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Abstract— LLE is a very effective non-linear dimension 
reduction algorithm and widely explored in machine learning, 
pattern recognition, data mining and etc. ‘Locally linear, 
Globally non-linear’ has always been regarded as the features 
and advantages of LLE. However, the theoretical derivation 
presented in this paper shows that when the size of 
neighborhood is larger than the dimension of the space in 
which the data are presented, LLE is no longer ‘global 
nonlinear’ and almost has the same effect as PCA in 
dimensionality reduction. At present, a lot of literatures on 
LLE verify their results on Swiss Roll, Punctured Sphere, 
Twin Peaks, etc. These manifolds are presented in the three-
dimensional Euclidean space and the size of neighborhood is 
always larger than three to prevent too small to be effective. 
But in these cases, LLE cannot play its advantage of 
nonlinearity. 
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I.  INTRODUCTION  

Dimensionality reduction is an efficient method to handle 
the complicated high dimensional data commonly met in 
our modern society and widely explored in data mining, 
machine learning, pattern recognition and etc. Manifold 
learning is considered as an ascendant method for nonlinear 
dimensionality reduction and becomes more and more 
attractive. Currently the efficient algorithms for manifold 
learning include the isometric mapping (Isomap)[1][2], 
locally linear embedding (LLE)[3][4], Laplacian 
Eigenmaps (LE)[5], Hessian LLE (HLLE)[6] and local 
tangent space alignment (LTSA)[7], etc. Among all of these 
methods, LLE LLE is computationally simpler and can give 
useful results on a broader range of manifolds[4]. Its ability 
to deal with large amounts of high dimensional data and its 
non-iterative way of finding the embeddings make it more 
and more attractive to researchers. The original LLE has 
some intrinsic drawbacks, such as sensitive to size of 
neighborhood and regularization parameters, ill-conditioned 
eigenproblems and etc. Based on these drawbacks, many 
extensions of LLE have been proposed recently years, 
reviewed in ref[8].LLE and its extensions have been used to 
solve various problems in machine learning[9][10][11]. 

The most attractive properties of LLE is ‘Locally linear, 
Globally non-linear’[4] . Because of this, LLE has been 
considered as a nonlinear method of dimensionality 
reduction. However, the theoretical derivation presented in 
this paper shows that when k > n, where k is the number of 

neighbors of each data point and n is the dimension of the 
space in which the data are presented,  LLE is no longer 
global nonlinear and degenerates into a linear method of 
dimensionality reduction. In this paper, for the sake of 
distinction, LLE is called GLE (Global Linear Embedding) 
when k > n. 

II. LOCALLY LINEAR EMBEDDING(LLE) 

Given a data matrix 
1 2[ , ,...., ]n m mX x x x× = ,where, 

ix represent the data points in the space nR . LEE consists of 

three problems and their solutions. 

A. the first problem of LLE 

For each data point
ix ,find its k neighbors, 

1 2, ,...,i i ikx x x , 

there are many ways to find the neighbors[12][13][14]. 

B. the second problem of LLE 

For each data point 
ix and its k neighbors, 1 2, ,...,i i ikx x x , 

find k coefficients 
1 2[ , ,..., ]i i i ikw w wΩ = to minimize the 

following objective function: 
2

1

arg min
k

i ij ij
j

x w x
=

−
      

(1) 

subject to 
1

1
k

ij
j

w
=

= ,this is what the ‘Locally Linear’ means. 

C. the third problem of LLE 

Find a matrix 
d nY ×

to minimize the following objective 

function: 2
arg min d n n nY W× × ,where d m .The column 

vectors of 
d nY ×

are the data after dimensionality reduction. 

