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Abstract—We present a performance tool for Earth system 
models development to aid in analyzing the performance of the 
climate modeling applications. It is difficult for existing tools to 
handle with the complex, coupled structure and the long 
execution time of models. Our performance tool implements 
rapid analysis based on statistical sampling and grouping 
aggregation the calling relationship and the actual computing 
resource consumption excluding waiting losses. Using this tool, 
we study an ocean model POP in short-term sampling and 
analyze its scaling bottleneck and acceleration trend. The 
measuring results of its entire execution prove our predictions 
on the scaling efficiencies.  

Keywords-Earth system models; performance analysis; 
parallel computing 

I. INTRODUCTION 

Over the past decades, climate researchers have 
developed large-scale Earth science applications, such as 
ocean, atmosphere and land surface models, under 
monolithic software-development pattern. Recently, an 
emphasis on integrated multicomponent modeling has 
emerged—reflecting an increase in scientific capabilities and 
computing capacity, and resulting in several ambitious, 
coupled, Earth system modeling efforts[1, 10-13]. In these 
coupled efforts, Earth scientists request new technology and 
perspective to analyze the performance of climate parallel 
programs. Existed performance analysis method based the 
old program patterns cannot meet the demand of current 
continued innovation in complex, highly integrated 
simulations. 

In the project of Earth System Model Oriented Integrated 
Developing Environment, we built an integrated 
development supporting environment for Earth system 
models using high performance computing technologies. The 
core part of the program is to provide a plugin platform 
which contains modules, templates and other tools required 
by earth scientists to build up component models they need 
and the entire Earth system model, and debugging and 
performance analysis tools for the models. Besides, 
performance adjustment is also a crucial part of the 
debugging work because model execution may last for 
several months. Unfortunately, it is extremely difficult for 
applications to use computing resources efficiently at large 
scale because inefficiencies emerge as a bottleneck on a 
large number of processors. Understanding which part of the 
application does not accelerate can be quite difficult. Climate 
experts need performance analysis tool to figure out the 

computing capability demand of each component so as to 
adjust the parameters. However, existing performance 
analysis techniques are not suitable to handle these structure 
and coupling characteristics of parallel climate programs [8, 
9, 11]. The optimization of execution time or efficiency of 
computing resource allocation is badly needed, but it usually 
takes months to accomplish the optimization. In particular 
the Earth scientists find these techniques not user-friendly. 

Our work is to provide useful tool for Earth scientists and 
application developers attempting to harness the power of 
parallel systems effectively. Originally, the tool is developed 
for the use of physicists. In this project, we aim to make it 
simpler for Earth scientists and yet provide coarse-grained 
detail about application performance bottlenecks. Our 
performance tool is not only used by programmers who write 
undying functions of component models, but also by the 
Earth scientists who tune and couple the component models 
into Earth system modeling applications. When using models, 
Climate experts usually tune the parameter and coupling 
structure instead of the procedure code in the component 
models. The way they tune the models differs from 
programmers. The professional background of Earth 
scientists concentrates on physics rather than parallel 
computing and programming. They are more willing to 
understand the climate programs from their professional 
view. In their perspective, the models consist of processes of 
physics computing and data conversion structure (called 
“coupler”). The performance analysis cannot be 
comprehended and used only if the results are translated into 
experts view. 

Our performance tool promotes the efficiency of 
computing resource allocation to each component model. 
Waiting (e.g. MPI_WAITALL) loss is separated from the 
consumption of computing capability, so that measurement 
result is able to reflect the actual resource cost of each 
component. This is a runtime characteristic of parallel 
program which can hardly be obtained from code analysis. 
Using such information, climate experts will be able to make 
optimal adjustments to parameters (including parallel 
parameters) and other physics structures, such as couplers. 

The rest of this paper is organized as follows. Section 2 
present details of our approach to measurement and analysis 
of how much computing capability it cost to be attributed to 
each component. In Section 3, we use our tool to analyze the 
performance of a climate model in use and illustrate the 
result. Section 4 compares our approach with related work. 
Section 5 summarizes our conclusions. 
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II. PERFORMANCE MEASUREMENT 

In this section we describe our measurement and analysis 
methods of consumption, separation and attribution. 

