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Abstract

1-dimensional polytropic gas dynamics is integrable for trivial reasons, having 2 < 3
components. It is realized as a subsystem of two different integrable systems: an
infinite-component hydrodynamic chain of Lax type, and a 3-component system not
of Lax type.

1 Introduction

The polytropic gas dynamics in 1 + 1 dimensions has the form

ut = uux + const ρΓρx, (1.1a)

ρt = (ρu)x, (1.1b)

where x is the space coordinate, t is the (minus physical) time coordinate, subscripts t
and x denote partial derivatives, u is the velocity, ρ is the density,

Γ = γ − 2, (1.2)

and γ is the polytropic exponent. The constant “const” entering equation (1.1) can be
removed by a rescaling of ρ.

Being a two-component system, the polytropic gas dynamics (1.1) is integrable by the
general Tsarev theory [9, 10]. Indeed, in the Riemann invariants

r1,2 = u ±
2

Γ + 1
ρ(Γ+1)/2, Γ 6= −1, (1.3)

the system (1.1) can be re-written as

r1,t = [(Γ +
3

2
)r1 − (Γ +

1

2
)r2]r1,x, (1.4a)

r2,t = [−(Γ +
1

2
)r2 + (Γ +

3

2
)r2]r2,x. (1.4b)
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The question is: can the polytropic gas dynamics be regularized, i.e., embedded into
an N -component integrable system with N ≥ 3? Two such regularizations are described
below. (Integrability here is understood in the sense of Tsarev’s theory.)

First we make the system (1.1) into a quadratic one, by introducing the variables [1, 2]

u = u; v = ρΓ+1θ, θ = const, Γ 6= −1. (1.5)

In these variables, the system (1.1) becomes:

ut = uux + vx, (1.6a)

vt = (Γ + 1)vux + uvx. (1.6b)

Now consider the hydrodynamic chain

An,t = An+1,x + (an + b)AnA0,x + c̄A0An,x, n ∈ Z≥0, (1.7)

where

a, b, c̄ are constants. (1.8)

This hydrodynamic chain is integrable for any a, b, c̄ [5, 6]. Take

a = Γ + 1, b = 0, c̄ = 1. (1.9)

The hydrodynamic chain (1.7) becomes:

An,t = An+1,x + (Γ + 1)nAnA0,x + A0An,x, n ∈ Z≥0. (1.10)

In particular, when

{An = 0, n ≥ 2}, (1.11)

we get:

A0,t = A1,x + A0A0,x, (1.12a)

A1,t = (Γ + 1)A1A0,x + A0A1,x, (1.12b)

which is the polytropic gas dynamics (1.6) under identification

u = A0, v = A1. (1.13)

Thus, the infinite chain (1.10) provides a regularization of the polytropic gas dynamics.
It was shown by Brunelli and Das [1] that the system (1.12) has a Lax representation.
That representation applies also to the full infinite chain (1.10). This is shown in the next
Section.

The minimal regularization of the polytropic gas dynamics in the above form results
when the infinite chain (1.10) is restricted onto the submanifold

{An = 0, n ≥ 3}. (1.14)
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In the notation

u = A0, v = A1, w = A2, (1.15)

we find:

ut = vx + uux, (1.16a)

vt = wx + (Γ + 1)vux + uvx, (1.16b)

wt = 2(Γ + 1)wux + uwx. (1.16c)

If one twists the RHS of the equation (1.16c into

ut = vx + uux, (1.17a)

vt = wx + (Γ + 1)vux + uvx, (1.17b)

wt = (Γ + 1)wux +
1 − Γ

2
uwx, (1.17c)

the resulting system is no longer of Lax form and it is no longer Galilean invariant.
Nevertheless, for reasons unknown, the twisted system (1.17) is still integrable. This is
proven in Section 3,4.

