
Dynamic Evolution of Requirement Goal Deployed on Network Environment

Yang Liu
University of Electronic Science and Technology of

China, Chengdu, Sichuan, 610041, China;
Chengdu Institute of Computer Application Chinese

Academy of Sciences, Chengdu, 610041, China
ly1246@qq.com

Jinzhao Wu*
Guangxi University for Nationalities, Nanning,

Guangxi, 530003, China;
Beijing Jiaotong University, Beijing, 100191, China

wjzcd2011@sina.com

Abstract—Under the network environment, it inevitably exists
inconsistency and dynamic information in users’ requirements
because of the complicated and volatile network, update,
restructuring and so on. This paper studies how to handle the
inconsistent information and keep correctness of the
requirement goals from the users. It also provides relevant
rules of model evolution under dynamic environment. With
maximal consistent set, the inconsistent information can be
reserved to keep the indeterminacy in the early stage and
expand the function of the software. It is helpful for the next
step of the software development.

Keywords-requirement goal; inconsistent information;
maximal consistent set; software development; dynamic
information

I. INTRODUCTION

The requirements of software system are from
knowledge expectations of users and designers to realistic
social[1]. It is too hard to avoid inconsistent information in
requirements from these knowledge expectations[2,3,4].
Because of the complexity of the network software and the
fluidity of the needs from users, the key problem of system
development is how to analyze and handle the possible
inconsistent information and keep the correctness of the
requirement goals under the dynamic environment.

Nowadays, the traditional target analysis methods as
KAOS[5] and Tropos[6], can solve some problems, but they
all can’t deal with inconsistent information and the
relationship describing is single. There are two methods to
deal with inconsistent information from requirements
analysis: (1)eliminate the inconsistent information to
maintain the consistent information or discuss the
inconsistent messages again with the users to reach an
agreement gradually, (2)tolerate the inconsistent information
in the greatest degree by paraconsistent[7] formal description
to treat the contradictions in specification as a natural
phenomenon. The first view can eliminate contradictions and
maintenance the consistency of requirements analysis, but
this method may be lost a lot of valuable information, and it
is too difficult to reach an agreement for different users with
their own interest and individual characters. In addition,
when the users need a little dynamic change, it may bring a
huge adjustment for the whole target structure.

In this study, motivated by the above requirements, we
propose using maximal consistent set which is one of the

paraconsistent ideas to describe users’ target from
requirements elicitation, and transform the conflict
requirements demands according to the goal’s attribute into
some kind goals which can be chosen freely by the users. We
also give the rules which can change with the dynamic
changes from users.

The rest of the paper is organized as follows. Section Ⅱ
discusses the background knowledge about maximal
consistent set, and describes the inconsistent information
with maximal consistent set. Modeling the Goal Model and
the rules of dynamic evolution are discussed in section Ⅲ
including adding, deleting and restructuring. Section Ⅳ
concludes the paper and discussed future work.

II. BACKGROUND

For drawing inferences from inconsistent information, it
has produced some views form some consistent subsets[8,9].
Various approaches to the applications of paraconsistency to
knowledge bases[10], and consistent subset is a branch of
paraconsistent logic. In this section, we use it to describe the
extraction of demand information before goal modeling.
Then, with the guidance of RGPS-G, we give the GM
representation.

A. Extraction of requirements goals
During the requirements elicitation, we can clearly get

the demands of users with SORL(Services-Oriennted
Requirements Language)[11]. For any goals “g”, it can be
represents as:

Goal(g)∧FunctionalGoal(g,x,y,z)∧
NonFunctionalGoal(G,t,c,v,u,d)

“x, y, z” represents “Operation, Object, Manner” of
functional goal. “t, c, v, u, d” represent “Type, Compare,
Value, Unite, Degree” of non-functional goal, respectively.

In this paper, we focus on the relationships between
goals[12,13]. We give a few related set definitions as follows.
Definition 1 Δ is the set of describing extraction goals, then
the problem set of Δ is defined as in (1).

