A Note on q-Bernoulli Numbers and Polynomials

A S HEGAZI ${ }^{a}$ and MMANSOUR ${ }^{b}$
Mansoura University, Mansoura, 35516, Egypt
${ }^{a}$ hegazi@mans.edu.eg,
${ }^{b}$ mansour@mans.edu.eg

Received May 17, 2005; Accepted in Revised Form August 15, 2005

Abstract

In this paper, we define a new q-analogy of the Bernoulli polynomials and the Bernoulli numbers and we deduced some important relations of them. Also, we deduced a q-analogy of the Euler-Maclaurin formulas. Finally, we present a relation between the q-gamma function and the q-Bernoulli polynomials.

1 -Notations

Let $q \in(0,1)$ and define the q-shifted factorials by
$(a, q)_{0}=1$,
$\left(a_{1}, \ldots, a_{r} ; q\right)_{k}=\prod_{i=1}^{r} \prod_{j=o}^{k-1}\left(1-a_{i} q^{j}\right), \quad k=0,1,2, \ldots$,
$(a ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)$.
The classical exponential function e^{z} has two different natural q-extension [10] one of them denoted by $e_{q}(z)$ and given by

$$
e_{q}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{(q ; q)_{k}}=\frac{1}{(z ; q)_{\infty}}
$$

where $z \in \mathbb{C},|z|<1$ and $0<q<1$. The function $e_{q}(z)$ can be considered as formal power series in the formal variable z and satisfies that $\lim _{q \rightarrow 1} e_{q}((1-q) z)=e^{z}$. For the q-commuting variables x and y such that $x y=q y x$ [11],

$$
e_{q}(x+y)=e_{q}(y) e_{q}(x)
$$

The q-difference operator D_{q} is defined by

$$
D_{q} f(x)= \begin{cases}\frac{f(x)-f(q x)}{x(1-q)}, & x \neq 0 \\ \frac{d f(0)}{d x}, & x=0\end{cases}
$$

where

$$
\lim _{q \rightarrow 1} D_{q} f(x)=\frac{d f(x)}{d x}
$$

Thomae [1869-1870] defined the q-integral on the interval [0,1] [4]-[5] by

$$
\int_{0}^{1} f(t) d_{q} t=(1-q) \sum_{n=0}^{\infty} f\left(q^{n}\right) q^{n} .
$$

Jackson [1910] extended this to the interval $[a, b][4]-[5]$ via

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

where

$$
\int_{0}^{a} f(t) d_{q} t=a(1-q) \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n} .
$$

The q-analogue of n ! is defined by

$$
[n]_{q}!=\left\{\begin{array}{cl}
1, & \text { if } n=0 \\
{[n]_{q}[n-1]_{q} \ldots[1]_{q},} & \text { if } n=1,2, \ldots
\end{array}\right.
$$

where $[n]_{q}$ is the quantum number and is given by

$$
[n]_{q}=\frac{1-q^{n}}{1-q} .
$$

The q-binomial coefficient $\binom{n}{k}_{q}$ is defined by

$$
\binom{n}{k}_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \quad k=0,1, \ldots, n .
$$

$2 q$-Bernoulli polynomials

The classical Bernoulli polynomials $B_{n}(x)$ are defined by the generating function

$$
\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} z^{n}=\frac{z}{e^{z}-1} e^{z x} .
$$

The Bernoulli numbers are defined through the relation $B_{n}=B_{n}(0)$.
The q-Bernoulli polynomials $B_{n}(x, h \mid q)$ [3]- [8] are defined by q-generating function

$$
e^{\frac{t}{1-q}} \sum_{j=0}^{\infty} \frac{j+h}{[j+h]_{q}} q^{j x}(-1)^{j} \frac{1}{(1-q)^{j}} \frac{t}{j}_{j!}^{j}=\sum_{n=0}^{\infty} \frac{B_{n}(x, h \mid q)}{n!} t^{n} \quad h \in \mathbb{Z}, x \in \mathbb{C} .
$$

Note that

$$
\lim _{q \rightarrow 1} B_{n}(x, h \mid q)=B_{n}(x) .
$$

The q-Bernoulli numbers are defined through the relation

$$
B_{n}(0, h \mid q)=B_{n}(h \mid q) .
$$

In this paper we suggest a new approach to study the q-Bernoulli polynomials. Let $\widehat{B}(t)$ be the generating function of the classical Bernoulli numbers [12]

$$
\widehat{B}(t)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}=\frac{z}{e^{z}-1} .
$$

