
JPEG2000 image compression method based on GPGPU

Wang Weiling
School of Science, Changchun Institute of Technology

Changchun, 130012, China
wang_weiling_yx@126.com

Abstract—In order to improve the compression speed of
JPEG2000, the JPEG2000 compression standard is analysised
and it concluded that the part data of the core algorithm that
is DWT in JPEG2000 are independent from each other, so it is
very suitable for parallel processing. CUDA (Compute Unified
Device Architecture) is a latest software and hardware
exploitation platform released by NVIDIA which is very
suitable for large-scale data parallel computing.Using CUDA
technology on general purpose graphic process unit(GPGPU)
could speed up DWT algorithm parallelly and the program is
optimized based on the characteristics of GPGPU storage
space. The obtained experimental results show the DWT
algorithm that is optimized by CUDA parallelly can improve
the computing speed.

Keywords-JPEG2000; DWT; GPGPU; parallel computing;
CUDA

I. INTRODUCTION

With the wide spread of multimedia technology in the
field of computer science, image compression technology
has become one of the key technologies in the field of
modern digital image transmission, processing and storage.
Image compression technology has been played an
important role in both mobile communication and network
transmission.JPEG2000 is a new still image compression
standard which proposed on the basis of JPEG. Compared
with the JPEG compression standard, JPEG2000 is
optimized not only in the compression performance, so that
the image data can be compressed with higher compression
ratio. But also in the advantage of supporting both lossy and
lossless compression. As Image pixels can be seen as two-
dimensional array, and calculation of the two-dimensional
array is equivalent to compute a large number of irrelevant
data[1], especially for the original bitmap with high
quality.It will take the traditional CPU a lot of time to
process because of its serial architecture. This can not fulfill
the real-time requirements of the image compression in

modern multimedia technology. However, with the release
of General Purpose graphics processors unit (GPGPU),
except the graphics processing architecture of the traditional
GPU, GPGPU has also increased the parallel computing
architecture which make it possible for computing-intensive
processing and high-strength parallel accelerated computing.
NVIDIA Corporation provided a new hardware and software
development platform named CUDA (Compute Unified
Device Architecture)for its GPGPU. Compared with the
implementation on CPU, the optimization of the core
algorithm in JPEG2000 on GPGPU by CUDA technology
has been significantly improved in both speed and efficiency
of image compression.

II. JPEG2000 IMAGE COMPRESSION METHOD

Compared with JPEG, JPEG2000 image compression
standard has a further improvement in the algorithm. First
of all, in order to reduce the redundant information
among the image data, JPEG2000 chooses discrete
wavelet transform (DWT) instead of discrete cosine
transform (DCT) in JPEG.This could avoid the box noise
which has brought by JPEG in the low bit rate case.
Secondly, about the entropy coding algorithm, JPEG2000
selected embedded block coding with optimized
truncation (EBCOT) algorithm to replace the Huffman
encoding algorithm in JPEG.
 JPEG2000 core coding system mainly consists of six
modules which is shown in Fig.1. Firstly, in order to get the
wavelet coefficients, the result of preprocess for original
image data need to go through the wavelet transform
module.Then, according to the specific requirements to
quantify the transformed wavelet coefficients. Next, these
quantized wavelet coefficients will be divided into code
blocks to be embedded coding independently and form the
codestream. These codestreams are organized hierarchically
according to the rate-distortion optimization principle.
Finally, these different quality layer were packaged

Fig.1 JPEG2000 core encoder block diagram

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0263

according to the specific codestream format to output. The
description above can be called the compression process of
entire image .

III. GPGPU AND CUDA

With the advent of the 3D era, the computing power of
traditional CPU can not fulfill the requirement of the 3D
graphic data computation. To this end, GPU has emerged.
GPU is designed for graphic data computation specially.
Compared with CPU, GPU has lots of advantages such as
the high floating-point performance, high bandwidth and the
highly efficient parallel computing. But such a powerful
computing capability is used only for graphics rendering
which is undoubtedly a waste of computing resources. In
order to make full use of the GPU computing capability, not
only for graphics rendering, but also for fulfilling the real-
time requirement of other scientific computing fields,
general purpose GPU (GPGPU) came into being, and has
achieved great results.The hardware of GPGPU use a single
instruction multiple data (SIMD) architecture. And it was a
perfect combination of graphics processing architecture and
parallel computing architecture[2]. This kind of architecture
makes GPGPU can not only do their own work as a graphics
card for graphics rendering, but also make use of other non-
graphical areas extensively for exerting its powerful
computing capacity fully. A hardware module of GPGPU
consists of multiple stream multiprocessors (SM) which is
shown in Fig.2. Each stream multiprocessor contains 8
stream processors (SP), two special function units (SFU) and

Fig.2 the GPGPU hardware SM structure

some memory resources such as shared memories and
registers. According to the features and access speed of
different memories, allocating the size of memory space
rationally is the key to improve the performance of GPGPU
parallel accelerated computing.

