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Abstract—Particle swarm optimization (PSO) guides its search 
direction by a linear learning strategy in which each particle 
updates its velocity through a linear combination among its 
present status, historical best experience and the swarm best 
experience. Such a velocity update strategy is easy to achieve, 
but it is experimentally inefficient when searching in a complex 
space. The reason is that the current velocity direction of each 
particle definitely has a great potential on optimal value, 
however, traditional velocity accumulation search strategy has 
a great restriction on such a velocity potentiality. Therefore, a 
new searching mechanism based on One-dimensional Search 
(OdS) technology is presented in this paper, and a novel PSO 
variant (OPSO) is also proposed so as to let the swarm 
effectively search along the first several principal velocity 
directions by OdS strategy. OPSO can inherit most of the 
velocity information of all the particles to guide them to the 
most promising direction, which has a great difference in 
learning mechanism with usual PSOs. Experimental results 
indicate that OPSO has competitive performance when 
comparing with the well-known CMA-ES and CLPSO. 

Keywords- Particle swarm optimization; principal component 
analysis; one-dimensional search; velocity information 

I.  INTRODUCTION  

Nature inspired optimization algorithms, such as genetic 
algorithm (GA) [1], particle swarm optimization algorithm 
(PSO) [2], differential evolution (DE) [3], ant colony 
optimization algorithm (ACO) [4] and artificial bee colony 
algorithm (ABC) [5], have attracted widely researchers to 
looking into nature for years—both as model and as 
metaphor—for inspiration to tackle complex computational 
problems. A keen observation of the underlying relation 
between optimization and biological evolution led to the 
development of an important paradigm of computational 
intelligence—the evolutionary computing techniques for 
performing very complex search and optimization. 

As a versatile and efficient new technique based on 
swarm intelligence algorithm for global numerical 
optimization, PSO has attracted increasing attentions and 
has been widely used in different application fields. The 
outstanding feature of PSO is its learning mechanism which 
distinguishes it from other biological-inspired optimization 
techniques. In 1995, Kennedy and Eberhart [2] put forward 
this learning strategy by using a linear combination of these 
three terms and storing the learning experience in current 
position. Many improved learning strategies have been 
proposed since its emergence. Liang et al. [6] proposed a 

comprehensive learning strategy aiming to offer a better 
performance for multimodal functions. Wang et al. [7] 
employed a generalized opposition-based learning (GOBL) 
and Cauchy mutation to provide a faster convergence and 
help particles escape from local optima. Cho et al. [8] 
presented another enhanced particle swarm optimization 
using some deterministic samplings to generate new 
particles for finding multiple local optima in objective 
function surfaces. Nickabadi et al. [9] proposed a new 
adaptive inertia weight by using the success rate of the 
swarm as its feedback parameter to ascertain the particles’ 
situation in the search space. Zhan et al. [10] applied an 
orthogonal learning strategy to improve the performance of 
PSO algorithm (OLPSO). And Zhang et al. [15] put forward 
one of the most salient and active DE research topics by 
designing a new learning strategy that can utilize previous 
search information more efficiently  (JADE). 

It is well known that there are great potentials for 
particles to find optimal solution along the traditional 
velocity direction. However, all the learning experience 
collected from various learning strategies of all the PSO 
variants are scarcely aimed at enhancing such a learning 
potential until now. The reason may be that it will take 
plenty of time complexity for each particle to explore a 
better solution along its velocity direction. 

To overcome this difficulty, a statistical method of 
principal component analysis (PCA) [11], which can reduce 
the dimension of the handled multivariate data to some 
extent, is originally introduced to particle swarm 
optimization algorithm (denoted as OPSO) trying to exert 
such a velocity potential abundantly in this paper. PCA 
technique [11] can decompose the original sample data into 
all the principal component directions, which are orthogonal 
to each other. So, what we need to do is to guide some 
particles to explore along the first several principal 
directions of velocity information. This exploring operation 
is accomplished by the well-know One-dimensional Search 
(OdS) strategy and global best solution is cheese to explore. 