() ()PC MIΔ = Δ (1)

Here,

() () (){ },MI INC I INC IΔ = Γ ∈ Δ ∀ ∈ Δ ⊄ Γ

() { }INC Δ = Γ ⊆ Δ Γ − ⊥

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0149

Definition 2 Δ is the set of describing extraction goals, then
the free set of Δ is defined as follows:

() ()FC MCΔ = Δ (2)

Here,

() () (){ },MC CON I CON IΔ = Γ ∈ Δ ∀ ∈ Δ Γ ⊄

() { }CON Δ = Γ ⊆ Δ Γ − ⊥

Specific can reference [8]. It is obvious that problem sets
are those sets who has conflict information and which are
also need to by analyze by software requirement analysis
designers, and free sets are those sets which hasn’t conflict
information and there is no information need to discuss again.
Example 1 In requirements extraction, we get the goals
“Pay”, “Book”, and “CheckPassword”. In addition, it needs
“CheckPassword ” in China when you buy somethind, but
usually it doesn’t need “CheckPassword” to overseas. So, the
formulae Δ is as follows.

() () () (){ , , , ,Goal pay Goal book Goal checkpassword Goal checkpasswordΔ = ¬
() () () (), ,Goal pay Goal book Goal pay Goal checkpassword→ ∧
() ()}Goal pay Goal checkpassword∧ ¬

So,

() () () ()1
{ , , ,MC Goal pay Goal book Goal checkpasswordΔ =

() () () (), }Goal pay Goal book Goal pay Goal checkpassword→ ∧

() () () () ()2
{ , , ,MC Goal pay Goal checkpassword Goal pay Goal bookΔ = ¬ →

() () (), }Goal book Goal pay Goal checkpassword∧ ¬

() () () () () () (){ }1 2
, ,FREE MC MC Goal pay Goal book Goal pay Goal bookΔ = Δ Δ = →

() () (){ }1
,MI Goal checkpassword Goal checkpasswordΔ = ¬

() () () () (){ }2
,MI Goal pay Goal checkpassword Goal pay Goal checkpasswordΔ = ∧ ∧ ¬

() () () (){ }3
,MI Goal checkpassword Goal pay Goal checkpasswordΔ = ∧ ¬

() () () (){ }4
,MI Goal checkpassword Goal pay Goal checkpasswordΔ = ¬ ∧

() () () () () ()1 2 3 4
{ ,PC MI MI MI MI Goal checkpasswordΔ = Δ Δ Δ Δ =  

 () () (), ,Goal checkpassword Goal pay Goal checkpassword¬ ∧

 () ()}Goal pay Goal checkpassword∧¬
We can quickly get the undisputed goals and conflict

goals in the example through the problems set and free set
division. In this way, the location of contradiction is quickly
improved for software requirement designers. Then, the
confliction information can be solved under the next step
with determination of the relationships between up and low
goals.

B. Handling inconsistent information
How to deal with the goals in problem sets is the very

important problem which we need to care on. From
references[11,12,13], there are six relationships in Goal
model between goals. It enriches the single relationship(just
as And and Or) to four relationships, and distinguishes core
sub-nonfunctional goal “Mandatory” and extensible sub-
nonfunctional goal “Optional”, “Alternative” and “Or” and
two constraint “Depend” and “exclude”.

So, we can deal with the inconsistent information by the
degree of their inconsistency. During the decomposition of
top goals, their relations between goals can be defined as
follows.

a) HasMandatory(g1,g2): represents the “Mandatory”
relationship between up goal “g1” and low goal “g2”.

b) HasOptional(g1,g2): represents the “Optional”
relationship between up goal “g1” and low goal “g2”.

c) HasAlternative(g1,g2): represents the “Alternative”
relationship between up goal “g1” and low goal “g2”.

d) HasOr(g1,g2): represents the “Or” relationship
between up goal “g1” and low goal “g2”.

e) HasDepend(g1,g2): represents goal “g1” depends on
goal “g2”.

f) HasExclude(g1,g2): represents goal “g1” excludes
goal “g2”.