CUDA is a heterogeneous development platforms which
is designed specifically by NVIDIA Corporation for its
GPGPU production in June 2007. Since then, the fate of
GPGPU parallel accelerated computing has completely
changed. CUDA provides interfaces to the hardware access
directly. Different from the development of traditional
GPGPU, modern GPGPU development does not require the
help of the graphics API like Open GL and Direct X. At the

same time, the widely used C language was expanded by
CUDA. And the difficulties of programming were further
reduced by CUDA technology. So the developers can easily
transit from the C language application development to a
GPGPU application development.CUDA provides the single
instruction multiple threads (SIMT) heterogeneous
programming execution model which corresponds to the
SIMD architecture of GPGPU[3]. This model is shown in
Fig.3.

Fig.3 CUDA heterogeneous programming model

The hierarchical thread structure of CUDA includes
threads, thread blocks and grid. Each grid consists of a
certain number of thread blocks, and each thread blocks
contains up to 512 threads. A CUDA program is composed
of the program running on Host (CPU) and the program
running on Device (GPU). The host-side executes the serial
commands to allocate the task, and the device-side as co-
processor executes parallel accelerated computing section.
The program which was executed on device was called the
kernel function. Each kernel function executes in a Grid. A
simple device program was required to complete the
following two processes. Firstly, the data to be processed
need to be copied from the host memory to the global
memory of device before calling the kernel function.
Secondly, when the calculations are completed, the results
need to be returned from the global memory to the host
memory.
 In order to improve the computing speed of the entire task,
the substance of CUDA parallel accelerated computing is to
divide a task into multiple independent partial tasks[4].
These partial tasks were processed by thousands of threads
simultaneously. Therefore, the image data is divided into
some independent data blocks and then processed by CUDA
technology can improve the speed of the JPEG2000 image
compression.

A. DWT on the GPGPU

There are two discrete wavelet transform algorithms in
JPEG2000 standard: the 5/3 integer wavelet lifting algorithm
and the 9/7 floating-point wavelet lifting algorithm. The 5/3
wavelet lifting algorithm is fit to both lossy and lossless
compression and it is described as follows:

() () () ()()[]
() () () ()()[]42121222

22221212

+++−+=
++−+=+

nynynxny

nxnxnxny (1)

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0264

In the case of low bit rate, the 9/7 floating-point wavelet
lifting algorithm can play the most superior performance and
it is recommend in lossy compression. Compared with
the5/3 lifting wavelet algorithm, the 9/7 wavelet lifting
algorithm is more complex:

\

() () () ()[]
() () () ()[]
() () () ()[]
() () () ()[]
() ()
() () ()nyKny

nyKny

nynynyny

nynynyny

nynynxny

nxnxnxny

212

12-12

121222

2221212

121222

2221212

×=
+×=+

++−+=
++++=+

++−+=
++++=+

δ
γ

β
α

 (2)

Where,

23017410514435068520

882911075004298011804861343421

.，K.δ

.，γ.-，β.α

==
=== (3)

B. Core algorithm on CUDA

The wavelet transform algorithm in JPEG2000 shows
that the one-dimensional transform need a large amount of
manipulations about data[5]. So the basic row transform and
column transform need to be designed into kernel function
which is called through the device to complete. And other
parts of the task are handed by host to complete. From the
analysis above, it can come up with a block diagram which
is shown in Fig.4:

Fig.4 DWT task allocation block diagram

The specific steps to implement the process mentioned
above are as follows:
1. Allocated host memory space X and Y on host to store

input image data and output compressed image data
respectively.After that copying the image data to the
host memory. Then two identical global memory
spaces X1 and X2 was allocated on device by calling
the library function cudaMalloc().

2. For the subsequent wavelet column transform
calculation, the image data need to be copied from host
memory to global memory space X1 that has already
set up with a suitable size on device by calling the
library function cudaMemcpy ().

3. Initialized the input image data, parameters and shared
memory size.Then copied the segmented image data
from global memory X1 to the shared memory that has
already set up.After that the image data was operated
by lifting wavelet column transform. Take the 9/7

wavelet transform for example, the flow diagram is
showed in Fig.5.

Fig.5 9/7 wavelet lifting kernel processes

4. The synchronous function must be used at the end of
each step to ensure the correctness of the results. And
then the results need to be stored sequentially in the
global memory space X2 which has already set up.

5. The results of the previous step was operated according
to the same method ——1D wavelet row transform
and then stored the results in the global memory space
X1 which has already been vacant .