The rest of the paper is organized as follows. The 
framework of standard PSO, the statistical method of 
principal component analysis and the one-dimensional 
search strategy are introduced in Section 2. How PSO is 
combined with PCA and OdS strategy is proposed and 
analyzed in Section 3. In Section 4, experimental 
comparisons are conducted to verify the efficacy and 
efficiency of OPSO. Finally, conclusions and possible future 
research are given in Section 5. 
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II. BACKGROUND AND RELATED WORKS 

A. Problem Description 

Without loss of generality, in this work, we consider the 
following numerical optimization problem: 

Minimize:  
                                ( )=y f x x S∈，                                  (1) 

where DS R∈  is a compact set, ( )1 2, , ,
T

Dx x x x=   is decision 

variable, and D  is the dimensionality, i.e., the number of 
decision variables. Generally, for each variable jx , it 

satisfies a boundary constraint, such that: 
                               , 1, 2, ,j j jL x U j D≤ ≤ =                        (2) 

B. Standard Particle Swarm Optimization 

A standard PSO [2] is an optimization technique based on 
the cooperation and competition among individuals to 
complete searching the optimal solution in a d-dimensional 
hyperspace. There is a swarm of particles and each 
individual has a fitness value which is decided by the 
objective function. During the particles evolution, each 

particle has a velocity vector ( )1 2, , ,
T

i i i idV v v v=  and a position 

vector ( )1 2, ,
T

i i i idX x x x=   fly to the potential optimal position 

under the guidance and heuristic information, where i is a 
positive integer indexing the particle in the swarm and d is 
the dimension size of the searching hyperspace. Moreover, 
particle tracks two extremes to update itself. One is its 
personal historical best position vector iP  and the other is 

the best position found by the entire swarm, which is 
denoted as gP . The vector iV  and the position iX  are 

randomly initialized and updated by the follow formulas 
through the guidance of iP  and gP  

   ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21id id id id gd idv t v t c r p t x t c r p t x tω+ = + − + −       (3) 

                   ( ) ( ) ( )1id id idx t x t v t+ = +                                       (4) 

where ω  is the inertia weight, coefficients 1c  and 2c  are the 

cognitive and social weights, and then 1r , 2r  are two uniform 

random numbers within the range of [0, 1].  

C. One-dimensional Search Strategy 

For the real parameter optimization (1), during the 
iteration k, a straight line that cross point ( )kx  and down the 
direction ( )kd  is denoted as 

                        
( ) ( ){ }= = + ,- < <+k kL x x x dλ λ∞ ∞

                        
(5) 

Then, to solve the minimum value of problem ( )f x  along 

the direction of L  is transformed into the following unary 
function minimizing problem, 
                       ( ) ( ) ( )( )

0
min +k k

k f x d
λ

ϕ λ λ
≥

=                                 (6) 

If kλ  is the minimum value of above problem, then the 

minimum value of original problem ( )f x  at iteration k 

along direction L  can be denoted as 

                             ( ) ( ) ( )1 +k k k
kx x dλ+ =                                    (7) 

D. Pincipal Component Analysis Strategy 

Now we consider the s-variable linear transformations 
[11] as follows: 

               

1 1 11 1 21 2 1

2 2 12 1 22 2 2

1 1 2 2

,

,

.

s s

s s

s s s s ss s

Z a X a X a X a X

Z a X a X a X a X

Z a X a X a X a X

′= = + +
 ′= = + +


 ′= = + +







                        (8) 

where ia is the coefficient of the linear transformation. Here, 

the covariance matrix Σ  of the s variables is used. 
Then, the above linear transformation model can be 

simplified as follows: 
( ) 1, 2

( , ) , 1, 2

i i i

i j i j

Var Z a a i s

Cov Z Z a a i j s

′= =

′= =







，

，
            (9) 

The goal of PCA is to transform a set of correlated entire 
exemplar iX  into several minimally correlated exemplars iZ  
( 1,2 )i s=  . To characterize the amount of information that 
the principal component carries, its variance ( )iVar Z  is 

selected. Probability theory [12] tells us that ( )iVar Z  will 

approach to infinity if no restrictions on the coefficient ia  of 

the linear combination. This is accomplished by using an 
orthogonal restriction on ia , namely, 1i ia a′ =  ( 1, 2 )i s=  . 

