓ ∧
−→ρ nℓ

)

r4nℓ

. (3.58b)

The next complex avatar of the equations of motion we transform into real two-vector
form is (2.39). To this end we set (see (2.38))

unm(t) = u(1)
nm(t) + i u(2)

nm(t) = −
zn(t) − zm(t)
√

żn(t) żm(t)
Mnm(t), n 6= m , (3.59)

with the proviso to treat the 2N(N − 1) auxiliary variables u
(1)
nm(t) and u

(2)
nm(t) as real

scalars. We thus get the equations of motion of the many-body model in the plane (1.21).
The last complex avatar of the equations of motion we transform here into real two-

vector form is (2.41a) with (2.41d). To this end we set

ηnm(t)
.
= −→v nm(t) , n 6= m , (3.60)

and we thus get (see the Appendix) the equations of motion of the many-body problem
in the plane (1.22).

4 Outlook

We did not mention, up to now, the Hamiltonian character of the models investigated
herein. Let us just mention now that, following Wojciechowski [23] [24] , Nekrasov [20] as
well as Babelon and Talon [2], it is easily seen that the equations of motion of the model
(1.2) with a = 0 are produced by the following Hamiltonian H and Poisson brackets {·, ·}:

H (pm, zm, gjk; t) =
1

2

N
∑

n=1

(

p2
n + b z2

n

)

+
1

2

N
∑

n,m=1 n 6=m

gnm gmn

(zn − zm)2
−

N
∑

n=1

fn(t) gnn , (4.1a)

{pn, zm} = δnm , {pn, gmk} = {zn, gmk} = 0,

{gnm, gkℓ} = δnℓ gkm − δmk gnℓ . (4.1b)

Indeed it is easily seen that the Hamiltonian equations

żn = {H, zn} , ṗn = {H, pn} , ġnm = {H, gnm} , (4.1c)

yield precisely the equations of motion (1.2), and in addition the trivial relations ġnn = 0 .
Note that these (”diagonal”) quantities gnn do not appear at all in the equations of motion
(1.2), but they do play a role in the Poisson brackets satisfied by the quantities gnm (the
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Poisson character of which is guaranteed by their well known Lie group significance), and
their presence in the Hamiltonian (4.1a) is essential to take care of the presence of the
”source terms” fn ≡ fn(t) in the equations of motion (1.2) (which is a novelty with respect
to the cases treated hitherto [23] [24] [20] [2], and it is the cause of the time-dependence
of the Hamiltonian (4.1a)). And let us emphasize that, while the quantities pm, zm, gjk

are to be treated as Hamiltonian variables, the quantities fn are instead to be treated as
(arbitrarily pre-assigned) ”source terms” (which therefore Poisson-commute with all the
Hamiltonian variables). This Hamiltonian formulation can be trivially extended to the
other models reported in Section 1, such as (1.8) and (1.14), which are directly related
to the model (1.2) and do not entail a redefinition of the quantities fn in terms of the
Hamiltonian variables. On the other hand the Hamiltonian formulation (if it exists at all)
of other models exhibited in Section 1 does not seem to be a trivial matter; we might
return to this issue in a future paper.

Also interesting indeed quite amusing – and perhaps worth separate reporting – will be
the investigation via numerical simulations of the actual behavior of the solutions of the
many-body problems in the plane considered herein.

An open problem is the detailed investigation of the quantum counterpart of the clas-
sical many-body problems in the plane considered herein – at least those that allow a
Hamiltonian formulation. The conjecture seems plausible that to the isochronous charac-
ter of the generic solution in the classical case there correspond an equispaced spectrum
in the quantum case (at least for some quantization prescription).

Also interesting might perhaps be the investigation of other classical many-body models
in the plane obtained via a different complexification [9] [10], that might produce again
rotation-invariant models in the plane, although perhaps more artificial ones, lacking the
property of translation invariance.