Formal modeling just needs to depict the characterization
which needs to be verified and simplify the original model
by removed the unrelated property information towards
verification. In order to simplify the model, we can use
functions to filter information, and find the goals at last. The
description of requirements goal from users reflects in all
kinds of formulae by predicate “Goal” including atomic
formulae, disjunctive normal form, conjunctive normal form,
and so on.
Definition 3 ΔU is the set which has been filtered by
functions and only has predicate “Goal”, “HasMandatory”,
“HasOptional”, “HasAlternative”, “HasOr”, “HasDepend”,
and “HasExclude” from set of formulae Δ . Then, the
Ground State Requirements Set Λ defined in (3).

{ } ()1,..., , U
n i MCΛ = Λ Λ Λ ∈ Δ (3)

III. GOAL MODELING IN DYNAMIC EVOLUTION

A. Goal modeling with GM
Based on the characteristics of Goal model, formal

modeling is mainly considered the relationships between
goals and their influence to the achievement of the top goal.
So, we use GM to describe it.
Definition 4 A GM is a tuple <g0, O, G, M, A, R, P, D, E,
∑>, where
 g0: is represents the highest goal in Goal Layer;
 O: is represents the set of all atomic goals in Goal

Layer;
 G: is represents the set of all goals in Goal Layer

including atomic goals and composition goals;
 M: is represents the set of Mandatory relationship

chain between up goals and low goals in the whole
Goal Layer;

 A: is represents the set of Alternative relationship chain
between up goals and low goals in the whole Goal
Layer;

 R: is represents the set of Or relationship chain
between up goals and low goals in the whole Goal
Layer;

 P: is represents the set of Optional relationship chain
between up goals and low goals in the whole Goal
Layer;

 D: is represents the set of Depend relationship chain

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0150

between goals in the whole Goal Layer;
 E: is represents the set of Exclude relationship chain

between goals in the whole Goal Layer;
 ∑: is represents the mapping from the Ground State

Requirements Set Λ .
The Algorithm of solving ∑ is as follows. The inputs

are the Ground State Requirements Set of Goal model, and
the output is the element ∑ of GM. So, we can get all kinds
of demands from different users.
Algorithm 1(Get∑)

Input: a Ground State Requirements Set Λ .
Output: the element ∑ of GM.

1. B= ∅ ; C= ∅ .

2. for each iΛ ∈ Λ do

 for each g∈G, do

 if ()i Goal gΛ = then B=B∪{g}

3. C=C∪{B}

If C=∅ ,then return Wrong.
 Else
 Return C

A GM model is correctness, iff: ,i i∀Σ Σ ∈Σ

 0 ig ∈Σ ;

 (),i ix y x x y M y∀ ∀ • ∈Σ ∧ ∈ → ∈Σ ;

 (),i ix y x x y R y∀ ∃ • ∈Σ ∧ ∈ → ∈Σ ;

 () (), ,ix y z x x y A x z A∀ ∃ ∀ • ∈ Σ ∧ ∈ ∧ ∈

()i iy z→ ∈Σ ∧ ∉Σ ;

 (),i ix y x x y D y∀ ∀ • ∈Σ ∧ ∈ → ∈Σ ;

 (),i ix y x x y E y∀ ∀ • ∈Σ ∧ ∈ → ∉Σ .

Those rules reflect the properties of the relationship
chain between goals in Goal model.

When we verify the correctness of the model, we check

whether all the iΣ , iΣ ∈Σ from the Ground State
Requirements Set Λ satisfy the rules or not actually.

B. Dynamic evolution
One of the remarkable features of networked software is

the dynamic change of users’ demands. It is very easy to
appear dynamic phenomenon for update and restructuring of
software. All of the changes of Goal model can be attributed
to two kind situations: adding a goal and deleting a goal.

1) Adding a goal: The basic idea of adding a goal is
adding corresponding new goal and new relationships into
elements in GM, and reproducing the new Ground State
Requirements Set 'Λ which is brought by the new formal
specification. The Algorithm of adding a goal is as follows
in algorithm 2.

