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Abstract— LLE is a very effective non-linear dimension
reduction algorithm and widely explored in machine learning,
pattern recognition, data mining and etc. ‘Locally linear,
Globally non-linear’ has always been regarded as the features
and advantages of LLE. However, the theoretical derivation
presented in this paper shows that when the size of
neighborhood is larger than the dimension of the space in
which the data are presented, LLE is no longer ‘global
nonlinear’ and almost has the same effect as PCA in
dimensionality reduction. At present, a lot of literatures on
LLE verify their results on Swiss Roll, Punctured Sphere,
Twin Peaks, etc. These manifolds are presented in the three-
dimensional Euclidean space and the size of neighborhood is
always larger than three to prevent too small to be effective.
But in these cases, LLE cannot play its advantage of
nonlinearity.
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l. INTRODUCTION

Dimensionality reduction is an efficient method to handle
the complicated high dimensional data commonly met in
our modern society and widely explored in data mining,
machine learning, pattern recognition and etc. Manifold
learning is considered as an ascendant method for nonlinear
dimensionality reduction and becomes more and more
atractive. Currently the efficient algorithms for manifold
learning include the isometric mapping (Isomap)[1][2],
locally linear embedding (LLE)[3][4], Laplacian
Eigenmaps (LE)[5], Hessian LLE (HLLE)[6] and loca
tangent space alignment (LTSA)[7], etc. Among all of these
methods, LLE LLE is computationally simpler and can give
useful results on a broader range of manifolds[4]. Its ability
to deal with large amounts of high dimensional data and its
non-iterative way of finding the embeddings make it more
and more attractive to researchers. The original LLE has
some intrinsic drawbacks, such as senditive to size of
neighborhood and regularization parameters, ill-conditioned
eigenproblems and etc. Based on these drawbacks, many
extensions of LLE have been proposed recently years,
reviewed in ref[8].LLE and its extensions have been used to
solve various problems in machine learning[9][ 10][ 11].

The most attractive properties of LLE is‘Locally linear,
Globally non-linear’[4] . Because of this, LLE has been
considered as a nonlinear method of dimensionality
reduction. However, the theoretical derivation presented in
this paper shows that when k > n, where k is the number of
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neighbors of each data point and n is the dimension of the
space in which the data are presented, LLE is no longer
global nonlinear and degenerates into a linear method of
dimensionality reduction. In this paper, for the sake of
distinction, LLE is called GLE (Global Linear Embedding)
whenk > n.

[l.  LOCALLY LINEAR EMBEDDING(LLE)
X = 1% %1000 %]
x represent the data points in the spaceR". LEE consists of
three problems and their solutions.

A. thefirst problemof LLE

For each data point x ,find its K neighbors, Xy X gy eees Xy o
there are many ways to find the neighbors[12][13][ 14].

Given a data matrix where,

B. the second problemof LLE
For each data point x and its K neighbors, Xigs Xipyeees X o

find K coefficients Q =[w,,W,,..,w,] to minimize the

K 2

X =2 WX,

=

following objective function: grgmin

@

subject to Zk:w —1.thisiswhat the ‘Locally Linear’ means.
1j
j=1
C. thethird problemof LLE
Find a matrix Y, to minimize the following objective

function: argmin|[Y,,\W,,, ? where d < m.The column

vectors of v, arethe data after dimensionality reduction.

I1l.  GLOBALLY LINEAR EMBEDDING (GLE)

A. theoptimal solution to second problemof LLE
The objective function of LLE can be rewritten

K 2 K 2 )
% _Zwij)ﬂj Z\Nij ()ﬁj _)ﬁ) =||Gig|| )
j=1 j=1

Where G, =[x, =X, X, =% o0 X = X1 = [Wo, W, o, W ]
where G, is nxk

as,
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The optimal vector € to equation (2) satisfy that
leal =0, Zk:q _, By SVD decomposition, G can be
j=1

expressed as: G =U, 3, (V)"
* where ¥ is adiagonal matrix whose elements are the
square roots of the nonzero eigenvalues of the

matrixG (G)".r =rank(G (G )') < min(n,k) ;

e U, are the orthonormal eigenvectors
ofG (G )T corresponding to the nonzero eigenval ues.
LY/ are the orthonormal eigenvectors

of (GI )T G corresponding to the nonzero eigenvalues.
So when k>n ,this means that the matrix (G,)TG, has

k—r orthonormal eigenvectors corresponding to the zero
eigenvalue.

So if letV!

k(1) be a matrix whose column vectors are the

orthonormal eigenvectors corresponding to the zero

; T [ T\
eigenvaluesof (G ) G, then (ka(kfr)) Vigen) =0
Now let Q =M where
F‘Ik'vklx(k—r)A@f
Iy =[11..1,A_ € R
. 2
v, ;
Then. Gl =y, 3, () mett o de o
1—‘kvkx(k—r)A(—r
rQ =1, this means ¢ — \T/kx(_k-f)'%-' is the optimal
1—‘kalx(k—r)'%(—f

solution to the second problem of LLE. Note that
A _, € R<"provide afreedom of degreefor Q

The above derivation shows that, when k > n, no matter
how to choose neighbors for each data point, the

optimal solution to the second problem of LLE can be
found. Furthermore, inthiscase, X W _=0.

