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Abstract—Kernel methods can effectively deal with the 
nonlinear problem. The methods not only can be used for data 
de-noising, also be effective for classification problems. Using 
kernel PCA method, we provide a more precise Zernike 
expansion, which can apparently improve the reconstruction 
accuracy. At the same time, explore learning the kernel 
function by the alignment. We verify that the alignment value 
and recognition rate is proportional relationship. 
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I.  INTRODUCTION  

Kernel methods are a family of machine learning 
algorithms based on the statistical theory and kernel 
technology [1]. Kernel methods can discover more accurate 
dependencies among the data via constructing nonlinear 
mapping relations [2]. Kernel plays an important role in 
kernel methods, because the calculation result is completely 
determined by it.  

The kernel alignment is a measurement which can 
measure the similarity between matrices and kernels. 
Alignment was first introduced by Cristianini et al. [3]. It can 
be seen as the generalized cosine between matrices. When 
the sample set is identified, kernel alignment can measure the 
similarity between the kernel functions. Another definition of 
kernel alignment based on the feature space was given by 
Cortes et al. [4]. And some kernel functions were learned by 
the centred alignment. Some multi-class problems and 
regression problems can be solved by the SVMs based on 
alignment [5]. We provide a learning method by the 
alignment.   

Using the kernel PCA, the principal component can be 
effectively obtained. Some methods were provided to sole 
the pre-image problems. The standard gradient ascent 
methods were used to solve the optimization problem of 
minimizing the reconstruction error by the Mika et al. [6]. To 
obtain the wave front, we will also use the iterative method. 

Adaptive optics (AO) can effectively improve the 
capability of optical systems by actively compensating for 
aberrations [7]. The atmospheric turbulence, optical 
fabrication errors and the thermally induced distortions may 
cause the aberrations. The residual wave front error in AO 
systems includes the wave front reconstruction errors, servo 
lag errors, and errors due to CCD noise [8]. There are three 
common methods for the wave front reconstruction task: the 

zonal method [9], the modal method [10] and the direct 
gradient method [11].  

In the modal method, the wavefront can be expanded into 
a set of orthogonal basis functions. And the expression 
coefficients can be estimated from the discrete phase slope 
measurements [12]. One often takes the Zernike polynomials 
as the wave front basis functions. 

In the paper, we apply the learning methods of the wave 
front reconstruction of AO and the classification problems. 
The experiment results show that the nonlinear kernel can 
obtain very good wavefront reconstruction results. And 
verify that using the alignment can learn an optimal kernel 
function by numerical experiments. 

II.  ALGORITHM AND THEORETICAL RESULTS 

A. Kernel PCA  

For the sample set 1 2{ , , , } n
NS x x x R= ⊂ , we first map 

the samples 1, , Nx x  into a feature space F  by 

: ,nR F x Xφ →                             (1) 
Usually the function Φ  is nonlinear.  

The data can be centred by [6]  
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The covariance matrix K , ( ( ) ( ))ij i jK x xφ φ= ⋅  in F .  

In the paper, we choice the radial basis function 
2 2|| || /2( , ) x yk x y e σ− −=                                 (3) 

as the kernel.  
For calculating the principal components in feature 

space F , we should firstly solve the characteristic 
equations Kα λα= . The solutions kα ( 1,2, , )k p=   

belong to the nonzero eigenvalues kλ ( 1,2, , )k p=  . Then 

the eigenvectors \{0}kV F∈  can be obtained 

1

( )
N

k k
i i

i

V xα φ
=

=                                    (4) 

The solutions kα  can be normalized by requiring that the 
corresponding vector kV is normalized, i.e. ( , ) 1k kV V = .  

For the convenient, we still use kα  to mark the normalized 
solutions.  

For a new sample ( )xφ , the projection can be expressed as  
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the projection operator pP . 

    The pre-image problem can be solved by calculating an 
optimal approximation vector z  in input space nR . 

2min ( ) min || ( ) ( ) ||pz z
z z P xρ φ φ= −                  (6) 

    Replacing terms independent of z  by Ω , we obtain 
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Obviously, the radial basis function ( , )k x x const≡  for all x . 
To solve the optimization problem (6), we utilize the 
standard gradient descent methods. 
    For a maximum value, the gradient with respect to z  
vanish  
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This leads to a necessary condition for the maxima 
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According to the Hilbert space theory [14] [15], we can 
devise an iteration scheme for z  by 
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with (0)z x= . 