Finally let us mention the possibility – reported separately [15] – to treat in an analogous
manner to that used here integrable (indeed solvable, see for instance [10]) models of these
types but with more general interactions (say, of hyperbolic rather than rational type).
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pitality provided to one of us (FC) for one month in 2003, during which time most of the
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after more than one year it was rejected on the basis of a Report by a Referee who had
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arrogantly stated so: the authors will be happy to send a copy of that Referee report to
any interested colleague (it is perhaps time that the behavior of incompetent and arrogant
Referees be singled out, as well as that of Editors who condone such behavior).
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Appendix

A

In this Appendix we report, for completeness, the definitions and several key identities
relevant to the transition from complex numbers such as, say, z, ζ to real two-vectors in
the horizontal plane such as, say, −→r , −→ρ , see (3.49).

z ≡ x+ i y ÷−→r ≡ (x, y, 0) , ζ ≡ ξ + i η ÷−→ρ ≡ (ξ, η, 0) , k̂ = (0, 0, 1) , (A.1)

i z = i x− y ÷ k̂ ∧ −→r = (−y, x, 0) , i ζ = i ξ − η ÷ k̂ ∧ −→ρ = (−η, ξ, 0) , (A.2)

|z|2 = r2 , |ζ|2 = ρ2 ; (A.3)

z ζ∗ = (−→r · −→ρ ) + i
[

−→r ·
(

k̂ ∧ −→ρ
)]

, (A.4)

−→r · −→ρ = x ξ + y η , −→r ·
(

k̂ ∧ −→ρ
)

= x η − y ξ ; (A.5)

−→r = R−2
{−→
R

(

−→r ·
−→
R

)

+ k̂ ∧
−→
R

[

−→r ·
(

k̂ ∧
−→
R

)]}

; (A.6)
(

k̂ ∧ −→r 1

) [

−→r 2 ·
(

k̂ ∧ −→r 3

)]

= −→r 2 (−→r 1 ·
−→r 3) −

−→r 3 (−→r 1 ·
−→r 2) , (A.7)

[

−→r 1 ·
(

k̂ ∧ −→r 2

)] [

−→r 3 ·
(

k̂ ∧ −→r 4

)]

= (−→r 1 ·
−→r 3) (−→r 2 ·

−→r 4)−(−→r 1 ·
−→r 4) (−→r 2 ·

−→r 3) , (A.8)

(−→r 1 ·
−→r 2)

[

−→r 3 ·
(

k̂ ∧ −→r 4

)]

+ (−→r 3 ·
−→r 4)

[

−→r 1 ·
(

k̂ ∧ −→r 2

)]

= (−→r 1 ·
−→r 4)

[

−→r 2 ·
(

k̂ ∧ −→r 3

)]

+ (−→r 2 ·
−→r 3)

[

−→r 1 ·
(

k̂ ∧ −→r 4

)]

; (A.9)

z1z2 ζ
∗ ÷−→r 1 (−→r 2 ·

−→ρ ) + −→r 2 (−→r 1 ·
−→ρ ) −−→ρ (−→r 1 ·

−→r 2) , (A.10a)

z1z2 ζ
∗ ÷R−2

{−→
R

[(−→
R · −→r 1

)

(−→r 2 ·
−→ρ ) +

(−→
R · −→r 2

)

(−→r 1 ·
−→ρ ) −

(−→
R · −→ρ

)

(−→r 1 ·
−→r 2)

]

+k̂ ∧
−→
R

{[(

k̂ ∧
−→
R

)

· −→r 1

]

(−→r 2 ·
−→ρ ) +

[(

k̂ ∧
−→
R

)

· −→r 2

]

(−→r 1 ·
−→ρ ) −

[(

k̂ ∧
−→
R

)

· −→ρ
]

(−→r 1 ·
−→r 2)

}}

;

(A.10b)

z1z2 ζ
∗
1 ζ

∗
2 = (−→r 1 ·

−→ρ 1) (−→r 2 ·
−→ρ 2) + (−→r 1 ·

−→ρ 2) (−→r 2 ·
−→ρ 1) − (−→r 1 ·

−→r 2) (−→ρ 1 ·
−→ρ 2)

+i
{

(−→r 1 ·
−→ρ 1)

[

−→r 2 ·
(

k̂ ∧ −→ρ 2

)]

+ (−→r 2 ·
−→ρ 2)

[

−→r 1 ·
(

k̂ ∧−→ρ 1

)]}

,

(A.11)

z1z2 z3 ζ
∗
1 ζ

∗
2
.
=

−→
V (5) (−→r 1,

−→r 2,
−→r 3;

−→ρ 1,
−→ρ 2)

= −→r 3 [(−→r 1 ·
−→ρ 1) (−→r 2 ·

−→ρ 2) + (−→r 1 ·
−→ρ 2) (−→r 2 ·

−→ρ 1) − (−→r 1 ·
−→r 2) (−→ρ 1 ·

−→ρ 2)]

+k̂ ∧ −→r 3

{[

(−→r 1 ·
−→ρ 1)

[

−→r 2 ·
(

k̂ ∧ −→ρ 2

)]

