
A Performance Tool for Earth System Models Development

Hang Li, Zhongzhi Luan
Sino-German Joint Software Institute

Beihang University
Beijing, China

lihangatmail@gmail.com

Abstract—We present a performance tool for Earth system
models development to aid in analyzing the performance of the
climate modeling applications. It is difficult for existing tools to
handle with the complex, coupled structure and the long
execution time of models. Our performance tool implements
rapid analysis based on statistical sampling and grouping
aggregation the calling relationship and the actual computing
resource consumption excluding waiting losses. Using this tool,
we study an ocean model POP in short-term sampling and
analyze its scaling bottleneck and acceleration trend. The
measuring results of its entire execution prove our predictions
on the scaling efficiencies.

Keywords-Earth system models; performance analysis;
parallel computing

I. INTRODUCTION

Over the past decades, climate researchers have
developed large-scale Earth science applications, such as
ocean, atmosphere and land surface models, under
monolithic software-development pattern. Recently, an
emphasis on integrated multicomponent modeling has
emerged—reflecting an increase in scientific capabilities and
computing capacity, and resulting in several ambitious,
coupled, Earth system modeling efforts[1, 10-13]. In these
coupled efforts, Earth scientists request new technology and
perspective to analyze the performance of climate parallel
programs. Existed performance analysis method based the
old program patterns cannot meet the demand of current
continued innovation in complex, highly integrated
simulations.

In the project of Earth System Model Oriented Integrated
Developing Environment, we built an integrated
development supporting environment for Earth system
models using high performance computing technologies. The
core part of the program is to provide a plugin platform
which contains modules, templates and other tools required
by earth scientists to build up component models they need
and the entire Earth system model, and debugging and
performance analysis tools for the models. Besides,
performance adjustment is also a crucial part of the
debugging work because model execution may last for
several months. Unfortunately, it is extremely difficult for
applications to use computing resources efficiently at large
scale because inefficiencies emerge as a bottleneck on a
large number of processors. Understanding which part of the
application does not accelerate can be quite difficult. Climate
experts need performance analysis tool to figure out the

computing capability demand of each component so as to
adjust the parameters. However, existing performance
analysis techniques are not suitable to handle these structure
and coupling characteristics of parallel climate programs [8,
9, 11]. The optimization of execution time or efficiency of
computing resource allocation is badly needed, but it usually
takes months to accomplish the optimization. In particular
the Earth scientists find these techniques not user-friendly.

Our work is to provide useful tool for Earth scientists and
application developers attempting to harness the power of
parallel systems effectively. Originally, the tool is developed
for the use of physicists. In this project, we aim to make it
simpler for Earth scientists and yet provide coarse-grained
detail about application performance bottlenecks. Our
performance tool is not only used by programmers who write
undying functions of component models, but also by the
Earth scientists who tune and couple the component models
into Earth system modeling applications. When using models,
Climate experts usually tune the parameter and coupling
structure instead of the procedure code in the component
models. The way they tune the models differs from
programmers. The professional background of Earth
scientists concentrates on physics rather than parallel
computing and programming. They are more willing to
understand the climate programs from their professional
view. In their perspective, the models consist of processes of
physics computing and data conversion structure (called
“coupler”). The performance analysis cannot be
comprehended and used only if the results are translated into
experts view.

Our performance tool promotes the efficiency of
computing resource allocation to each component model.
Waiting (e.g. MPI_WAITALL) loss is separated from the
consumption of computing capability, so that measurement
result is able to reflect the actual resource cost of each
component. This is a runtime characteristic of parallel
program which can hardly be obtained from code analysis.
Using such information, climate experts will be able to make
optimal adjustments to parameters (including parallel
parameters) and other physics structures, such as couplers.

The rest of this paper is organized as follows. Section 2
present details of our approach to measurement and analysis
of how much computing capability it cost to be attributed to
each component. In Section 3, we use our tool to analyze the
performance of a climate model in use and illustrate the
result. Section 4 compares our approach with related work.
Section 5 summarizes our conclusions.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0180

II. PERFORMANCE MEASUREMENT

In this section we describe our measurement and analysis
methods of consumption, separation and attribution.