Then we get

$$
\widehat{B}\left(\frac{\partial}{\partial x}\right) x^{k}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!}\left(\frac{\partial}{\partial x}\right)^{n} x^{k}=\sum_{n=0}^{k}\binom{k}{n} B_{n} x^{k-n} .
$$

Also, on exponent

$$
\widehat{B}\left(\frac{\partial}{\partial x}\right) e^{t x}=\widehat{B}(t) e^{t x}=B(x ; t)
$$

Now we will define a q-analogy of the generating function $\widehat{B}(t)$ as

$$
\widehat{B}_{q}(t)=\sum_{n=0}^{\infty} \frac{\mathbf{b}_{n}(q)}{[n]_{q}!} t^{n},
$$

where $\mathbf{b}_{n}(q)$ is a q-analogy of the Bernoulli numbers. By using the q-difference operator D_{q} we get

$$
\begin{aligned}
\widehat{B}_{q}\left(D_{q}\right) x^{k} & =\sum_{n=0}^{\infty} \frac{\mathbf{b}_{n}(q)}{[n]_{q}!} D_{q}^{n} x^{k} \\
& =\sum_{n=0}^{k} \frac{\mathbf{b}_{n}(q)}{[n]_{q}!} \frac{[k]_{q}!}{[k-n]_{q}!} x^{k-n} \\
& \left.=\sum_{n=0}^{k}{ }_{n}^{k}\right)_{q} \mathbf{b}_{n}(q) x^{k-n} .
\end{aligned}
$$

This procedure will suggest the following q-analogy of Bernoulli polynomials

$$
\mathcal{B}_{k}(x, q)=\sum_{n=0}^{k}\binom{k}{n}_{q} \mathbf{b}_{n}(q) x^{k-n} .
$$

Also,

$$
\begin{aligned}
\widehat{B}_{q}\left(D_{q}\right) e_{q}(x t) & =\sum_{n=0}^{\infty} \frac{\mathbf{b}_{n}(q)}{[n]_{q}!} D_{q}^{n}\left(\sum_{k=0}^{\infty} \frac{x^{k}}{(q, q)_{k}} t^{k}\right) \\
& =\sum_{k=0}^{\infty} \frac{t^{k}}{(q, q)_{k}} \sum_{n=0}^{\infty} \frac{\mathbf{b}_{n}(q)}{[n]_{q}!} D_{q}^{n} x^{k} \\
& =\sum_{k=0}^{\infty} \frac{t^{k}}{(q, q)_{k}} \mathcal{B}_{k}(x, q)=\mathcal{B}(x, t, q) .
\end{aligned}
$$

From this point of view we can define the q-Bernoulli polynomials.

Definition 1. The q-Bernoulli polynomials $\mathcal{B}_{n}(x, q)$ are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{B}_{n}(x, q) \frac{z^{n}}{(q ; q)_{n}}=\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z x), \tag{2.1}
\end{equation*}
$$

where $\lim _{q \rightarrow 1} \mathcal{B}_{n}(x, q)=B_{n}(x), B_{n}(x)$ are the ordinary Bernoulli polynomials.

Proposition 1.

$$
\begin{equation*}
D_{q} \mathcal{B}_{n}(x, q)=[n]_{q} \mathcal{B}_{n-1}(x, q) . \tag{2.2}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{n=1}^{\infty} D_{q} \mathcal{B}_{n}(x, q) \frac{z^{n}}{(q ; q)_{n}} & =\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} \frac{z}{1-q} e_{q}(z x) \\
& =\frac{z}{1-q} \sum_{n=0}^{\infty} \mathcal{B}_{n}(x, q) \frac{z^{n}}{(q ; q)_{n}} \\
& =\frac{1}{1-q} \sum_{n=1}^{\infty} \mathcal{B}_{n-1}(x, q) \frac{z^{n}}{(q ; q)_{n-1}} \\
& =\sum_{n=1}^{\infty}[n]_{q} \mathcal{B}_{n-1}(x, q) \frac{z^{n}}{(q ; q)_{n}} .
\end{aligned}
$$