B. Alignment Definitions 

For the sample set 1 2{ , , , } n
NS x x x R= ⊂ , we denote 

the samples’ label vector as 1 2[ , , , ] 'Ny y y y=   , 

where { 1, 1}, ( 1,2, , )iy i N∈ − + =  . Assume the samples 
obey the same probability distribution D . And the kernels 

1k  and 2k  are positive semi-definite and symmetrical (PDS). 
The alignment can be written as [3] 
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Â ( , )

, ,
F

s

F F

K K
K K

K K K K

< >
=

< > < >
        (10) 

where 1 2, N NK K R ×∈ denote the kernel matrices. And the 
inner production between matrices is defined by  

'
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 It is easy to find that alignment 1 2
ˆ ( , ) [ 1,1]SA K K ∈ − , 

especially 1 2
ˆ ( , ) [0,1]SA K K ∈  when 1 2, 0K K ≥ . 

     We can learn the kernel by maximizing the objective 
function (11) 
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C. Wave Front Reconstruction 

The Zernike polynomials are defined here by [13]  
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   The values of n  and m  are always integral and 
satisfy m n< , | |n m even− = . The index j  is a mode 
ordering number and is a function of n  and m . 
   A wave front phase ( )rϕ  over a circular aperture of unit 
radius can be expressed as follows: 

( ) ( )k k
k

r a Z rφ =                             (14) 

where k  is the conventional ordering of the Zernike basis.  
In this paper the discrete phase slope measurements 

contain some white noises. Those make the Zernike 
expression coefficients contain large errors. Kernel PCA is 
powerful in de-noising [6]. We use it to remove some noises 
in the discrete phase slope measurements. And in modal 
wave front reconstruction, we use the least squares criterion 
to derive the optimal Zernike expression. 

III. LEARNING COMBINED KERNEL 

In the paper, we take the Gaussian kernels, because their 
performance is relatively stable. There is only one important 
parameter in the Gaussian function. In this section, we will 
learn the classifier function from the 

space 2
1 2{ 1 : [0,1)}H uk u k u= + − ∈ , where the two kernels 

1k   and 2k  are the PDS, and they are the Gaussian function 

with the undefined bandwidths 1σ  and 2σ . Denote the 

classifier function as 2
1 21k uk u k= + − , which has the 

equivalent form with 1 1 2 2k u k u k= + , where 2 2
1 2 1u u+ =  

and 1 [0,1)u ∈ . This means that the kernels 1k  and 2k  have 

the symmetry position. Then we can assign the parameter 1σ  

as a small fixed value. The parameter 2 1( , )σ σ∈ +∞ is 
unknown and need to be selected for the Gaussian kernel. 
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Then the function in space H  only include two variables 
[0,1)u ∈ and 2 1( , )σ σ∈ +∞ . 
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            (15) 

For the binary classification problem, the optimal  
bandwidth of Gaussian and the combination coefficient 
u can be obtained by calculating the maximum of function 
(15). 

IV. EXPERIMENTS 

A. Wave Front Reconstruction 

We use the kernel methods to de-noising for wave front of 
the AO. In Fig.1 shows the Zernike expressions under the 
conditions of the wave front with no-noises, noises and de-
noises. In order to test the effect of de-noising, the 
numerical simulation experiments are carried out under the 
different conditions. In the experiments, we get the Zernike 
expressions including 27 items by calculating the phase 
screen (256*256). Firstly, we get 100 samples by random 
sampling. And then trained the 100 samples and extracted 
the nonlinear features by kernel PCA analysis. We 
performed kernel PCA with these data using Gaussian 
kernels. Lastly, we applied our algorithm for de-noising.  

 
(a1)                        (a2)                      (a3) 

 
(b1)                        (b2)                      (b3) 

 
               (c1)                          (c2)                       (c3) 
Fig. 1  Result of the de-noising experiments:  (a1) , (b1) and (c1): No-noise 
phase screens, (a2) , (b2) and (c2): Having noise phase screens, (a3) , (b3) 

and (c3): De-noising phase screens by kernel PCA. 

In Fig.1, the figures (a2), (b2) and (c2) have some larger 
errors than the figures (a1), (b1) and (c1), and the figures 
(a3), (b3) and (c3) are obtained by de-noise using Kernel 
PCA.  