A. Measuring Computing Resource Consumption

Computing resource refers to the cores on which a
routine or a model executes and the occupancy time it lasts.
MPI tasks usually implement on specific resource manager
(such as PBS[15], SLURM[16], etc.), which ensures that
enough computing capability is provided so that every
process is able to own one core. Therefore measurement of
tool includes functions that processes are executing and their
occupancy related to duration and amount of processes.
Additionally, there are three problems that need to be noted.

1) Measurement length. Tracking the entire execution of
climate models which may last for several hours or months
due to the time length of simulation is time-consuming and
inefficient. In fact, the difficulty in this kind of applications
is able to be resolved from their other characteristics. Earth
applications usually consist of numerous processing loops
that execute one after another. At each loop iteration, similar
physics functions are dealing with data from previous loop
and boundary. This kind of structure leads to a certain
degree of self-similarity characteristic at particular levels
manifested at program executions. Therefore we predict
performance allocation of the entire execution from its
short-term behaviors, and consider our tool as a monitor tool.

2) Measurement technique. The amount of loop
structures limits our measurement approach at statistical
sampling. Because of the numerous low-level loops of
physics calculation, both source-level and dynamic binary
instrumentation suffer from the large overhead and
systematic dilation.

3) Focus data. In consideration of the time coverage and
measurement method, the importance of performance
distribution of component surpasses that of actual resource
consumption. Using statistical sampling, we assume that the
running content of program lasts from the sampling point
for a time interval. Although the behaviors of processes
between two sampling points are not measured, the
distribution of components is expected to approximate the
true distribution of their costs to measure, as long as the
number of samples collected during execution is sufficiently
large. However, even if the attribution of events is flawed,
total time occupancy ratio within loops or procedures will
typically be accurate. In most cases, it is the balance within
countless loops that matters—for instance, the ratio between
ocean model consumption and atmosphere model
consumption.

To depict application behavior, performance tool samples
stacks of run-time programs over a sampling interval. We
leverage the Stack Trace Analysis Tool (STAT) [2], a
scalable debugging tool from Lawrence Livermore National
Laboratory, to collect stack traces from running applications.
A single process exposes a sequence of stack traces

representing the functions that is implemented at that time,
which depict the caller/callee relationships of the functions
being executed by that process. In most cases, these
functions start with "main", and utilize the computing
capability of current process (core actually) at the same time.
Therefore the computing resource is transferred caller to
callee. We assume that the functions always “own” the core
until the next sample and add current consumption of
resource to the records of particular functions (Figure 1).

In our model, we distinguish functions by invocation
paths, which means that if the same function is invoked
multiple times by different call paths, it occurs multiple
times in our performance records. We believe that calling
context is essential for understanding layered and coupled
applications. The costs incurred for calls to communication
primitives (e.g., MPI_WAITALL) vary widely depending
upon their calling context. With this distinction, different
application semantics such as waiting may be demonstrated
by functions invoked via different call paths; in other words,
we are more concerned about calling modules because the
allocation of computing resource can be separately recorded
and analyzed.

Figure 1. Measuring computing resource consumption of functions.

B. Attribution Functions to Modules

It is unreasonable to require users to wade through
mountains of data to hunt for evidence of important
problems. To make analysis of complex, coupled models
useful to climate experts, performance tool should present
measurement data in a hierarchical way, prioritizing what
appear to be important problems and supporting a top-down
analysis methodology that helps users quickly locate
bottlenecks without the need to wade through irrelevant
details[6].

From the sampling measurement, the execution
information of program is transformed into 3 parts: the
function (recorded as call path), the resource consumption,
and the calling relationship. All the call paths can be merged
into a call graph prefix tree. The presumption, as well as the
common reality, is that there will be significant overlap
amongst the individual stack traces such that many processes
will merge into a relatively small call graph prefix tree [2].
Figure 2 depicts an example of merged graph and the CPU
time of each function, and colors indicate the resource
consumption.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0181

At the same time, the functions are identified to their
modules. The climate models usually use FORTRAN
programming language, which is particularly suitable for
processing scientific computing. This language writes the
source file name of functions to the symbol table which is
also pressed into call stack. This feature brings us more
convenience to detect the belongings of functions.