Proposition 2. For q-commuting variables x and y such that $x y=q y x$, we have

$$
\begin{equation*}
\mathcal{B}_{n}(x+y, q)=\sum_{i=0}^{n}\binom{n}{i}_{q} y^{n-i} \mathcal{B}_{i}(x, q) . \tag{2.3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathcal{B}_{n}(x+y, q) \frac{z^{n}}{(q ; q)_{n}} & =\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z(x+y)) \\
& =\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z y) e_{q}(z x) \\
& =e_{q}(z y)\left(\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)} e_{q}(z x)\right) \\
& =e_{q}(z y) \sum_{n=0}^{\infty} \mathcal{B}_{n}(x, q) \frac{z^{n}}{(q ; q)_{n}} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{i=0}^{n}\left({ }_{i}^{n}\right)_{q} y^{n-i} \mathcal{B}_{i}(x, q) \frac{z^{n}}{(q ; q)_{n}} & =\sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{y^{n-i} \mathcal{B}_{i}(x, q)}{(q, q)_{i}(q, q)_{n-i}} z^{n} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n} \frac{(z y)^{n-i}}{(q, q)_{n-i}} \frac{\mathcal{B}_{i}(x, q)}{(q, q)_{i}} z^{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \frac{(z y)^{l}}{(q, q)_{l}} \frac{\mathcal{B}_{i}(x, q)}{(q, q)_{i}} z^{i} \\
& =e_{q}(z y) \sum_{n=0}^{\infty} \mathcal{B}_{n}(x, q) \frac{z^{n}}{(q ; q)_{n}}
\end{aligned}
$$

as desired
In equation (2.3), if we take the limit as $q \longrightarrow 1$. Then we get

$$
B_{n}(x+y)=\sum_{i=0}^{n}\binom{n}{i} y^{n-i} B_{i}(x),
$$

where $B_{n}(x)$ are the ordinary Bernoulli polynomials. And this relation satisfied for the ordinary Bernoulli polynomials [1].

$3 q$-Bernoulli numbers

Definition 2. For $n \geq 0, \mathbf{b}_{n}(q)=\mathcal{B}_{n}(0, q)$ are called q-Bernoulli numbers.

Lemma 1.

$$
\begin{equation*}
\mathbf{b}_{n}(q)=\frac{b_{n}}{n!} \frac{(q ; q)_{n}}{(1-q)^{n}}, \tag{3.1}
\end{equation*}
$$

where $\lim _{q \longrightarrow 1} \mathbf{b}_{n}(q)=b_{n}, b_{n}$ are the ordinary Bernoulli numbers.
Proof. Putting $x=0$ in equation (2.1), we get

$$
\sum_{n=0}^{\infty} \mathbf{b}_{n}(q) \frac{z^{n}}{(q ; q)_{n}}=\frac{z}{(1-q)\left(e^{\frac{z}{1-q}}-1\right)}
$$

and replace z by $(1-q) z$, then

$$
\sum_{n=0}^{\infty} \mathbf{b}_{n}(q) \frac{((1-q) z)^{n}}{(q ; q)_{n}}=\frac{z}{e^{z}-1}
$$

But the ordinary Bernoulli numbers b_{n} satisfy

$$
\sum_{n=0}^{\infty} b_{n} \frac{z^{n}}{n!}=\frac{z}{e^{z}-1}
$$

Then

$$
\mathbf{b}_{n}(q)=\frac{b_{n}}{n!} \frac{(q ; q)_{n}}{(1-q)^{n}} .
$$

Also,

$$
\begin{aligned}
\lim _{q \rightarrow 1} \mathbf{b}_{n}(q) & =\lim _{q \longrightarrow 1} \frac{b_{n}}{n!} \frac{(q ; q)_{n}}{(1-q)^{n}} \\
& =\frac{b_{n}}{n!}(1)_{n}=b_{n},
\end{aligned}
$$

where $(a)_{n}$ is the Pochhammer-symbol.

The knowledge of the Bernoulli numbers and the lemma (3.1) allows us to determine the q-Bernoulli numbers. The first five of them are:

$$
\mathbf{b}_{0}(q)=1, \quad \mathbf{b}_{1}(q)=-\frac{1}{2}, \quad \mathbf{b}_{2}(q)=\frac{[2]_{q}}{12}, \quad \mathbf{b}_{3}(q)=0, \quad \mathbf{b}_{4}(q)=-\frac{[2]_{q}[3]_{q}[4]_{q}}{720} .
$$

By using the properties of the ordinary Bernoulli numbers $b_{n}[6]$, we can prove that
$1-\mathbf{b}_{n}(q)=0 \forall n$ odd and $n \geq 3$,
$2-\sum_{j=0}^{n-1}{ }^{n} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathbf{b}_{j}(q)=0$,
$3-\sum_{j=1}^{n-1}(-1)^{j}{ }^{n} P_{j} \frac{(1-q)^{j+1}}{(q ; q)_{j+1}} \mathbf{b}_{j+1}(q)=\frac{1-n}{2(1+n)}$.