A. Measuring Computing Resource Consumption 

Computing resource refers to the cores on which a 
routine or a model executes and the occupancy time it lasts. 
MPI tasks usually implement on specific resource manager 
(such as PBS[15], SLURM[16], etc.), which ensures that 
enough computing capability is provided so that every 
process is able to own one core. Therefore measurement of 
tool includes functions that processes are executing and their 
occupancy related to duration and amount of processes. 
Additionally, there are three problems that need to be noted. 

1) Measurement length. Tracking the entire execution of 
climate models which may last for several hours or months 
due to the time length of simulation is time-consuming and 
inefficient. In fact, the difficulty in this kind of applications 
is able to be resolved from their other characteristics. Earth 
applications usually consist of numerous processing loops 
that execute one after another. At each loop iteration, similar 
physics functions are dealing with data from previous loop 
and boundary. This kind of structure leads to a certain 
degree of self-similarity characteristic at particular levels 
manifested at program executions. Therefore we predict 
performance allocation of the entire execution from its 
short-term behaviors, and consider our tool as a monitor tool.  

2) Measurement technique. The amount of loop 
structures limits our measurement approach at statistical 
sampling. Because of the numerous low-level loops of 
physics calculation, both source-level and dynamic binary 
instrumentation suffer from the large overhead and 
systematic dilation.  

3) Focus data. In consideration of the time coverage and 
measurement method, the importance of performance 
distribution of component surpasses that of actual resource 
consumption. Using statistical sampling, we assume that the 
running content of program lasts from the sampling point 
for a time interval. Although the behaviors of processes 
between two sampling points are not measured, the 
distribution of components is expected to approximate the 
true distribution of their costs to measure, as long as the 
number of samples collected during execution is sufficiently 
large. However, even if the attribution of events is flawed, 
total time occupancy ratio within loops or procedures will 
typically be accurate. In most cases, it is the balance within 
countless loops that matters—for instance, the ratio between 
ocean model consumption and atmosphere model 
consumption. 

To depict application behavior, performance tool samples 
stacks of run-time programs over a sampling interval. We 
leverage the Stack Trace Analysis Tool (STAT) [2], a 
scalable debugging tool from Lawrence Livermore National 
Laboratory, to collect stack traces from running applications. 
A single process exposes a sequence of stack traces 

representing the functions that is implemented at that time, 
which depict the caller/callee relationships of the functions 
being executed by that process. In most cases, these 
functions start with "main", and utilize the computing 
capability of current process (core actually) at the same time. 
Therefore the computing resource is transferred caller to 
callee. We assume that the functions always “own” the core 
until the next sample and add current consumption of 
resource to the records of particular functions (Figure 1).  

In our model, we distinguish functions by invocation 
paths, which means that if the same function is invoked 
multiple times by different call paths, it occurs multiple 
times in our performance records. We believe that calling 
context is essential for understanding layered and coupled 
applications. The costs incurred for calls to communication 
primitives (e.g., MPI_WAITALL)  vary widely depending 
upon their calling context. With this distinction, different 
application semantics such as waiting may be demonstrated 
by functions invoked via different call paths; in other words, 
we are more concerned about calling modules because the 
allocation of computing resource can be separately recorded 
and analyzed. 

Figure 1.  Measuring computing resource consumption of functions. 

B. Attribution Functions to Modules 

It is unreasonable to require users to wade through 
mountains of data to hunt for evidence of important 
problems. To make analysis of complex, coupled models 
useful to climate experts, performance tool should present 
measurement data in a hierarchical way, prioritizing what 
appear to be important problems and supporting a top-down 
analysis methodology that helps users quickly locate 
bottlenecks without the need to wade through irrelevant 
details[6].  

From the sampling measurement, the execution 
information of program is transformed into 3 parts: the 
function (recorded as call path), the resource consumption, 
and the calling relationship. All the call paths can be merged 
into a call graph prefix tree. The presumption, as well as the 
common reality, is that there will be significant overlap 
amongst the individual stack traces such that many processes 
will merge into a relatively small call graph prefix tree [2]. 
Figure 2 depicts an example of merged graph and the CPU 
time of each function, and colors indicate the resource 
consumption.  
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At the same time, the functions are identified to their 
modules. The climate models usually use FORTRAN 
programming language, which is particularly suitable for 
processing scientific computing. This language writes the 
source file name of functions to the symbol table which is 
also pressed into call stack. This feature brings us more 
convenience to detect the belongings of functions. 

Figure 2.  Merged graph of function cost and calling relationship 

Then we attribute the function cost in the call graph to 
their modules. In fact it is a grouping aggregation with two 
features: keeping caller/callee relationships and separating 
waiting losses.  

