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Abstract— Contact angle hysteresis  has an important impact on 
liquid bridges between sphere particles. The paper studies the 
dynamic contact angles effect on capillary and viscous forces of 
liquid bridges, calculation results indicate that its effects on 
capillary force are significant; however, it has little effect on 
viscous force. Through the mathematical method the capillary 
force can be expressed as the function of contact angle and filling 
angle. By fixing the contact angle, changes in the capillary force 
during the wetting and drying processes can be assessed by 
analyzing the derived function of such function with regard to the 
filling angle. By fixing the filling angle, changes in the capillary 
force in the pinning process can be analyzed using the derived 
function and the contact angle.  

Keywords-capillary force; viscous force; contact angle 
hysteresis 

I.  INTRODUCTION  

Particulate matter, such as sand, soil, dust, drugs, chemicals, 
mining, etc., exists widely in nature and is inseparable from 
human life. Wet particulate matter is one of the most popular 
research directions because capillary action complicates the 
wet particle issue, and the effects of capillary force on wet 
particles cannot be ignored. Conditions for the existence of a 
liquid bridge between particles are as follows: when the 
distance between particles reaches a certain value, the liquid 
bridge is damaged, and the capillary attraction between 
particles disappears[1,2]. Pitois[3] considered the effects of 
contact angles and liquid viscosity, and proposed an energy 
expression while the liquid bridge is being damaged. Testing 
has been carried out to verify his proposition. Meqias-
Alquacil[9]considered the effects of various factors and 
conducted analysis on the existing scope of liquid bridges 
while spaces between particles are increasing. Furthermore, 
Meqias-Alquacil[4] also discussed the existing limit conditions 
of liquid bridges while particles are in contact with one another. 
Mu[5] and Cai[6]presented a comprehensive summary of 
studies involving the status of liquid bridges between particles. 
Luan[7]simplified soil particles using the spherical particle 
model;  tension suction have been proposed through the 
mechanical analysis of liquid bridges between particles. The 
model has theoretically derived the soil-water characteristic 
curve and has established the corresponding strength formula. 

This paper considers the contact angle hysteresis effect by 
assuming that the particles approach or separate in a certain 
speed under the spherical particle model. The simultaneous 
equations solving method is adopted to provide a continuous 
geometric and mechanical variation of liquid bridges. when 
particles one another or when they separate, changes in contact 
angle and meniscus radius is continuous and regular. Liquid 
viscous force cannot be ignored under certain approaching and 
separating speeds. The contact angle hysteresis effect does not 
only have a significant impact on capillary force under 
increasing or decreasing liquid bridge volume, but also 
significantly affects the mechanical characteristics of liquid 
bridges during the approaching or separating process. 

II. PARTICLE MODEL ANALYSIS  

A. Geometry analysis 

Two sphere particles are connected by a liquid bridge (Fig 
1). 
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Fig.1  Two particles with a liquid bridge 

Let the distance between the sphere particles such that the 
radius R is equal to 2a. δ is contact angle, θ is  filling angle.The 
spheres are connected by a liquid bridge (i.e., the meniscus of 
such liquid bridge complies with thermodynamic assumptions). 
This liquid bridge is enclosed by two spherical crowns and a 
circular rotation surface. In the xy axes plane, the liquid surface 
is a section of the arc with the radius of r, b is the height of the 
bottom of the liquid surface, and 2(R+a) is the distance 
between the centers of the spheres. The equations that should 
be satisfied at any point on the meniscus are as follows[7]:   
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The volume of the liquid bridge is obtained as follows: 
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B. Mechanical and mathematical analysis 

With the absence of external force, the liquid bridge 
connects the two sphere particles through Laplace force and 
tension. Based on the Young-Laplace equation, the force 
between two sphere particles on the liquid-solid interface is 
given by 
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The water-vapor interface produces tension function on the 
surface of two particles, and the composite force of the surface 
tension on the X direction is given by[7] 
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where  is the surface tension coefficient. The composite 
force of Laplace force and tension is called capillary force: 

cap laplace tF F F                                             (7) 

The functioning scope of Flaplace is the projection of the 
spherical crown on the y-axis enclosed by the liquid bridge. 
The distribution force uniformly acting on the spherical crown 
in the liquid bridge is called matric suction. When a=0, r and b 
can be expressed as the functions of contact angles θ and δ: 
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Considering the general situation, Equations (8) and (9) can 
be expressed as follows: 

 
+ cos

cos

R a R
r


 





                                                     (10) 

  sin
+ tan 1

cos
b R a r




    
 

                                  (11) 

According to (10) (11), (5)can be written as 
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Considering the absence of contact angle hysteresis effect, δ 
is a constant. Derivation of θ is carried out in Equation (6): 
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In Equation (13), y is larger than 0. The range of positive 
and negative values can be obtained by investigating cos(δ+θ), 
which can be used to analyze changes in liquid bridge tension 
along the contact angle, as well as the distance between 
particles.  