Figure 2. Merged graph of function cost and calling relationship

Then we attribute the function cost in the call graph to
their modules. In fact it is a grouping aggregation with two
features: keeping caller/callee relationships and separating
waiting losses.

Waiting losses interfere with our judgment about the
computing resource consumption. Therefore the aggregation
should eliminate interference of waiting (MPI_WAITALL)
losses which is detected at low-level paths and backtracked
to all parent functions. The waiting cost is recorded
separately and marked in the final result for further analysis.
We use a recursive procedure with detective backtracking to
complete grouping aggregation. A depth-first search
achieved by the recursion detects the calling relationship of
modules and return the cost allocated from the parent module
to the sub-module, removing the cost of waiting losses
backtracked from low-level invocations.

Figure 3 shows an aggregation instance from a 10000
samples measurement, whose call graph contains more than
150 nodes and 240 edges. The waiting losses are marked in
the brackets, and you can pinpoint the source module and
allocation of waiting costs.

Figure 3. Grouping aggregation and attribution of physics modules

III. CASE STUDIES

Here we study the performance of Parallel Ocean
Program (POP) to illustrate the uses of our performance
monitor. We record how the computing resources is

occupied and consumed by the member modules of the
application.

As an ocean circulation model, POP solves the three-
dimensional primitive equations for fluid motions on the
sphere under hydrostatic and Boussinesq approximations.
POP is the ocean component of the Community Climate
System Model and has been used extensively in ocean-only
mode for eddy-resolving simulations of the global ocean and
for ocean-ice coupled simulations with the CICE model. In
this study, we examine the performance of POP scaling from
2 to 32 cores. Understanding in detail how impediments to
scaling arise in parallel applications, we help scientists
identify the scaling bottleneck and select the appropriate
scaling parameter to make effective use of computing
capability.

The main physics procedures of POP are baroclinic and
barotropic. Barotropic also contains horizontal and vertical
calculations. These four procedures spend most of the
computing resource. Mpi module represents a number of
mpi-related functions including boundary calculation, mpi
communication, etc. There are also other non-physics

modules such as output and tools.
Figure 4. Performance monitoring of POP execution

Figure 4 shows a screen snapshot from performance
monitor user interface displaying a top-down calling context
view of how POP spends its time on 32 cores.

The view has three main components. The process
monitor pane (upper pane) shows the sequencing view of
module execution of each process. The modules relationship
pane (lower left sub-pane) shows a top-down view of the
calling relationship of execution modules. One can see the
resource distribution along the call paths in the allocation
graph. As for the performance that monitor tool measured,
on 32 cores the allocation shows that POP spends 19.46% of
its computing resource inside MPI_WAITALL. Although all
MPI_WAITALL invocations are directly called in module
mpi, excluding main (marked with slash), three modules
suffering from waiting caused by MPI_WAITALL; in other
words, these modules contribute to the waiting behaviors.
The highlighted paths represent the invocations effected by
waiting time, and the amounts of wasted resource are marked

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0182

(a) Physics modules (b) Module mpi & entire MPI_WAITALL losses

(c) The contribution of high-level modules to waiting losses (d) Actual execution time of the entire program on different cores

Figure 5. The contribution of high-level modules to waiting losses

in brackets. Low-level modules such as horizontal and
vertical are not impacted. Without the interference of waiting
(mostly for data from other processes), one can see the actual
computing resource consumption for physics simulation.

A. Allocation of CPU Time

When executed by different process scales, test
application is sampled by our performance monitor. We
record the performance data of each execution which
represent the runtime characteristic of the application in
specific process parameter.