+ (−→r 2 ·
−→ρ 2)

[

−→r 1 ·
(

k̂ ∧ −→ρ 1

)]]}

= −→r 1 [− (−→r 2 ·
−→r 3) (−→ρ 1 ·

−→ρ 2) + (−→r 2 ·
−→ρ 1) (−→r 3 ·

−→ρ 2) + (−→r 2 ·
−→ρ 2) (−→r 3 ·

−→ρ 1)]

+−→r 2 (−→r 1 ·
−→ρ 1) (−→r 3 ·

−→ρ 2) + −→r 3 (−→r 1 ·
−→ρ 2) (−→r 2 ·

−→ρ 1)

−−→ρ 1 (−→r 1 ·
−→r 2) (−→r 3 ·

−→ρ 2) −
−→ρ 2 (−→r 1 ·

−→r 3) (−→r 2 ·
−→ρ 1) . (A.12)
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In this last formula, (A.12), the left-hand side is clearly invariant under the exchange of z1
with z2, z2 with z3, z3 with z1, or ζ1 with ζ2; this is only partially evident in the expressions
in the right-hand sides, but it is of course true as well for all of them.

z1z2 z3z4 ζ
∗
1 ζ

∗
2 ζ

∗
3

.
=

−→
V (7) (−→r 1,

−→r 2,
−→r 3,

−→r 4;
−→ρ 1,

−→ρ 2,
−→ρ 3)

= −→r 4. {− (−→r 1 ·
−→ρ 3) [(−→r 2 ·

−→r 3) (−→ρ 1 ·
−→ρ 2) + (−→r 2 ·

−→ρ 1) (−→r 3 ·
−→ρ 2)

+ (−→r 2 ·
−→ρ 2) (−→r 3 ·

−→ρ 1)] + (−→r 2 ·
−→ρ 3) (−→r 1 ·

−→ρ 1) (−→r 3 ·
−→ρ 2)

+ (−→r 3 ·
−→ρ 3) (−→r 1 ·

−→ρ 2) (−→r 2 ·
−→ρ 1) − (−→ρ 1 ·

−→ρ 3) (−→r 1 ·
−→r 2) (−→r 3 ·

−→ρ 2)

− (−→ρ 2 ·
−→ρ 3) (−→r 1 ·

−→r 3) (−→r 2 ·
−→ρ 1)]

+k̂ ∧ −→r 4.
{[(

−→r 1 ·
(

k̂ ∧ −→ρ 3

))]

[− (−→r 2 ·
−→r 3) (−→ρ 1 ·

−→ρ 2) + (−→r 2 ·
−→ρ 1) (−→r 3 ·

−→ρ 2)]

+ (−→r 2 ·
−→ρ 2) (−→r 3 ·

−→ρ 1)] +
[

−→r 2 ·
(

k̂ ∧ −→ρ 3

)]

(−→r 1 ·
−→ρ 1) (−→r 3 ·

−→ρ 2)

+
[

−→r 3 ·
(

k̂ ∧ −→ρ 3

)]

(−→r 1 ·
−→ρ 2) (−→r 2 ·

−→ρ 1) −
[

−→ρ 1 ·
(

k̂ ∧ −→ρ 3

)]

(−→r 1 ·
−→r 2) (−→r 3 ·

−→ρ 2)

−
[

−→ρ 2 ·
(

k̂ ∧ −→ρ 3

)]

(−→r 1 ·
−→r 3) (−→r 2 ·

−→ρ 1)
}

. (A.13)

Many other formulas equivalent to those displayed above could as well be written, entail-

ing in particular several other, equivalent, definitions of the two-vectors
−→
V (5)(−→r 1,

−→r 2,
−→r 3;

−→ρ 1,
−→ρ 2) and

−→
V (7) (−→r 1,

−→r 2,
−→r 3,

−→r 4;
−→ρ 1,

−→ρ 2,
−→ρ 3) (see (A.12) and (A.13)); in particular

from the last formula, (A.13), one can easily get via (A.7) an expression for
−→
V (7)(−→r 1,

−→r 2,
−→r 3,

−→r 4;
−→ρ 1,

−→ρ 2,
−→ρ 3) which does not involve any vector products, and or expressions

which appear more symmetrical. And let us finally emphasize that any two-vector can be

written as a linear combination with scalar coefficients of an arbitrary two-vector, say
−→
R,

and of the two-vector orthogonal to it, k̂ ∧
−→
R, see (A.6) and, for instance, (A.10b).
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