Proposition 3. For any $n \geq 1$

$$
\begin{equation*}
\sum_{j=0}^{n-1}{ }^{n} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathcal{B}_{j}(x, q)=\frac{n!}{[n-1]_{q}!} x^{n-1} . \tag{3.2}
\end{equation*}
$$

Proof. The case where $n=1$ is obvious. If we assume that the relation is true for some $k \geq 1$, we have

$$
\begin{aligned}
D_{q} \sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathcal{B}_{j}(x, q) & =\sum_{j=1}^{k}{ }^{k+1} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}}[j]_{q} \mathcal{B}_{j-1}(x, q) \\
& =(k+1) \sum_{j=0}^{k-1}{ }^{k} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathcal{B}_{j}(x, q) \\
& =(k+1) \frac{k!}{[k-1]]_{q}} x^{k-1}=\frac{(k+1)!}{[k-1]!q} x^{k-1} \\
& =D_{q}\left(\frac{(k+1)!}{[k]!_{q}} x^{k}\right) .
\end{aligned}
$$

Then

$$
\sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathcal{B}_{j}(x, q)=\frac{(k+1)!}{[k]_{q}!} x^{k}+c .
$$

Put $x=0$, then

$$
\sum_{j=0}^{k}{ }^{k+1} P_{j} \frac{(1-q)^{j}}{(q ; q)_{j}} \mathbf{b}_{j}(q)=c .
$$

Using the second property of $\mathbf{b}_{j}(q)$, we get $c=0$. Hence, by induction, relation is true for any positive integer.

Proposition 4.

$$
\begin{equation*}
\mathcal{B}_{n}(x, q)=\sum_{i=0}^{n}\binom{n}{i}_{q} \mathbf{b}_{i}(q) x^{n-i} . \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
F_{n}(x, q)=\sum_{i=0}^{n}\binom{n}{i}_{q} \mathbf{b}_{i}(q) x^{n-i} .
$$

It suffices to show that (i) $F_{n}(0, q)=\mathbf{b}_{n}(q)$ for $n \geq 0$ and (ii) $D_{q} F_{n}(x, q)=[n]_{q} F_{n-1}(x, q)$ for any $n \geq 1$, since these two properties uniquely characterize $\mathcal{B}_{n}(x, q)$. The first property is obvious. As for the second property,

$$
\begin{aligned}
D_{q} F_{n}(x, q) & =\frac{1}{(1-q) x} \sum_{i=0}^{n-1}\binom{n}{i}_{q} \mathbf{b}_{i}(q) x^{n-i}\left(1-q^{n-i}\right) \\
& =\frac{1}{(1-q) x} \sum_{i=0}^{n-1} \frac{(q ; q)_{n}}{(q ; q)_{i}(q ; q)_{n-i-1}} \mathbf{b}_{i}(q) x^{n-i} \\
& =\frac{q^{n}-1}{(q-1)} \sum_{i=0}^{n-1} \frac{(q ; q)_{n-1}}{(q ; q)_{i}(q ; q)_{n-i-1}} \mathbf{b}_{i}(q) x^{n-i-1} \\
& =[n]_{q} \sum_{i=0}^{n-1}\left({ }^{n-1}{ }_{i}\right)_{q} \mathbf{b}_{i}(q) x^{n-i-1} \\
& =[n]_{q} F_{n-1}(x ; q),
\end{aligned}
$$

as desired.
The knowledge of q-Bernoulli numbers allow us to determine the q-Bernoulli polynomials. The five of them are listed below:

$$
\begin{aligned}
& \mathcal{B}_{0}(x, q)=1, \\
& \mathcal{B}_{1}(x, q)=x-\frac{1}{2!}, \\
& \mathcal{B}_{2}(x, q)=x^{2}-\frac{[2]_{q}}{2!} x+\frac{[2]_{q}}{2(3!)}, \\
& \mathcal{B}_{3}(x, q)=x^{3}-\frac{[3]_{q}}{2!} x^{2}+\frac{[2]_{q}[3]_{q}}{2(3!)} x, \\
& \mathcal{B}_{4}(x, q)=x^{4}-\frac{[4]_{q}}{2!} x^{3}+\frac{[3]_{q}[4]_{q}}{2(3!)} x^{2}+\frac{[2]_{q}[3]_{q}[4]_{q}}{30(4!)} .
\end{aligned}
$$