Figure 5(a) shows the actual computing resource
consumption of four main physics procedures without
waiting losses. The figure shows that the resource
consumption of physics module load declines slowly
comparing to the total resources. Figure 5(b) shows the
consumption of module mpi and the total waiting losses of
the application. The actual work cost of mpi module happens
to grow along with the scaling of total cores. It can be

interpreted as the boundary and communication work added
by more data segmentation adapting to scaling cores. In
contrast, the total waiting losses in MPI_WAITALL increase
stably at the beginning, and have a sudden growth over 8
cores. The results revealed that even if work cost grows
linearly with scaling, waiting cost shows the unstable, non-
deterministic growth that may depend on the internal features
of application. However, the poor scalability is clear: the 32
core execution spends more time waiting in MPI_WAITALL
than in the 2-core execution.

By looking up the call chain to see how high-level
modules caused the program to incur scalability losses in
MPI_WAITALL, we discover in Figure 5(c) that from 4
cores on, the majority of waiting losses comes from the use
of module mpi. More importantly, it grows sharply from 8
cores to 32 cores. Comparing with the module mpi, stable
growth can also be seen in data processing module
barotropic and baroclinic over 8 cores.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0183

The trend reveals that the work of boundary calculation
and mpi communication increases significantly for the
scaling arise in parallel applications which bring fine-grained
data segmentation and more boundary handling and
communication work.

From the analysis above, we can focus the most efficient
scaling of POP on 8 cores. Since at that scaling, the program
performs better on the characteristic of the unstable, non-
deterministic waiting losses, we can give a scaling
suggestion considering the effective use of resources and
program execution time.

It’ should be noted that we obtain this result without
measuring the entire execution of program which may be
time-consuming. We make this analysis and prediction by
the short-term sampling measurements. The actual running
time of the program, as shown in Figure 5(d), proves our
prediction. The case study demonstrates several facts. Some
program scaling problems only show up beyond certain
scales and depend on the features of program. Furthermore,
the performance may be non-deterministic, and thus difficult
to analysis from source code, so that short-term runtime
sampling often play a key role in this case.

B. Measurement Speed

Our performance tool is suitable to analyze the execution
of parallel programs consisted of countless low-level loops
and iterations. The module cost ratios of cpu time are
measured and estimated in limited samples. Although the
final result after the entire execution is more accurate, an
approximated analysis is provided in short-term samples.
Apparently users need to make a compromise between
accuracy and time consumption. However, our tool does not
need too many samples. Figure 8 depicts the execution
measurement of sampling in the time interval of 1000 ms,

and the estimated results is almost available after 300
samples.

IV. RELATED WORK

Our work focuses on performance bottleneck diagnosed
in complex, coupled parallel Earth system models. Although
not designed for characteristics of climate applications, many
tools have been developed for performance analysis of
parallel computing platforms, with varying levels of

perspective. VAMPIR [4] is a commercial post-mortem trace
visualization tool. It uses profiling extensions to MPI and
permits analysis of message events during parallel execution,
helping to identify bottlenecks and inconsistent run time
behavior. Performance tools such as Tau [5, 6], VTune [17]
use source code instrumentation to insert special profiling
code into the source program before compilation. Paradyn [7]
is unique among performance analysis tools by using
dynamic instrumentation to perform an online performance
bottleneck search. Nearly all other tools to identify the root
causes of load imbalance use instrumentation-based tracing.
The basic disadvantages of these approaches are that
instrumentation-based measurement faces an inelastic
tension between accuracy and precision. HPCTOOLKIT [3,
14] uses statistical sampling to measure performance, which
avoids the systematic overhead of measurement. But its post-
mortem profiling and tracing is not fit to handle with the
longtime execution and coupled structure of climate
applications.

There are several existing techniques that also face the
same challenges with respect to enhancing the practicality to
Earth scientists who determine the final parameters of
coupled programs which largely impact the performance.
Performance tools typically attribute performance metrics to
calling context. Two widely-used tools that collect call graph
profiles are gprof [18] and Intel's VTune [17]. Call path
profiling needs fully understand of performance aspects and
module codes, but physics experts are difficult to handle with
the low-level content of applications wrote by programmers.

V. CONCLUSIONS

We have presented the design and implementation of a
performance monitor tool oriented to analyze the parallel
computing resource consumption in Earth system models.
This tool addresses the issue of how to help climate scientists
quickly analyze and diagnose the performance bottlenecks
for climate applications feature long-term running.
Specifically, we handle the result from the perspective of
climate experts who treat the application as coupled physics
models. Our tool measures the computing resource
consumption of each function (as call path) and attributes the
cost to the coupling modules excluding the waiting losses.