In Table.I, S1-S5 are 5 different wave fronts. From the 
results we can find that the de-noise effect is very obvious. 

TABLE. I RESULT OF THE DE-NOISING EXPERIMENTS (MSE): MSE 
INDICATES THE MEAN SQUARED ERROR BETWEEN THE RECONSTRUCTED 

PHASE SCREEN AND THE ORIGINAL PHASE SCREEN. 

Norm S1 S2 S3 S4 S5 

MSE
(noise) 17.82 27.49 20.34 35.32 20.06

MSE
(de-noise) 4.42 3.37 2.36 2.353 5.58 

 

B. Classification Problems 

To verify the selected parameters’ generalization 
capability, we do some numerical experiments on some data 
set in Fig 2. The data set is from some printed matter.  

 
Fig. 2 Training samples being used in the experiment 

In the experiments, we take the constant 1 50σ =  and the 

vector 2 100 : 50 : 4 3eσ = . In Fig 4 shows the training 
sample set. 

 
Fig. 3 Alignment values vary with parameter u  and bandwidth σ  

 
Fig. 4 Alignment values and recognition rates vary with  

parameter u  and bandwidth σ  
  In Fig. 3 and Fig. 4, show the alignment values and 
recognition rates vary with parameter u and bandwidth σ . 
In Table. II and Table. III, provide more detailed experiment 
results. The results clearly show that the alignment values 
and recognition rates are proportional. 

V. CONCLUSION 

Kernel PCA is one of the most powerful techniques for 
feature extraction and de-noising. We can find that it is very 
effective in wave front reconstruction from the experiments 
in section IV. And the kernel can be learned by the alignment, 
because the alignment values and recognition rates are 
proportional. 
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TABLE. II  CALCULATED ALIGNMENT VALUES WITH DIFFERENT PARAMETERS u  AND BANDWIDTH σ  

u     σ  100 450 800 1150 1500 1850 2200 2550 2900 3250 

0 0.224 0.224 0.230 0.250 0.240 0.191 0.139 0.101 0.075 0.058 

0.1 0.224 0.224 0.230 0.248 0.240 0.196 0.147 0.109 0.083 0.065 

0.2 0.224 0.224 0.229 0.247 0.240 0.201 0.155 0.117 0.091 0.073 

0.3 0.224 0.224 0.229 0.245 0.240 0.205 0.162 0.125 0.099 0.083 

0.4 0.224 0.224 0.228 0.243 0.240 0.209 0.168 0.133 0.107 0.089 

0.5 0.224 0.224 0.228 0.242 0.240 0.212 0.175 0.142 0.116 0.097 

0.6 0.224 0.224 0.227 0.24 0.239 0.215 0.182 0.150 0.126 0.107 

0.7 0.224 0.224 0.227 0.239 0.238 0.219 0.189 0.160 0.137 0.119 

0.8 0.224 0.224 0.226 0.236 0.237 0.222 0.197 0.172 0.151 0.134 

0.9 0.224 0.224 0.226 0.234 0.235 0.225 0.207 0.189 0.172 0.157 

TABLE. III  CALCULATED RECOGNITION RATES WITH DIFFERENT PARAMETERS u  AND BANDWIDTH σ  

u     σ  100 450 800 1150 1500 1850 2200 2550 2900 3250 

0 0.948 0.950 0.958 0.974 0.965 0.961 0.957 0.956 0.955 0.955 

0.1 0.948 0.950 0.958 0.975 0.966 0.958 0.953 0.949 0.945 0.941 

0.2 0.948 0.950 0.958 0.974 0.967 0.959 0.950 0.946 0.938 0.933 

0.3 0.948 0.950 0.958 0.974 0.967 0.959 0.949 0.944 0.935 0.932 

0.4 0.948 0.950 0.958 0.976 0.968 0.959 0.948 0.94 0.934 0.931 

0.5 0.948 0.950 0.958 0.974 0.970 0.958 0.948 0.938 0.934 0.931 

0.6 0.948 0.950 0.958 0.974 0.973 0.960 0.949 0.939 0.933 0.927 

0.7 0.948 0.950 0.958 0.974 0.974 0.961 0.950 0.940 0.932 0.924 

0.8 0.948 0.950 0.958 0.974 0.977 0.965 0.952 0.944 0.933 0.924 

0.9 0.948 0.950 0.958 0.972 0.979 0.97 0.958 0.946 0.939 0.925 
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