III. GLOBALLY LINEAR EMBEDDING (GLE) 

A. the optimal solution to second problem of LLE 

The objective function of LLE can be rewritten 

as ,
2 2

2

1 1

( )
k k

i ij ij ij ij i i i
j j

x w x w x x G
= =

− = − = Ω 
              

(2)   

where 
1 2[ , ,..., ]i i i i i ik iG x x x x x x= − − − ,

1 2[ , ,..., ]i i i ikw w wΩ =  
,where 

iG is n k×  
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The optimal vector iΩ to equation (2) satisfy that 
2

0i iG Ω = ,
1

1
k

i
j=

Ω = By SVD decomposition, 
iG can be 

expressed as: ( )T

i i i iG U V=  , 

 where 
i is a diagonal matrix whose elements are the 

square roots of the nonzero eigenvalues of the 
matrix ( )T

i iG G , ( )( ) min( , )
T

i ir rank G G n k= ≤ ; 

 
iU are the orthonormal eigenvectors 

of ( )T

i iG G corresponding to the nonzero eigenvalues. 

 
iV  are the orthonormal eigenvectors 

of ( )T

i iG G corresponding to the nonzero eigenvalues. 

So when k n> ,this means that the matrix ( )T

i iG G has 

k r− orthonormal eigenvectors corresponding to the zero 
eigenvalue. 

So if let ( )
i

k k rV × − be a matrix whose column vectors are the 

orthonormal eigenvectors corresponding to the zero 

eigenvalues of ( )T

i iG G , then ( )( ) ( ) 0
T

i i
k k r k k rV V× − × − =  

Now let ( )

( )

i
k rk k r

i T i
k k rk k r

V A

V A

−× −

−× −

Ω =
Γ

,where 

[1,1,...1]T
kΓ = , k r

k rA R −
− ∈  

Then, ( ) ( )

( )

2

2
0

i
k rT k k r

i i i i i T i
k k rk k r

V A
G U V

V A

−× −

−× −

Ω =  =
Γ

due to 

T
k iΓ Ω =1, this means ( )

( )

i
k rk k r

i T i
k k rk k r

V A

V A

−× −

−× −

Ω =
Γ

is the optimal 

solution to the second problem of LLE. Note that 
k r

k rA R −
− ∈ provide a freedom of degree for 

iΩ  

The above derivation shows that, when k > n, no matter 
how to choose neighbors for each data point, the 
optimal solution to the second problem of LLE can be 
found. Furthermore, in this case, 0m n n nX W× × = . 

B. the optimal solution to the third problem of LLE 

A matrix d nY × is said to be the optimal solution of LLE if 

and only if 2
0d n n nY W× × = , T

d n d nY Y I× × =  

By SVD decomposition, 
m nX × can be expressed as 

T
m n m r r r r nX U V× × × ×=  ,  

 where ( ) ( )T T
m n m n m n m nr rank X X rank X X× × × ×= =  

 r r×Σ  is a diagonal matrix whose elements are the 

square roots of nonzero eigenvalues of T
m n m nX X× × . 

Note that the nonzero eigenvalues of T
m n m nX X× × are the 

same as those of T
m n m nX X× × . 

 The column vectors of  
m rU × are the orthonormal 

eigenvectors of T
m n m nX X× × corresponding to the 

nonzero eigenvalues. 
 The column vectors of  

r nV ×
are the orthonormal 

eigenvectors of T
m n m nX X× × corresponding to the nonzero 

eigenvalues. 
As previously demonstrated in section 3.1, when k > n, 

0m n n nX W× × = ,which lead to the following derivation: 

0T
m n n n m r r r r n m mX W U V W× × × × × ×=  = ,so we have, 

1 0 0T T
r n m m r r m r m nV W U−
× × × × ×=  =  

Now let T
d n d r r nY P V× × ×= , where T

d r d rP P I× × = . This means 

that T
d n d r r nY P V× × ×= is the optimal solution to the third 

problem of LLE. Furthermore,  since T
m n m r r r r nX U V× × × ×=  , 

so we have 1T T
r n r r m r m nV U X−
× × × ×=  , the optimal solution 

d nY ×
can be repressed as 

1T T
d n d r r n d r r r m r m n d m m nY P V P U X C X−

× × × × × × × × ×= =  =  , 

where 1 T
d m d r r r m rC P U−

× × × ×=   

C. the relationship of LLE and PCA 

From our derivation, we can see that the optimal solution 

d nY × can be expressed as the linear combination of m nX × .  