When the first principal component reflects the entire 
exemplar infrequently, another principal component jZ  is 

used. However, iZ  and jZ ( )i j≠  may contain the same 

information about the entire exemplar, which is not what we 
want. Therefore, an additional constraint is used 
as ( , ) 0i j i jCov Z Z a a′= Σ =  , which makes the reflected information 

in the i-th principal component not appearing in the j-th one 
and vice versa. Then, the problem of solving the i-th 
principal component is transformed into a mathematical 
model as follow:  

( )max

1
. .

0

i

i i

i j

Var a X

a a
s t

a a

′

′ =
 ′Σ =

                                        (10) 

This is an extreme problem with two constraints, which 
can be solved by Lagrange multiplier method. To solve the 
first principal component 1Z , the first constraint is effective. 

Then we have 
( ) ( ) ( ) ( )1 1 1 1 1 1 1 11 1a Var a X a a a a a aϕ λ λ′ ′ ′ ′= − − = Σ − −       (11) 

It is obvious that 1 0a ≠


, then we have 0IλΣ − = .That is to 

say, in order to solve the first principal component 1Z , what 

we need to do is to solve the eigenvector of the covariance 
matrix of X . Then the objective function is changed into: 

                      ( )1 1 1 1 1 1 1Var a X a a a aλ λ′ ′ ′= Σ = =                       (13) 

which means that maximizing ( )1Var a X′ is equivalent to 

solve the eigenvector of the largest eigenvalue. The other 
principal component jZ  can similarly be obtained by 

solving the eigenvector corresponding to the j-th largest 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0215



eigenvalue. Furthermore, the second constraint condition in 
modal (10) will be satisfied automatically if both ia  and ja

 
are the different eigenvectors of covariance matrix of Σ . 

III. IMPROVED PSO WITH PCA AND ODS 

In this paper we will combine the principal component 
analysis technique and One-dimensional search strategy 
with particle swarm optimization (PSO). First, we describe 
the motivations of this paper. Then, how PCA and OdS 
strategy are cooperatively combined with PSO is illustrated. 

A. Motivation 

PSO relies on its learning strategy to guide its search 
direction. Traditionally, each particle utilizes its historical 
best experience and the swarm best experience through 
linear summation, and flies to the region in a random level 
based on such a linear summation. Obviously, the traditional 
velocity direction has an enormous potential for searching 
the optimal solution. Hence, designing learning strategies 
that can utilize this potential search direction more 
efficiently and abundantly has become one of the most 
salient and active research topics [10].  

To abundantly utilize the potential searching ability of the 
traditional velocity directions, a novel idea comes into mind 
that particles should have potential capabilities search 
everywhere along the promising searching directions found 
by principal component analysis technique. 

B. How they cooperate and benefit each other 

Obviously, above mind is a greedy and inefficiency 
search strategy if each particle search everywhere along the 
velocity direction. However, the appearance of PCA 
technology makes it possible in this paper. 

Multivariate statistical analysis indicate that PCA 
technology can linearly decompose the original multivariate 
data into its all principal component directions orthogonal to 
each other and keep the first several principal directions own 
almost all the information of the original data. Here, a 
sample about PCA technology is given to reveal its magical 
charm for PSO to search the optimal solution. 

Suppose that the originate points of each particle’s 
velocity are fixed on the coordinate origin, then we can gain 
its two principal components 1Z , 2Z  in the following graphics 
for a 2-dimension realistic problem in one iteration. 

 
Figure 1.  Example of PCA in 2-dimension space. 

The above graphics tell us the flying direction of the 
whole particles can be recapitulated into the first principal 
direction 1Z . That means that it only needs to guide one 
particle to explore along the first principal direction, instead 
of each particle exploring along its velocity direction. In this 
paper, we choose the global best particle to explore a better 
direction along the first several principal directions. Besides 
the present analysis, numerical experiments also illustrates 
that such an exploration is effective and feasible. 