All this was under assumption

Γ 6= −1. (1.18)

when

Γ = −1, (1.19)

formula (1.5) is replaced by

v̄ = ℓnρ, (1.20)

and the system (1.6) becomes

ut = uux + v̄x, (1.21a)

vt = ux + uv̄x. (1.21b)

This system can be gotten from the system (1.6) via the shift

v = v̄ +
1

Γ + 1
(1.22)

and then by letting Γ = −1. The corresponding regularizations (1.16, 17) coincide and

take the form:

ut = v̄x + uux, (1.23a)

v̄t = (w + u)x + uv̄x, (1.23b)

wt = uwx. (1.23c)



148 B A Kupershmidt

2 The Lax Representation

Set

L = pµ + u +
1

µ
vp−µ, (2.1)

µ = γ − 1 = Γ + 1. (2.2)

Brunelli and Das [1] found that the Lax equation

Lt =
µ

µ + 1
{(L(µ+1)/µ)≥1, L} (2.3)

reproduces the polytropic equations (1.6). Here

{A,B} =
∂A

∂p

∂B

∂x
−

∂A

∂x

∂B

∂p
(2.4)

is the symplectic Poisson bracket, and

(∑

n

fnp1+µn

)

≥1

=
∑

n≥1

fnp1+µn (2.5)

is understood as the projection in the space of power series.
When µ is a positive integer, the above picture is the quasiclassical limit of the k = 1

nonstandard systems from [4]. Since in our case µ is arbitrary, the notion (·)≥1 (2.5)
requires a proper definition.

We can argue as follows. Let K be a differential ring with a derivative ∂ : K → K
(such as C∞(R1).) Let

K̃ = K((z−1)) = {
<∞∑

i=−∞

fiz
i|fi ∈ K} (2.6)

be the ring of the Laurent series in z with coefficients in K. This ring is again a differential
algebra, with the derivation ∂ : K → K extended as

∂(z) = 0. (2.7)

Consider now the objects

Cα = pαK((z−1)), α ∈ A, (2.8)

with a new formal parameter p. Cα is not itself a ring, but if A is an additive space
containing Z then all Cα’s together form a new ring CA:

(pαf)(pβg) = pα+βfg, f, g ∈ K((z−1)). (2.9)

CA is obviously again a differential ring with respect to ∂:

∂(pα) = 0, (2.10)
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but we can introduce another derivation into CA,

∂p =
∂

∂p
, (2.11)

acting by the rule

∂p(f) = 0, f ∈ K, (2.12a)

∂p(p
α) = αpα−1, (2.12b)

∂p(z) = µp−1z, (2.12c)

where µ is a fixed formal parameter. Since the derivations ∂ and ∂p obviously commute,
we can define the Poisson bracket

{, } : Cα × Cβ → Cα+β−1 (2.13)

by the rule

{pαf, pβg} = ∂p(p
αf)∂(pβg) − ∂(pαf)∂p(p

βg), f, g ∈ K̃. (2.14)

The projections (··)≥(·) , can now be defined for each individual Cα as

(pα
∑

n

fnzn)≥α+N = pα
∑

n≥N

fnzn, N ∈ Z, α ∈ A. (2.15)

Now set

L = pµ(1 +

∞∑

i=0

Aiz
−i−1), (2.16)

so that

L ∈ Cµ. (2.17)

Hence

L1/µ = p(1 +
∞∑

i=0

Aiz
−i−1)1/µ ∈ C1, (2.18)

Ln+1/µ ∈ C1+nµ, n ∈ Z. (2.19)

Thus, the objects

(Ln+1/µ)≥1, n ∈ Z, (2.20)

are well-defined, and we can consider the equation

∂L

∂tn
= pµ

∞∑

i=0

∂Ai

∂tn
z−1−i = constn {(Ln+1/µ)≥1, L} = (2.21a)

= constn {−(Ln+1/µ)<1, L}, n ∈ Z≥0. (2.21b)
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The LHS of this equation, ∂L/∂tn, belongs to Cµ, while the RHS {, } belongs to C(n+1)µ.
Thus, this equation makes sense if we impose the constrain

pµ = z. (2.22)

Formulae (2.12b) and (2.12c) show that this constrain is compatible with the derivation
∂p. Thus, both sides of the equation (2.21) belong to C0, with the LHS in

{
∑

i≥0

fiz
−i|fi ∈ K}, (2.23)

and the RHS, by formula (2.21b), in the same subspace. Moreover, formula (2.21a) shows
that the ideals