When we add a new goal, the correctness and
completeness of the Goal model need to be verified again.

Algorithm 2(AddGoal)
Input: a new goal and its corresponding relationships and
new formal specifications brought by the Ground State
Requirements Set Λ .
Output: a new GM.

1. if ,x x G∃ ∈ and (), ' ' ' 'x g M R A P∈    then

for each x do O=O\{x}.
2. G=G∪{g}; O=O∪{g}; M=M∪M’; A=A∪A’;

R=R∪R’; P=P∪P’; D=D∪D’; E=E∪E’.
3. ∑=Get∑(',GΛ)

4. return ()0 , , , , , , , , ,g O G M A R P D EΩ = Σ

2) Deleting a goal: The basic ideas of deleting a goal
existed in GM is much easier than adding a new goal. It just
needs to remove the goal and its corresponding relationships
in GM. The Ground State Requirements Set needn’t change.
The Algorithm of deleting a is divided into two parts: one is
sub part of the main algorithm as follows in algorithm 3; the
other is main part in algorithm 4. Because composite goals
are made up by atomic goals. When we delete a compostie
goal, its sub-goals will be influenced.
Algorithm 3(DeleteAtomicGoal)
Input: a atomic goal and its corresponding relationships.
Output: a new GM.
1. G=G\{g}; O=O\{g}.

2. for each iΣ ∈Σ do

if ,x x G∃ ∈ then \{ }i i xΣ = Σ .

3. iΣ = Σ .

4. if , { }x x dom M g∃ ∈  then M=M\{(x,g)}.
 Else
 If , { }x x dom A g∃ ∈  then A=A\{(x,g)}.
 Else
 If , { }x x dom R g∃ ∈  then R=R\{(x,g)}.
 Else
 P=P\{(x,g)}.

5. if , { }x x dom D g∃ ∈  then D=D\{(x,g)}.
6. if , { }x x dom E g∃ ∈  then E=E\{(x,g)}.
7. if , { }x x dom D g∃ ∈  then D=D\{(g,x)}.

8. if , { }x x dom E g∃ ∈  then E=E\{(g,x)}

9. if , { } { } { }x dom M g dom A g dom R g∃     

{ }{ }dom P g x=  then O=O∪{x}

10. return ()0 , , , , , , , , ,g O G M A R P D EΩ = Σ

The main Algorithm of deleting any goal needs recursive
call Algorithm 3 as follows in algorithm 4.
Corollary 1 Deleting a goal, the correctness and
completeness of the Goal model can be kept.
Proof. if a Goal model Ω is correctness and completeness,
then, that is mean that ,i i∀Σ Σ ∈Σ satify the rules. When

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0151

we delete some ,j jΣ Σ ∈Σ , the left ,k kΣ Σ ∈Σ still

satisfies the rules.
Algorithm 4(DeleteGoal)
Input: a goal and its corresponding relationships.
Output: a new GM.
1. if g∈O then return Ω =DeleteAtomicGoal(g).

else
C={g}
for each x, x∈ran M C∪ran A C∪ran R C∪

ran P C do C=C∪{x}
for each x, x∈C and x∈O do

Ω =DeleteAtomicGoal(g)}
2. return Ω

C. Goal Restructing
In fact, goal restructuring is a mixed use of adding and

deleting goal. The only one place need to pay attention to is
that, if the restructuring models share a highest target, then,
we need to define a new highest goal to be “g0”.
Definition 5 let

()1 01 1 1 1 1 1 1 1 1 1, , , , , , , , ,g O G M A R P D EΩ = Σ

()2 02 2 2 2 2 2 2 2 2 2, , , , , , , , ,g O G M A R P D EΩ = Σ

then, the model “ ()0 , , , , , , , , ,g O G M A R P D EΩ = Σ ” is a

restructuring goal, iff:
 g0=g01◇g02: g0 is the shared top goal of g01 and g01.
 O=O1∪O2;
 G=G1∪G2;
 M=M1∪M2;
 A=A1∪A2;
 R=R1∪R2;
 P=P1∪P2;
 D=D1∪D2;
 E=E1∪E2;


1 2, , ,k k i j i j =   =    ∈  ∈ .