Lemma 2. The q-Bernoulli polynomials have the following symmetry property

$$
(-1)^{n} \mathcal{B}_{n}(-x, q)=\mathcal{B}_{n}(x, q)+[n]_{q} x^{n-1}, \quad \forall n \geq 1
$$

Proof. The case where $n=1$ is obvious. If we assume that relation is true for some $k \geq 1$, we get

$$
\begin{aligned}
D_{q}\left((-1)^{k+1} \mathcal{B}_{k+1}(-x, q)\right) & =(-1)^{k}[k+1]_{q} \mathcal{B}_{k}(-x, q) \\
& =[k+1]_{q} \mathcal{B}_{k}(x, q)+[k+1]_{q}[k]_{q} x^{k-1} \\
& =D_{q}\left(\mathcal{B}_{k+1}(x, q)+[k+1]_{q} x^{k}\right),
\end{aligned}
$$

then

$$
(-1)^{k+1} \mathcal{B}_{k+1}(-x, q)=\mathcal{B}_{k+1}(x, q)+[k+1]_{q} x^{k}+c .
$$

Put $x=0$, then

$$
\left((-1)^{k+1}-1\right) \mathbf{b}_{k+1}(q)=c
$$

but $\left((-1)^{k+1}-1\right)=0$ if k is an odd number and $\mathbf{b}_{k+1}(q)=0$ if k is an even number. Then $c=0$ and hence, by induction, relation is true $\forall n \geq 1$.

Lemma 3.

$$
\begin{equation*}
\int_{a}^{x} \mathcal{B}_{n}(t, q) d_{q} t=\frac{\mathcal{B}_{n+1}(x, q)-\mathcal{B}_{n+1}(a, q)}{[n+1]_{q}} . \tag{3.4}
\end{equation*}
$$

Proof. By using $D_{q} \mathcal{B}_{n}(t, q)=[n]_{q} \mathcal{B}_{n-1}(t, q)$, then we get

$$
\begin{aligned}
\int_{a}^{x} \mathcal{B}_{n}(t, q) d_{q} t= & \frac{1}{[n+1]_{q}} \quad \int_{a}^{x} D_{q} \mathcal{B}_{n+1}(t, q) d_{q} t \\
& =\left.\quad \frac{1}{[n+1]_{q}} \mathcal{B}_{n+1}(t, q)\right|_{a} ^{x} \\
& =\frac{\mathcal{B}_{n+1}(x, q)-\mathcal{B}_{n+1}(a, q)}{[n+1]_{q}}
\end{aligned}
$$

4 A q-Euler-Maclaurin formulas

Let the function $P(x)=\mathcal{B}_{1}(x-[x], q)$, in which $[x]$ means the greatest integer $\leq x$. The function $P(x)$ is periodic $P(x+1)=P(x)$. Also,

$$
\int_{0}^{1} P(x) d_{q} x=\int_{t}^{t+1} P(x) d_{q} x=0 \quad \forall t \geq 0
$$

We employed $P(x)$ in obtaining a q-analogy of the Euler-Maclaurin formulas [13].

Theorem 1.

$$
\sum_{k=o}^{n} f(k)=\frac{f(n)+f(o)}{2}+\int_{o}^{n} f(q x) d_{q} x+\int_{o}^{n} P(x) D_{q} f(x) d_{q} x
$$

where $f(x)$ is differentiable.
Proof. First write

$$
\int_{o}^{n} P(x) D_{q} f(x) d_{q} x=\sum_{k=1}^{n} \int_{k-1}^{k} P(x) D_{q} f(x) d_{q} x
$$