C. Procedure of OPSO and Pseudo code 

• Initialize the position, velocity and parameters; 
• Initialize personal historical best value; 
• Define each particle’s best neighbor by a ring topology 

and goes into the following loop: 
• LOOP: Update particles’ positions and velocities based 

on equations (3) and (4);  
• Calculate the first several principal components of the 

swarm velocity based on cumulative contribution rate; 
• Search along the just found principal directions with 

one-dimensional searching strategy; 
• If even better global optimal solution is found, then 

preserve and update it;  
• Update personal historical and  neighbor best positions; 
• Check the position and velocity boundaries 
• If the termination criterion is satisfied, output the best 

solution. Otherwise, go to LOOP. 

IV. EXPERIMENTAL COMPARISON 

Besides the above theoretic analysis on OPSO, simulation 
experiments are presented and compared with other two 
well-known algorithms in this section to verify the 
performance of OPSO based on a set of 6 benchmark 
functions provided by CEC2005 on real parameter 
optimization [13]. Parameters are set to =0.725ω , and 1 2= =2.0c c . 

One comprehensive learning particle swarm optimization 
variant (CLPSO) [14] and a well-known evolution strategy 
algorithm (CMA-ES) [16] are used for comparison in this 
section. PSO has been arousing great research interests and 
has also been successfully applied in various areas since its 
emergence. CLPSO [14] enhances the population diversity 
by a novel learning strategy whereby all other particles’ 
historical best information is used to update a particle’s 
velocity, and it is also the prime compare objects of some 
excellent algorithms. The CMA-ES, which is the best 
optimization algorithm in CEC’05 special session on real 
parameter optimization, is also compared here to 
demonstrate the excellent performance of OPSO algorithm 
on real parameter optimization. They are the most classical 
and efficient population-based optimization algorithms. 
Experimental comparison is show in Table I and Figure 2. 

TABLE I.  NUMERICAL RESULTS 

 CLPSO CMA-ES OPSO 

 Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 0±0 5.79e-026±6.37e-027 2.19e-027±8.30e-027
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F2 856.04±188.32 1.60e-025±2.27e-026 4.32e-023±7.41e-023

F3 1.57e+07±4.11e+06 1.55e-021±1.99e-022 1.98e+06±4.20e+06 

F4 6918.87±1821.008 6.90e+04±1.19e+05 132.377±448.8841 

F5 3795.455±468.6579 1.31e-010±1.29e-011 7547.2044±2276.4874

F6 5.1425±5.2475 0.478±1.3222 17.5615±4.7577 

 
For a fair comparison among OPSO, CLPSO and CMA-

ES, the corresponding parameters are set as the 
corresponding references. The final solutions are collected 
over 25 independent runs and summarized in Table I and 
Figure 2, where “Mean Error”, “Std Dev” mean the average 
error comparing with real global best solution and the 
standard deviation of the 25 final results in 25 runs 
respectively. Observed from above table, it can be seen that 
OPSO competitively and complementarily performs as well 
as CMA-ES in terms of the solution accuracy and stability.  

V. CONCLUSION 

An improved PSO with PCA and OdS strategy is 
presented in this paper aiming at further refining the final 
solution of classic PSO algorithm and enhancing its 
adaptability in higher dimensions and hyper searching space. 
In this algorithm, the first six benchmark functions provided 
by CEC’05 and two well-known algorithms are used to 
compare the performance. Experimental results illustrate its 
great capacity and reliability on real optimization problem. 

Future research will be undertaken to elaborate the 
validity of the OdS strategy based on PCA technology, 
particularly when searching in a higher hyperspace.  

ACKNOWLEDGMENT 

This research is supported by National Natural Science 
Foundation of China (61105127). 

REFERENCES 
[1] J. Holland, “Adaptation in Natural and Artificial Systems”, MIT Press, 

Cambridge, MA, 1992. 

[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization”, in 
Proceedings of the 1995 IEEE International Conference on Neural 
Networks, vol. 4, 1942-1948, 1995. 