With the tool, we have presented the case study of a real
world ocean model POP and demonstrated that how we
pinpoint the bottleneck of module which affects the scaling
of the entire application. Besides, we also propose advices
about scaling parameter. Even more importantly, the
experiments of complete executions have proved our
prediction made by short-term sampling measurements.

ACKNOWLEDGMENT

This work was supported by the National High
Technology Research and Development Program of China
(863 Program No. 2010AA012404). We would like to thank
the support of Dr. Li Qingquan from National Climate
Center and Dr. Wang Lanning from Earth System Simulation
Lab of Beijing Normal University.

REFERENCES

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0184

[1] C. Hill, C. DeLuca, V. Balaji, M. Suarez, and A. Da Silva, “The
architecture of the Earth System Modeling Framework,” Computing
in Science and Engineering, 6(1), pp. 18–28, 2004.

[2] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, “Stack trace analysis for large scale debugging,”
Parallel and Distributed Processing Symposium 2007(IPDPS 2007),
IEEE International, Madison, pp. 1–10, 2007.

[3] N. R. Tallent, J. M. Mellor-Crummey, M. Franco, R. Landrum, and L.
Adhianto, “Scalable fine-grained call path tracing,” Proceedings of
the international conference on Supercomputing, ICS '11, ACM, New
York, USA, pp. 63-74, 2011

[4] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K.
Solchenbach, “VAMPIR: Visualization and analysis of MPI
resources,” Supercomputer, 12(1):69-80, 1996.

[5] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” International Journal of High Performance Computing
Applications, 20(2):287–311, 2006.

[6] A. D. Malony, S. Shende, A. Morris, S. Biersdor, W. Spear, K. Huck,
and A. Nataraj, “Evolution of a parallel performance system,” Tools
for High Performance Computing, Springer, Berlin Heidelberg, pp.
169–190, 2008.

[7] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R.
B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
Paradyn parallel performance measurement tool,” Computer, IEEE
Computer Society, 28(11):37–46, 1995.

[8] N. R. Tallent and J. Mellor-Crummey, “Effective performance
measurement and analysis of multithreaded applications,” Technical
report, Rice University, August 2008.

[9] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan, and
M. Krentel, “Diagnosing performance bottlenecks in emerging
petascale applications”, In Proceedings of the Conference on High
Performance Computing Networking, ACM, New York, USA, pp. 1–
11, 2009.

[10] Earth System Modeling Framework,
http://www.earthsystemmodeling.org/, 2011

[11] P. H. Worley, A. P. Craig, J. M. Dennis, A. A. Mirin, M. A. Taylor,
and M. Vertenstein, “Performance of the Community Earth System
Model,” In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '11),
ACM, Seatle, WA, USA, pp. 1-11, 2011.

[12] M. Blackmon, B. Boville, F. Bryan, P. Gent, J. Kiehl, G. Bonan, et al.,
“The Community Climate System Model,” Bulletin of the American
Meteorological Society, American Meteorological Society, Boston,
MA, 82(11): 2357–2376, 2001.

[13] V. Balaji, FMS: The GFDL Flexible Modelling System.
http://www.gfdl.noaa.gov/fms, 2004.

[14] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
identification of load imbalance in parallel executions using call path
profiles,” In Proceedings of 2010 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '10),
ACM, New Orleans, LA, pp. 1-11, 2010.

[15] R. L. Henderson, “Job scheduling under the portable batch system”.
In Job Scheduling Strategies for Parallel Processing, Springer-Verlag,
pp. 279–294, 1995.

[16] A.B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” In Job Scheduling Strategies for
Parallel Processing, SpringerVerlag, pp. 44-60, 2003.

[17] Intel Corporation. Intel VTune performance analyzer.
http://www.intel.com/software/products/vtune.

[18] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call
graph execution profiler,” In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction (SIGPLAN ’82), ACM Press,
New York, NY, USA, pp. 120–126, 1982.

.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0185