Now

$$
\int_{k-1}^{k} P(x) D_{q} f(x) d_{q} x=\int_{k-1}^{k}(x-k+1 / 2) D_{q} f(x) d_{q} x
$$

and we integrate by parts to obtain

$$
\int_{k-1}^{k} P(x) D_{q} f(x) d_{q} x=\left.(x-k+1 / 2) f(x)\right|_{k-1} ^{k}-\int_{k-1}^{k} f(q x) D_{q} P(x) d_{q} x
$$

then

$$
\int_{k-1}^{k} P(x) D_{q} f(x) d_{q} x=\frac{f(k)+f(k-1)}{2}-\int_{k-1}^{k} f(q x) d_{q} x
$$

hence

$$
\int_{o}^{n} P(x) D_{q} f(x) d_{q} x=\sum_{k=o}^{n} f(k)-\frac{f(n)+f(o)}{2}-\int_{o}^{n} f(q x) d_{q} x
$$

which is a simply rearrangement of the result in the theorem.
Also, by induction we can get the following lemma
Lemma 4. Let $f(x)$ be a differentiable function. Then $\forall r=2,3,4, \ldots$

$$
\begin{aligned}
\sum_{k=m}^{n} f\left(q^{r-1} k\right) & =\frac{f\left(q^{r-1} n\right)+f\left(q^{r-1} m\right)}{2}+\sum_{i=o}^{r-2} \frac{(-1)^{i+r}}{[r-i]_{q}!} \mathbf{b}_{r-i}(q)\left[f\left(q^{r-i-1} n\right)-f\left(q^{r-i-1} m\right)\right] \\
& +\int_{m}^{n} f\left(q^{r} x\right) d_{q} x+\frac{(-1)^{r+1}}{[r]_{q}!} \int_{m}^{n} \mathcal{B}_{r}(x-[x], q) D_{q}^{r} f(x) d_{q} x
\end{aligned}
$$

5 A relation between $\mathcal{B}_{n}(x, q)$ and $\Gamma_{q}(x)$

The q-gamma function [5]-[2]

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x} \quad 0<q<1
$$

was introduced by Thomae [1869] and later by Jackson [1904].
By using the definition of e_{q} we can see that

$$
\Gamma_{q}(x+1)=(q ; q)_{\infty}(1-q)^{-x} e_{q}\left(q^{x+1}\right)
$$

Also, if we replace x by q^{x} and z by q in equation (2.1), then we have

$$
\sum_{n=0}^{\infty} \mathcal{B}_{n}\left(q^{x}, q\right) \frac{q^{n}}{(q ; q)_{n}}=\frac{q /(1-q)}{e^{q /(1-q)}-1} e_{q}\left(q^{x+1}\right)
$$

Then we get the following relation between $\mathcal{B}_{n}(x, q)$ and $\Gamma_{q}(x)$

$$
\Gamma_{q}(x+1)=\left(e^{q /(1-q)}-1\right)(q ; q)_{\infty}(1-q)^{1-x} \sum_{n=0}^{\infty} \mathcal{B}_{n}\left(q^{x}, q\right) \frac{q^{n-1}}{(q ; q)_{n}}
$$

and then q-gamma function is a generating function of the q-Bernoulli polynomials.

References

[1] Andrews G E, Askey R and Roy R, Special Functions, Cambridge University Press, Cambridge (1999).
[2] Askey R, A Brief Introduction to the World of q, Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Vol. 9, (1996).
[3] Carlitz L, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[4] Gasper G, Lecture notes for an introductory minicourse on q-series, arXiv:math.CA/9509223.
[5] Gasper G and Rahman M, Basic Hypergeometric Series, Cambridge University Press (1990).
[6] Kac V and Cheung P, Quantum Calculus, Springer-Verlag, New-York (2002).
[7] Kim T, Non-Arichimedean q-integrals associated with multipe Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91-98.
[8] Kim T and Rim S H, Generalized Carlitz's q-Bernoulli Numbers in the p-adic number field, Adv. Stud. Contemp. Math. 2 (2000), 9-19.
[9] Kim T, Jang L C , Rim S H and Pak H K, On the twisted q-Zeta functions and q-Bernoulli polynomials, Far East J. Applied Math. 13 (2003), 13-21.
[10] Koekoek R and Swarttouw R F, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report 94-05,Technical University Delft (1994) available from http://aw.twi.tudelft.nl/~ koekoek/
[11] Koornwinder T H, Special Functions and q-Commuting Variables, Fields Institute Communications 14 (1997), 131-166.
[12] Kupershmidt B A, Reflection Symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
[13] Rainville E D, Special functions, The Macmillan company, (1965).
[14] Richardson C H, An introduction to the Calculus of finite differences, D. Van Nostrand Company, (1963).