Waiting losses interfere with our judgment about the 
computing resource consumption. Therefore the aggregation 
should eliminate interference of waiting (MPI_WAITALL) 
losses which is detected at low-level paths and backtracked 
to all parent functions. The waiting cost is recorded 
separately and marked in the final result for further analysis. 
We use a recursive procedure with detective backtracking to 
complete grouping aggregation. A depth-first search 
achieved by the recursion detects the calling relationship of 
modules and return the cost allocated from the parent module 
to the sub-module, removing the cost of waiting losses 
backtracked from low-level invocations. 

Figure 3 shows an aggregation instance from a 10000 
samples measurement, whose call graph contains more than 
150 nodes and 240 edges. The waiting losses are marked in 
the brackets, and you can pinpoint the source module and 
allocation of waiting costs. 

Figure 3.  Grouping aggregation and attribution of physics modules 

III. CASE STUDIES 

Here we study the performance of Parallel Ocean 
Program (POP) to illustrate the uses of our performance 
monitor. We record how the computing resources is 

occupied and consumed by the member modules of the 
application.     

As an ocean circulation model, POP solves the three-
dimensional primitive equations for fluid motions on the 
sphere under hydrostatic and Boussinesq approximations. 
POP is the ocean component of the Community Climate 
System Model and has been used extensively in ocean-only 
mode for eddy-resolving simulations of the global ocean and 
for ocean-ice coupled simulations with the CICE model. In 
this study, we examine the performance of POP scaling from 
2 to 32 cores. Understanding in detail how impediments to 
scaling arise in parallel applications, we help scientists 
identify the scaling bottleneck and select the appropriate 
scaling parameter to make effective use of computing 
capability.  

The main physics procedures of POP are baroclinic and 
barotropic. Barotropic also contains horizontal and vertical 
calculations. These four procedures spend most of the 
computing resource. Mpi module represents a number of 
mpi-related functions including boundary calculation, mpi 
communication, etc. There are also other non-physics 

modules such as output and tools. 
Figure 4.  Performance monitoring of POP execution 

Figure 4 shows a screen snapshot from performance 
monitor user interface displaying a top-down calling context 
view of how POP spends its time on 32 cores.  

The view has three main components. The process 
monitor pane (upper pane) shows the sequencing view of 
module execution of each process. The modules relationship 
pane (lower left sub-pane) shows a top-down view of the 
calling relationship of execution modules. One can see the 
resource distribution along the call paths in the allocation 
graph. As for the performance that monitor tool measured, 
on 32 cores the allocation shows that POP spends 19.46% of 
its computing resource inside MPI_WAITALL. Although all 
MPI_WAITALL invocations are directly called in module 
mpi, excluding main (marked with slash), three modules 
suffering from waiting caused by MPI_WAITALL; in other 
words, these modules contribute to the waiting behaviors. 
The highlighted paths represent the invocations effected by     
waiting time, and the amounts of wasted resource are marked 
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(a) Physics modules                                             (b) Module mpi & entire MPI_WAITALL losses 

(c) The contribution of high-level modules to waiting losses        (d) Actual execution time of the entire program on different cores 

Figure 5.  The contribution of high-level modules to waiting losses 

in brackets. Low-level modules such as horizontal and 
vertical are not impacted. Without the interference of waiting 
(mostly for data from other processes), one can see the actual 
computing resource consumption for physics simulation.  

A. Allocation of CPU Time 

When executed by different process scales, test 
application is sampled by our performance monitor. We 
record the performance data of each execution which 
represent the runtime characteristic of the application in 
specific process parameter.  

Figure 5(a) shows the actual computing resource 
consumption of four main physics procedures without 
waiting losses. The figure shows that the resource 
consumption of physics module load declines slowly 
comparing to the total resources. Figure 5(b) shows the 
consumption of module mpi and the total waiting losses of 
the application. The actual work cost of mpi module happens 
to grow along with the scaling of total cores. It can be 

interpreted as the boundary and communication work added 
by more data segmentation adapting to scaling cores. In 
contrast, the total waiting losses in MPI_WAITALL increase 
stably at the beginning, and have a sudden growth over 8 
cores. The results revealed that even if work cost grows 
linearly with scaling, waiting cost shows the unstable, non-
deterministic growth that may depend on the internal features 
of application. However, the poor scalability is clear: the 32 
core execution spends more time waiting in MPI_WAITALL 
than in the 2-core execution.  