mxn® “'nxn

B.
A matrix Y, is said to be the optimal solution of LLE if
and only if v, W, [*=0,Yy Yy =1

By SVD decomposition, X
Xiner = U e 2 ViL

the optimal solution to the third problem of LLE

mn CAN b expressed as
wherer = rank(X,, X" ) =rank(X" X, )
>

1S @ diagonal matrix whose elements are the

square roots of nonzero eigenvalues of X _ X .
Note that the nonzero eigenvalues of X X;xn are the
same asthose of X X

mxn ©

The column vectors of U __ are the orthonormal

T
mxn

eigenvectors of X X

nonzero eigenvalues.
The column vectors of

corresponding to the

v, are the orthonormal
eigenvectorsof X X corresponding to the nonzero

eigenvalues.
As previously demonstrated in section 3.1, when k > n,

XnW,, =0 ,which lead to the following derivation:
meanxn = Um><r Zr><r Vranmxm = 0 ’SO we have,
VrInmem = Zr_ir Ur:ur 0m><n = 0

Now let Y, =P, V. , where p_ Pl =| . This means
that v, =P, V! is the optima solution to the third
problem of LLE. Furthermore, sincex =U_ > VI,

so we have V'

rxn

=>1U X ., the optima solution

Yo can be repressed as
Yd><n = PdXFVf;I;n = I:)(:|><I' zr_:r UIIIXF Xm><n = CdeXan !

Where Cdxm = der Z;ir Ur-:;xr

C. thereationship of LLE and PCA

From our derivation, we can see that the optimal solution

Y., can be expressed as the linear combination of X ..

So in this case LLE turned to be a linear dimension
reduction method as PCA (Principle Components Analysis)
which is commonly used of linear dimension reduction
method.

IV. EXPERIMETAL RESULTS

Figure 1- 6 and 7— 12 shows the experimental results of
GLE and PCA on some classical manifolds such as Swill
Roll, Gaussion, Toroidal Helix, TwinPeaks, Conner Plane
and Puncture Sphere. As can be seen from these Figures,
GLE and PCA amost have the same effect. Note that PCA
is a linear method of dimensionality reduction. The
experimental results show from another perspective that
when k > n, LLE is not a global non-linear, but a global
linear method of dimension reduction.
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Figurel: original manifold(left), GLE(middle),PCA(right) on Swiss Roll
with n=3,m=800,k=8
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Figure2:original manifold(left),GLE(middle),PCA(right) on Gaussion with
n=3,m=800,k=8
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Figure3:origi nal manifold(lft), GLE(ml ddle),PCA(right) on Toroidal Helix,

with n=3,m=800,k=8
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Figured:riginal manifold(left), GLE(mlddIe) PCA(right) on TW|n Peaks,
with n=3,m=800,k=8
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Figureb: original manifold(left),GLE(middle),PCA(right) on Conner Plane,
with n=3,m=800,k=8
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Figure6: original manifold(left), GLE(middle),PCA(right) on Puncture
Sphere, with n=3,m=800,k=8
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Figure7: origina manifold(left), GLE(middle),PCA(right) on Swiss Rall
with n=3,m=1500,k=12
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Figure8: origina manifold(left), GLE(middle),PCA(right) on Gaussion

with n=3,m=1500,k=12

wus

-Dos o aas b oS o .05
Figure9: origind manifold(left), GLE(middle),PCA(right) on Toroidal
Helix with n=3,m=1500,k=12
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Figurel0: original manifold(left), GLE(middle),PCA(right) on Twin Peaks
with n=3,m=1500,k=12
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Figurell: origind manifold(left),GLE(middle),PCA(right) on Conner
Plane with n=3,m=1500,k=12
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Figurel2: origina manifold(left), GLE(middle),PCA(right) on Puncture
Sphere with n=3,m=1500,k=12

From these experimental results, we can safely come to a
conclusion that in this case, when k>n, LLE is globaly
linear dimension reduction method.

V. CONCLUSION

Dimension reduction is a very effective method to deal with
high dimensional data and widely explored in pattern
recognition, data mining, machine learning and etc. LLE
has been regarded as the classical non-linear dimension
reduction algorithm because of this good performances on
real data and artificial data ‘Globally non-linear, Locally
linear’ is the main feature of LLE. Duo to these
characteristics LLE has been regarded as the non-linear
dimension reduction methods. But from the derivation
presented in this paper, we can clearly come to some
conclusions as follows:

¢ whenk>n, wecan have x W= 0,LLE turn out to

be GLE. The sufficient and necessary condition for
X,..W,,, = 0isthat thereis at least one point

nxn

X € {ZW.,-&;‘
j=1

will not happen, when k>n.

k
WeRj=12.k> w

j=L

:1} , thiscase

e Inorder to be visual, alot of literatures on LLE verify
their results on the data taken from the manifolds
such as Swiss Roll, Punctured Sphere, Twin Peaks, etc.
All of these manifolds are presented in the three
dimensional Euclidean space R3(n = 3) and the
number
of neighbors is aways larger than 3, i.e, k > n,
otherwise, the size of neighborhood would be too
small to be effective. As demonstrated in this paper,
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when k > n, LLE degenerates into a linear method of
dimensionality reduction and is no longer ” local
linear and global nonlinear ” . Therefore, the
manifolds such as Swiss Roll, Punctured Sphere, Twin
Peaks, etc, may not be suitable for the verification of
LLE.
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