{Ai = 0, i ≥ N}, N ∈ Z≥0, (2.24)

are invariant with respect to the dynamics. The usual arguments show that flows (2.21)
commute between themselves and have an infinite set of common conserved densities

Res(L1+n−1/µ), n ∈ Z≥0, (2.25)

where Res singles out the coefficient in front of

p−1z0. (2.26)

Alternatively, we can use the identification pµ = z to set

L = z +

∞∑

i=0

Aiz
−i, (2.27a)

L1/µ = p(1 +
∑

i>0

Aiz
−i−1)1/µ, (2.27b)

Ln+1/µ = pzn(1 +
∑

i≥0

Aiz
−i−1)n+1/µ, (2.27c)

(Ln+1/µ)≥1 = p(zn(1 +
∑

i≥0

Aiz
−i−1)n+1/µ)≥0, (2.27d)

(Ln+1/µ)<1 = p(zn(1 +
∑

i≥0

Aiz
−i−1)n+1/µ)<0, (2.27e)

Res(L1+n−1/µ) = Res(L1+n(L1/µ)−1). (2.27f)

Let us consider the first two flows.
For n = 0,

(L1/µ)≥1 = (p(1 +
∑

Aiz
−i−1)1/µ)≥1 = p, (2.28)

and with

const0 = 1 (2.29)
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the equation (2.21) yields

∂Ai

∂t0
=

∂Ai

∂x
, i ∈ Z≥0. (2.30)

For n = 1,

(L1+1/µ)≥1 = (pz(1 +
∑

Aiz
−i−1)1+1/µ)≥1 =

= pz(1 +
µ + 1

µ
A0z

−1) = pz +
µ + 1

µ
pA0 ⇒ (2.31)

∂L

∂t1
=

∑

i≥0

∂Ai

∂ti
z−i = const1{pz +

µ + 1

µ
pA0, z +

∑

j≥0

Ajz
−j} =

= const1{[(µ + 1)z +
µ + 1

µ
A0]

∑

j≥0

∂A

∂x
z−j −

µ + 1

µ
p
∂A0

∂x
µp−1z[1 −

∑

j≥0

jAjz
−j−1]} =

= const1(µ + 1){
∑

j≥0

(
∂Aj+1

∂x
+ µ−1A0

∂Aj

∂x
+ jAj

∂A0

∂x
)z−j} ⇒ (2.32)

∂Ai

∂t1
= Ai+1,x + iAiA0,x + µ−1A0Ai,x, i ∈ Z≥0, (2.33)

with

const1 = (µ + 1)−1. (2.34)

This is essentially the system (1.10) after rescaling

Ai → µAi, i ∈ Z≥0. (2.35)

Recall that µ = Γ + 1 by formula (2.2).

3 The Twisted System

Let us consider the general quadratic system

ut = αuux + vx, (3.1a)

vt = βvux + cuvx + wx, (3.1b)

wt = γwux + δuwx, (3.1c)

where

α, β, γ, c, δ (3.2)

are unspecified constants. To determine when the system (3.1) is integrable, we first notice
that it is conservative: it has conserved densities

H0 = u, (3.3a)

H2 = v +
β − c

2
u2, (3.3b)

H3 = uv +
1

γ − δ
w + (

α + β

2
− c)

u3

3
, γ 6= δ, (3.3c)

H3 = w, γ = δ. (3.3d)
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Our second step is to calculate the Haantjes tensor [7] for the system (3.1) and equate it
to zero ([3,8].)

Writing the system (3.1) in the hydrodynamic form




u
v
w





t

= A




u
v
w





x

, (3.4)

A =




αu 1 0
βv cu 1
γw 0 δu



 , (3.5)

we first calculate the Nijenhuis tensor of the matrix A:

NA(X,Y ) = N(X,Y ) = A2[X,Y ] − A([X,AY ] − [Y,AX]) + [AX,AY ]. (3.6)

Here

X =




X1

X2

X3



 , Y =




Y1

Y2

Y3



 , (3.7)

and the commutators are understood as between vector fields.
Set

U = UX,Y = X1Y2 − Y1X2, (3.8a)