So in this case LLE turned to be a linear dimension 
reduction method as PCA(Principle Components Analysis) 
which is commonly used of linear dimension reduction 
method. 

IV. EXPERIMETAL RESULTS 

Figure 1− 6 and 7− 12 shows the experimental results of 
GLE and PCA on some classical manifolds such as Swill 
Roll, Gaussion, Toroidal Helix, TwinPeaks, Conner Plane 
and Puncture Sphere. As can be seen from these Figures, 
GLE and PCA almost have the same effect. Note that PCA 
is a linear method of dimensionality reduction. The 
experimental results show from another perspective that 
when k > n, LLE is not a global non-linear, but a global 
linear method of dimension reduction. 

 
Figure1: original manifold(left),GLE(middle),PCA(right) on Swiss Roll 
with n=3,m=800,k=8 
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Figure2:original manifold(left),GLE(middle),PCA(right) on Gaussion with 
n=3,m=800,k=8 

 

 
Figure3:original manifold(left),GLE(middle),PCA(right) on Toroidal Helix, 
with n=3,m=800,k=8 
 

 
Figure4:riginal manifold(left),GLE(middle),PCA(right) on Twin Peaks, 
with n=3,m=800,k=8 
 

 

 
Figure5: original manifold(left),GLE(middle),PCA(right) on Conner Plane, 
with n=3,m=800,k=8 

 

 
Figure6: original manifold(left),GLE(middle),PCA(right) on Puncture 
Sphere, with n=3,m=800,k=8 

 

 
Figure7: original manifold(left),GLE(middle),PCA(right) on Swiss Roll 
with n=3,m=1500,k=12 

 

 
Figure8: original manifold(left),GLE(middle),PCA(right) on Gaussion 
with n=3,m=1500,k=12 

 

 
Figure9: original manifold(left),GLE(middle),PCA(right) on Toroidal 
Helix with n=3,m=1500,k=12 

 

 
Figure10: original manifold(left),GLE(middle),PCA(right) on Twin Peaks 
with n=3,m=1500,k=12 

 

 
Figure11: original manifold(left),GLE(middle),PCA(right) on Conner 
Plane with n=3,m=1500,k=12 

 
Figure12: original manifold(left),GLE(middle),PCA(right) on Puncture 
Sphere with n=3,m=1500,k=12 
 

From these experimental results, we can safely come to a 
conclusion that in this case, when k>n, LLE is globally 
linear dimension reduction method. 

V. CONCLUSION 

Dimension reduction is a very effective method to deal with 
high dimensional data and widely explored in pattern 
recognition,  data mining,  machine learning and etc. LLE 
has been regarded as the classical non-linear dimension 
reduction algorithm  because of this good performances on 
real data and artificial data. ‘Globally non-linear, Locally 
linear’ is the main feature of LLE. Duo to these 
characteristics LLE has been regarded as the non-linear 
dimension reduction methods. But from the derivation 
presented in this paper, we can clearly come to some 
conclusions as follows: 
 when k>n, we can have 0m n n nX W× × = ,LLE turn out to 

be GLE. The sufficient and necessary condition for 
0m n n nX W× × ≠ is that there is at least one point 

1 1

, 1, 2,..., ; 1
k k

i ij ij ij ij
j j

x w x w R j k w
= =

  ∉ ∈ = = 
  
  , this case 

will not happen, when k>n. 
 

 In order to be visual, a lot of literatures on LLE verify 
their results on the data taken from the manifolds 
such as Swiss Roll, Punctured Sphere, Twin Peaks, etc. 
All of these manifolds are presented in the  three 
dimensional Euclidean space R3(n = 3) and the 
number 
of neighbors is always larger than 3, i.e., k > n, 
otherwise,  the size of neighborhood would be too 
small to be effective. As demonstrated in this paper, 
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when k > n, LLE degenerates into a linear method of 
dimensionality reduction and is no longer ” local 
linear and global nonlinear ” . Therefore, the 
manifolds such as Swiss Roll, Punctured Sphere, Twin 
Peaks, etc, may not be suitable for the verification of 
LLE. 
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