Corollary 2 If all the goal models which will compose a
larger restructuring goal model are sub-Mandatory goals to
the new highest target, the restructuring model can still keep
the correctness and completeness; if not, the restructuring
model only can keep the correctness.

IV. CONCLUDE AND FUTURE WORK

Compared with KAOS and Tropos, this method proposed
in this paper can express more relations and tolerate some
conflicts and accommodate the dynamic evolution. The
model of GM likes a tree for the highest target as the root. It
not only can describe the relation between low layer goal,
but also the relation between up layer goals. Although there

are some methods to get the maximal consistent set of
formulae, the way how to get the maximal consistent set
automaticly and effectively, is still our future work.

ACKNOWLEDGMENT

This work is supported by the Guangxi Key Laboratory
of Hybrid Computational and IC Design Analysis Open
Fund under Grant No.HCIC201101, the National Natural
Science Foundation of China under Grant 60973147, the
Natural Science Foundation of Guangxi under Grant
No.2011GXNSFA018154, the Science and Technology
Foundation of Guangxi under Grant No. 10169-1, and
Guangxi Scientific Research Project No.201012MS274.

REFERENCES

[1] B. Nuseibeh, S. Easterbrook, “Requirements Engineering: A

Roadmap”, Proc. of the 22th Int’1 Conf. on Software Engineering,
Future of Software Engineering Track. Limerick: IEEE Computer
Press, 2000, pp: 35-46.

[2] R. Balzer, “Tolerating Inconsistency”, Proc. of the 23th Int’1 Conf. on
Software Engineering. Toronto: IEEE Computer Press, 2001, pp:
665-667.

[3] C. Ghezzi, B. Nuseibeh. “Guest Editorial: Introductio to the Special
Section”, IEEE Trans. on Software Engineering, 25(6), pp: 782-785,
1999.

[4] S. Easterbrook, M. Chechik, “Int’1 Workshop on Living with
Inconsistency”, Proc. of the 23th Int’1 Conf. on Software Engineering.
Toronto: IEEE Computer Press, 2001, pp: 749-750.

[5] K. Boness, A. Finkelstein, R. Harrison, “A Lightweight Technique
for Assessing Risks in Requirements Analysis”, IET Software, 2(1),
pp: 46-47, 2008.

[6] P. Brescinani, P. Giorgini, F. Giunchiglia, et al, “Tropos: An Agent-
Oriented Software Development Methodology”, Joural of
Autonomous Agents and Multi-agent Systems, 8(3), pp: 203-236,
2004.

[7] A. Hunter, “Reasoning with Contradictory Information Using Quasi-
Classical Logic”, Jounal of Logic and Computation, 10(5), pp: 677-
703, 2000.

[8] J. Grant, A. Hunter, “Measuring Inconsistency in Knowledgebases”,
Journal of Intelligent Information Systems, 27(2), pp: 159-184, 2006.

[9] A. Hunter, “Paraconsistent Logics”, In Hadbook of Defeasible
Reasoning ad Uncertainty Managemet , Kluwer, 1998.

[10] J. Grant and V. S. Subrahmanian, “Applications of Paraconsistency in
Data and Knowledge Bases”, Synthese, 2000, 125: 121-132.

[11] K. Q. He, R. Peng, J. Wang, et al, “Network Software”, Science Press,
China, 2008.

[12] Y. Liu, J. Z. Wu, J. Zhao, et al, “Decomposition Model Building and
Otology Reasoning toward G-Layer of RGPS Requirement Meta-
Model”, 2010 3th Iternational Conference on Advance Computer
Theory and Engineering, Institute of Electrical and Electronics
Engineers, Chengdu, China, 2010, Vol.2, pp: 50-54.

[13] Y. Liu, J. Z. Wu, “Formal Verfication of RGPS-G”, the International
Conference on Computer Science and Serivce System CSSS2011,
Nanjing, China, 2011, Vol.4, pp: 3248-3251..

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0152