Similarly, δ is fixed(i.e.,without the contact angle hysteresis 
effect), and derivation of θ can be carried out in Equation (13). 
Let its derived function be Fl(θ)'. R and a are larger than 0. The 
changes in Laplace force along θ can be judged by calculating 
the positive and negative situation of Fl(θ)'. If Fl(θ)' is 0, the 
extreme value of the Laplace force during the changing of a 
certain section can be calculated. The same method can be used 
to judge changes in capillary force. The expression of capillary 
force for the derivative of θ is as follows: 
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When the contact angle hysteresis effect is considered, 
δr<δ<δa , and θ is constant (i.e., y is kept unchanged, δr is the 
receding contact angle, δa is the advancing cnotact angle). 
Derivation of θ is carried out in Equation (6): 
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When 0<θ+δ</2, while the contact angle hysteresis effect 
occurs, the maximum value is taken at δ = δa. When /2<θ+δ<, 
the maximum value is taken at δ=δr. If θ+δ=/2, maximum 
value is taken at such point. Using the same reasoning, changes 
in Flaplace and Fcap along δ can be judged while the contact 
angle hysteresis effect occurs. The extreme values of Flaplace and 
Fcap are obtained when δ is changing in a certain section. 

III. VISCOUS FORCE 

While the two sphere particles are in a state of relative 
movement under certain speed because of liquid viscosity, a 
viscous force with a direction opposite to the movement speed 
direction is produced. The size of this viscous force can be 
determined according to the Reynolds equation: 
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Where D=2a, the following can be obtained after 
integrating both sides of Equation (16): 
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where A and B are the integration constants, H(y)=2a+y2/R. 
These constants can be determined through the pressure 
gradient ∂p/∂y=0 (when y=0) and the boundary condition. If 
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p(y)│y=y0 (i.e. the pressure at the boundary is 0), then p(y) can 
be obtained from Equation (17): 
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If y0 is infinite, (18) can be simplified as 
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Equation (19) shows that this equation is not related to the 
contact angle (i.e., it cannot reflect the impact of  contact angle 
changes on the liquid bridge viscous force). However, in 
Equation (19), the Reynolds equation is obtained by 
simplifying the Navier-Stoke equation. The Navier-Stoke 
equation supposes that the curvature of the gas-liquid interface 
of the liquid bridge is 0 (i.e., without considering static 
capillary force), so we can get p(y) | y = y0 = 0. In order to 
investigate the impacts of static capillary action and the contact 
angle hysteresis effect on dynamic capillary force [considering 
that there is very small bending on the gas-liquid interface, and 
that the fluid pressure is also determined by Equation (19)], the 
boundary conditions are then changed as follows:    
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The p0y0
2 in the foregoing equation is the Laplace force; 

however, the tension does not belong to the pressure inside the 
liquid; it must be calculated separately. The contact angle 
hysteresis effect can be reflected approximately by changes in 
y0. When there is no contact angle hysteresis during the 
movement process of two particles, y0 changes during the 
movement process of particles; otherwise, y0 does not change. 

The contact angle hysteresis effect has very little impact on 
the viscous force of liquid bridges(Figure2 a#). When the 
capillary force is higher than the viscous force, the viscous 
force can be ignored; otherwise, the capillary force can be 
ignored. When the speed is in a certain range, the capillary 
force and viscous force are in the same order; both forces 
should be considered(Figure2 b#). Hence, the contact angle 
hysteresis effect significantly affects viscous force. 

 

 
Fig.2 Relative contribution of dimensionless force,( Fv, Ftotal), as a function of 
dimensionless separation distance(2a*)， (a): viscous force is higher than 
capillary force, (b): capillary force and viscous force are in the same order 
( F*total    dimensionless viscous force and dimensionless capillary force) 

IV. CONCLUSIONS 

When the liquid bridge volume between sphere particles is 
kept unchanged and the two sphere particles are in the state of 
relative movement, the contact angle hysteresis effect 
significantly influences capillary force. Capillary force may 
have its peak value in the section where the contact angle 
occurs. The changing rule may be obtained by analyzing the 
derived function of the capillary force for δ and θ. When the 
distance between sphere particles is secured and the volume of 
the liquid is increased (or decreased) or the liquid bridge 
volume between particles is unchanged and the change in 
capillary force caused by particle spacing is decreased (or 
increased). The essence is the change in δ and θ. The contact 
angle hysteresis effect is a process which means the continuous 
increase or decrease of δ, based on fixed θ. When the relative 
moving speed of the particles is larger than a certain value, the 
liquid bridge viscous force may be dominant. However, at this 
time, the contact angle hysteresis effect may produce a 
negligible impact on the dynamic liquid. 
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