By looking up the call chain to see how high-level 
modules caused the program to incur scalability losses in 
MPI_WAITALL, we discover in Figure 5(c) that from 4 
cores on, the majority of waiting losses comes from the use 
of module mpi. More importantly, it grows sharply from 8 
cores to 32 cores. Comparing with the module mpi, stable 
growth can also be seen in data processing module 
barotropic and baroclinic over 8 cores.  
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The trend reveals that the work of boundary calculation 
and mpi communication increases significantly for the 
scaling arise in parallel applications which bring fine-grained 
data segmentation and more boundary handling and 
communication work.  

From the analysis above, we can focus the most efficient 
scaling of POP on 8 cores. Since at that scaling, the program 
performs better on the characteristic of the unstable, non-
deterministic waiting losses, we can give a scaling 
suggestion considering the effective use of resources and 
program execution time.  

It’ should be noted that we obtain this result without 
measuring the entire execution of program which may be 
time-consuming. We make this analysis and prediction by 
the short-term sampling measurements. The actual running 
time of the program, as shown in Figure 5(d), proves our 
prediction. The case study demonstrates several facts. Some 
program scaling problems only show up beyond certain 
scales and depend on the features of program. Furthermore, 
the performance may be non-deterministic, and thus difficult 
to analysis from source code, so that short-term runtime 
sampling often play a key role in this case. 

B. Measurement Speed 

Our performance tool is suitable to analyze the execution 
of parallel programs consisted of countless low-level loops 
and iterations. The module cost ratios of cpu time are 
measured and estimated in limited samples. Although the 
final result after the entire execution is more accurate, an 
approximated analysis is provided in short-term samples. 
Apparently users need to make a compromise between 
accuracy and time consumption. However, our tool does not 
need too many samples. Figure 8 depicts the execution 
measurement of sampling in the time interval of 1000 ms, 

and the estimated results is almost available after 300 
samples. 

IV. RELATED WORK 

Our work focuses on performance bottleneck diagnosed 
in complex, coupled parallel Earth system models. Although 
not designed for characteristics of climate applications, many 
tools have been developed for performance analysis of 
parallel computing platforms, with varying levels of 

perspective. VAMPIR [4] is a commercial post-mortem trace 
visualization tool. It uses profiling extensions to MPI and 
permits analysis of message events during parallel execution, 
helping to identify bottlenecks and inconsistent run time 
behavior. Performance tools such as Tau [5, 6], VTune [17] 
use source code instrumentation to insert special profiling 
code into the source program before compilation. Paradyn [7] 
is unique among performance analysis tools by using 
dynamic instrumentation to perform an online performance 
bottleneck search. Nearly all other tools to identify the root 
causes of load imbalance use instrumentation-based tracing. 
The basic disadvantages of these approaches are that 
instrumentation-based measurement faces an inelastic 
tension between accuracy and precision. HPCTOOLKIT [3, 
14] uses statistical sampling to measure performance, which 
avoids the systematic overhead of measurement. But its post-
mortem profiling and tracing is not fit to handle with the 
longtime execution and coupled structure of climate 
applications. 

There are several existing techniques that also face the 
same challenges with respect to enhancing the practicality to 
Earth scientists who determine the final parameters of 
coupled programs which largely impact the performance. 
Performance tools typically attribute performance metrics to 
calling context. Two widely-used tools that collect call graph 
profiles are gprof [18] and Intel's VTune [17]. Call path 
profiling needs fully understand of performance aspects and 
module codes, but physics experts are difficult to handle with 
the low-level content of applications wrote by programmers. 

V. CONCLUSIONS 

We have presented the design and implementation of a 
performance monitor tool oriented to analyze the parallel 
computing resource consumption in Earth system models. 
This tool addresses the issue of how to help climate scientists 
quickly analyze and diagnose the performance bottlenecks 
for climate applications feature long-term running. 
Specifically, we handle the result from the perspective of 
climate experts who treat the application as coupled physics 
models. Our tool measures the computing resource 
consumption of each function (as call path) and attributes the 
cost to the coupling modules excluding the waiting losses.  

With the tool, we have presented the case study of a real 
world ocean model POP and demonstrated that how we 
pinpoint the bottleneck of module which affects the scaling 
of the entire application.  Besides, we also propose advices 
about scaling parameter. Even more importantly, the 
experiments of complete executions have proved our 
prediction made by short-term sampling measurements. 
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