V = VX,Y = X1Y3 − Y1X3, (3.8b)

W = WX,Y = X2Y3 − Y2X3. (3.8c)

Since the Nijenhuis tensor is a tensor, we can calculate it for the case when X and Y are
constant (u, v,w-independent) vectors, so that

N(X,Y ) = [AX,AY ] − A(X̂(AY ) − Ŷ (AX)), (3.9)

where

X̂ = X1
∂

∂u
+ X2

∂

∂v
+ X3

∂

∂w
. (3.10)

Thus,

AX =




αuX1 + X2

βvX1 + cuX2 + X3

γwX1 + δuX3



 , AY =




αuY1 + Y2

βvY1 + cuY2 + Y3

γwY1 + δuY3



 ⇒ (3.11)

[AX,AY ] =




−αU

c(α − β)uU − βV
δ(α − γ)uV + δW



 , (3.12)



Extensions of 1-Dimensional Polytropic Gas Dynamics 153

X̂(AY ) − Ŷ (AX) =




0

(c − β)U
(δ − γ)V



 , (3.13)

A(X̂(AY ) − Ŷ (AX)) =




(c − β)U

c(c − β)uU + (δ − γ)V
δ(δ − γ)uV



 ⇒ (3.14)

N(X,Y ) =




β − α − c 0 0
c(α − c)u γ − δ − β 0

0 δ(α − δ)u δ








U
V
W



 . (3.15)

Next comes the Haantjes tensor:

HA(X,Y ) = H(X,Y ) =

= A2N(X,Y ) − A(N(X,AY ) − N(Y,AX)) + N(AX,AY ). (3.16)

We calculate it in the form

HA(X,Y ) = Ĥ




U
V
W



 , (3.17)

where the matrix Ĥ is

Ĥ = Ĥ1 + Ĥ2 + Ĥ3, (3.18)

corresponding to the three summands in the RHS of formula (3.16). Denote by N̂ the
matrix in the RHS of (3.15):

N(X,Y ) = N̂




U
V
W



 . (3.19)

Then

Ĥ1 = A2N̂ =




α2u2 + βv (α + c)u 1

β(α + c)u + γw c2u2 + βv (c + δ)u
γwu(α + δ) γw δ2u2



 N̂ =

=




u2[α2(β − α) − c3] + βv(β − α − c)

u3c3(α − c) + uvβ[(α + c)(β − α − c) + c(α − c)] + γw(β − α − c)
γwu[(α + δ)(β − α − c)] + c(α − c)



⊕ (3.20.1)
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⊕




u[δ(α − δ) + (α + c)(γ − β − δ)]

u2[c2(γ − β − δ) + δ(c + δ)(α − δ)] + βv(γ − β − δ)
δ3u3(α − δ) + γw(γ − β − δ)



⊕ (3.20.2)

⊕




δ

δu(c + δ)
δ3u2



 , (3.20.3)

where formula (3.20.i) gives column #i of the matrix Ĥ1, i = 1, 2, 3.
Next,

UX,AY − UY,AX = u(c + α)U + V,

VX,AY − VY,AX = u(δ + α)V + W, (3.21)

WX,AY − WY,AX = −γwU + βvV + u(δ + c)W ⇒

−Ĥ2 = AN̂




u(c + α) 1 0

0 u(δ + α) 1
−γw βv u(δ + c)



 =

A




u(β − α − c)(c + α) β − α − ρ 0

u2c(α2 − c2) u[c(α − c) + (γ − β − δ)(δ + α)] γ − β − δ
−δγw u2δ(α2 − δ2) + δβv δu(α + c)



 =

=




u2[α(β − α − c)(α + c) + c(α2 − c2)]

u3c2(α2 − c2) + uvβ(β − α − c)(c + α) − δγw
γuw[(β − α − c)(c + α) − δ2]



⊕ (3.22.1)

⊕




u[α(β − α − c) + c(α − c) + (γ − β − δ)(δ + α)]

βv(β − α − c + δ) + u2[δ(α2 − δ2) + c2(α − c) + c(γ − β − δ)(δ + α)]
γw(β − α − c) + u3δ2(α2 − δ2) + uvδ2β