[3] S. Das, P. N. Suganthan, “Differential Evolution: A survey of the 
State-of-the-Art”.  IEEE Trans. Evol. Comput., 15(1):4-31, 2011. 

[4] P. Li, K. Song, E. Yang, “Quantum ant colony optimization with 
application,” International Conference on Natural Computation 
(ICNC), vol. 6, pp.2989-2993, 2010. 

[5] X. Y.Li, Z. C. Li and L. Q. Lin, “An artificial bee colony algorithm 
for multiobjective optimization”. International Conference on 
Intelligent Systems Design and Engineering Application,153-156, 
2012, 

[6] J.J. Liang, A.K. Qin, S. Baskar, “Comprehensive Learning Particle 
Swarm Optimizer for Global Optimization of Multimodal Functions”,  
IEEE Trans. Evol. Compu. 10(3): 281-295, 2006. 

[7] H. Wang, Z. J. Wu, Y. Liu, “Enhancing particle swarm optimization 
using generalized opposition-based learning,” Inform. Sci. 181(2011) 
4699-4714. 

[8] H. Cho, D. Kim, F. Olivera, S. D. Guikema, “Enhanced speciation in 
particle swarm optimization for multi-modal problems”. European 
Journal of Operational Research. 213(2011) 15-23. 

[9] A. Nickabadi, M. M. Ebadzadeh, R. Safabakhsh, “A novel paticle 
swarm optimization algorithm with adaptive inertia weight”, Applied 
Soft Computing. 11(2011) 3658-3670. 

[10] Z. H. Zhan, J. Zhang, Y. Li, Y. H. Shi, “Orthogonal learning particle 
swarm optimization”, IEEE Trans. Evolut. Comput. 15(2011)  832-
847. 

[11] H. X. Gao, Applied Multivariate Statistical Analysis, Peking 
University Press, 2005. 

[12] Y. X. Wang, H.X. Sun, Probability theory and stochastic processes, 
Beijing University of Posts and Telecommunications Press, 2003. 

[13] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A, 
Auger, and S. Tiwari, “Problem definitions and evaluation criteria for 
the CEC 2005 special session on real-parameter optimization,” 
Nanyang Technol. Univ., Singapore, 2005. 

[14] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, 
“Comprehensive learning particle swarm optimizer for global 
optimization of multimodal functions,” IEEE Trans. Evolut. Comput, 
vol. 10, no. 3, pp. 281-295, 2006. 

[15] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential 
evolution with optional external archive,” IEEE Trans. Evol. Comput, 
vol. 13, no. 5, pp. 945-958, 2009. 

[16] A. Auger and N. Hansen, “A restart CMA evolution strategy with 
increasing population size,” Proc. IEEE CEC, 2005, 1769-1776.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10-5

100

10
5

10
10

FES

Av
er

ag
e 

Fu
nc

tio
n 

Er
ro

r V
al

ue

Comparison of 3 algorithms for F1 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

FES

A
ve

ra
ge

 F
un

ct
io

n 
E

rro
r V

al
ue

Comparison of 3 algorithms for F2 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
-25

10
-20

10
-15

10-10

10
-5

10
0

10
5

10
10

10
15

FES

A
ve

ra
ge

 F
un

ct
io

n 
E

rro
r V

al
ue

Comparison of 3 algorithms for F3 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

 

 0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
2

10
3

10
4

10
5

10
6

10
7

FES

Av
er

ag
e 

Fu
nc

tio
n 

Er
ro

r V
al

ue

Comparison of 3 algorithms for F4 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
-10

10
-5

10
0

10
5

FES

Av
er

ag
e 

Fu
nc

tio
n 

Er
ro

r V
al

ue

Comparison of 3 algorithms for F5 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

FES

Av
er

ag
e 

Fu
nc

tio
n 

Er
ro

r V
al

ue

Comparison of 3 algorithms for F6 with 25 runs

 

 

CLPSO
CMA-ES
OPSO

 
Figure 2.  The evolution procedure of six CEC 2005 benchmark functions 
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