⊕ (3.22.2)

⊕




γ − β − δ

u[c(γ − β − δ) + δ(α + c)]
u2δ2(α + c)



 . (3.22.3)

Finally,

UAX,AY = (αcu2 − βv)U + αuV + W,

VAX,AY = −γwV + αδu2V + δuW, (3.23)

WAX,AY = −cγuwU + (βδuv − γw)V + cδu2W ⇒
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Ĥ3 = N̂




αcu2 − βv αu 1

−γw αδu2 δu
−cγuw βδuv − γw cδu2



 =

=




(β − α − c)(αcu2 − βv)

c(α − c)u(αcu2 − βv) − γw(γ − β − δ)
−δγuw(α − δ + c)



⊕ (3.24.1)

⊕




αu(β − α − c)

αu2[c(α − c) + δ(γ − β − δ)]
δ[αδ(α − δ)u3 + βδuv − γw]



⊕ (3.24.2)

⊕




β − α − c

u[c(α − c) + δ(γ − β − δ)]
δ2u2(α − δ + c)



 . (3.24.3)

Collecting together formulae (3.20*, 22*, 24*), we obtain:

Ĥ =




0

γw(2δ + 2β − α − c − γ)
γwu(δ − c)(2δ + β − 2α)



⊕ (3.25.1)

⊕




u(γ + c − α − β)(c − δ)

u2(c − α)(c − δ)(γ + c − α − β) + βv(γ + α + c − 2β − 2δ)
γw(γ + α + c − 2β − 2δ)



⊕ (3.25.2)

⊕




2δ + 2β − γ − α − c

u(δ − c)(γ + c − α − β)
0



 . (3.25.3)

The vanishing of the matrix Ĥ (3.25*) amounts to a system of linear and quadratic
relations on the coefficients α, β, γ, c, δ. We examine these relations in the next Section.

4 The Relations

The first entry of the vector (3.25.3) yields

2β + 2δ − γ − α − c = 0. (4.1)
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With this relation satisfied, the remaining entries of the matrix (3.25) yield:

γ(δ − c)(2δ + β − 2α) = 0, (4.2a)

(δ − c)(γ + c − α − β) = 0. (4.2b)

If

δ = c (4.3)

then both equations (4.2) are satisfied. The relations (4.1,3) can be rewritten as

c = δ, (4.4a)

γ = δ + 2β − α. (4.4b)

This is exactly the untwisted 3-component subsystem of the general (a, b, c̄) chain (1.7),
with

a = β + δ − α, b = α − δ, c̄ = δ. (4.5)

If the relation δ = c is not assumed, then the system (4.2) reduces to the system

γ(2δ + β − 2α) = 0, (4.6a)

γ + c − α − β = 0. (4.6b)

Adding up equations (4.1) and (4.6b) we find:

2δ + β − 2α = 0, (4.7)

which implies the relation (4.6a). Thus, we obtain the second, twisted solution, {(4.1) & (4.6b)}:

γ = α + β − c, (4.8a)

δ = α −
1

2
β. (4.8b)

For

α = 1, β = Γ + 1, c = 1, (4.9)

formulae (4.8) give

γ = Γ + 1, δ =
1 − Γ

2
, (4.10)

and we recover the mysterious system (1.17).
In terms of the hydrodynamic chain (1.7), its regular 3-component reduction

ut = vx + (b + c̄)uux, (4.11a)

vt = wx + (a + b)vux + c̄uvx, (4.11b)

wt = (2a + b)wux + c̄uwx, (4.11c)
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has, by formulae (4.8), the twisted form

ut = vx + (b + c̄)uux, (4.12a)

vt = wx + (a + b)vux + c̄uvx, (4.12b)

wt = (a + 2b)wux + (c̄ +
b − a

2
)uwx. (4.12c)

For a = b both forms coincide.
It seems likely that all the other finite-component reductions of the infinite hydrody-

namic chain (1.7),

{Ai = 0, i > N}, N = 2, 3... (4.13)

possess a twist of the (N + 1)st equation

AN,t = (aN + b)ANA0,x + c̄A0AN,x. (4.14)
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