6. The processing procedure of wavelet lifting transform
need to be repeated depended on the wavelet
decomposition level until the entire procedure has
completed. Finally, the results of image data which
were outputted need to be returned back to the host
memory of the host from the global memory of the
device. Then release the device memory space and the
host memory space.

IV. OPTIMIZATION OF ACCESSING THE SHARED MEMORY

 As the speed of accessing the global memory is very
slow. If the image data in the global memory was accessed
repeatedly, it will cut down the efficiency of the program to
execute significantly. However, the speed of accessing the
shared memory is as fast as the speed of accessing the
register[6]. So the optimization strategy about accessing the
shared memory was selected to accelerate the DWT
algorithm. But when multiple threads access the data in the
same location of the shared memory, it will bring bank
conflict which can affect the performance of the program to
execute. So the bank conflict must be avoided during the
optimizing procedure.

Firstly, the image data in the global memory is divided
into (n +1) × (n +1) data blocks named DB. And at the same
time the same number of the thread blocks were defined and
named TB for short. These thread blocks were required to
correspond to these data blocks one-to-one.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0265

The corresponding relationship is shown in Fig.6. The
size of the shared memory space was defined for each thread
block to store the image data for each thread to calculate.

Fig.6 shared memory data access optimization

The advantage of the shared memory is its fast access
speed. According to the description above, copy the original
image data which has been divided into blocks from the

global memory to the shared memory. Then each thread in
per thread block calculate the corresponding data in the
shared memory directly. To do like the description above
will avoid the bank conflict that may cause. In addition,
when optimizing the CUDA programs, make sure that it is
required to comply with the coalesced memory access
condition to access global memory. Coalesced memory
access conditions is also one of the most important factors in
optimizing CUDA program. Apart from this, optimizing
CUDA program also need to consider calculation accuracy,
latency, the amount of calculation about data and other
factors at the same time.

TABLE I. COMPARISON OF THE TEST TIME ABOUT DWT ON CPU AND GPGPU

Pixels 640*48
0

1280*860 2592*1944 3460*2318 5680*4504

CPU(ms) 47 328 904 2198 4977

GPGPU(ms) 13.896 34.671 67.708 148.61 327.53

Speedup 3.38 9.46 13.35 14.79 15.20

V. TEST RESULTS

The hardware and software test environment requirements
are as follows:
 The CPU hardware environment:

Intel E7400 Core 2 Duo dual-core 2.80GHz CPU, clock
2800MHz, host memory 2GB;
 The GPU hardware environment:

NVIDIA GeForce GTX 560 Ti Graphic Card, CUDA
core 384, Graphics clock 822 Mhz, Processor clock 1645
MHz, memory clock （ MHz ） 4008 Gbps, standard
memory config 1024 MB, memory interface width256-bit,
memory bandwidth 128GB/sec,computing capability 2.1,
bus support PCI-E 2.0x16;
 Programming environment:

GPU hardware drivers Version 301.42, CUDA Version
4.1, Windows 7 OS, Visual Studio 2010.

The JPEG2000 image compression are implemented
depend on the traditional definition both on CPU and
GPGPU. Therefore, the image compression quality is
basically the same. And the test time of the experimental
results on the CPU and GPGPU is shown in Table1.It can be
seen from the experimental results that the speedup
compared with the CPU test results which has not optimized
is more than three times for those images with small data to
process relatively. And for those images with large data to
process is more than 15 times. Visible, the computing time
of DWT algorithm in JPEG2000 which is optimized by
CUDA on GPGPU is much less than the time on CPU. And
with the increasing of the amount of data to calculate, the
computing time of CPU showed significant growth trend,
but the computing time of GPGPU grew slower. It can be

seen from the speedup that with the increasing of the amount
of data to calculate, the GPGPU has the superior
performance for accelerating calculation.

VI. CONCLUSION

Implementing JPEG2000 image compression algorithm
on CPU and GPGPU respectively can be concluded that in
the field of scientific computing, especially for the large-
scale intensive floating-point data which was not
significantly related like image compression, using CUDA
platform on GPGPU implement algorithm can obtain
superior performance. Although parallel speed-up
calculation on GPGPU have some restrictions by technical
difficulties, such as compatibility, algorithm transplanting
and optimization. Parallel computing on GPGPU has great
potential and unparalleled advantages about performance
which has been obtained the worldwide attention in different
industries.Parallel accelerated computing on GPGPU will
become the direction of the future development.

VII. REFERENCES
[1] Jing Guo, Qingkui Chen:Computer Engineering and Design,In

Chinese,Vol.31(2010),p.3302-3304

[2] John D.Owens, David Luebke, Naga Govindaraju:Computer graphics
forum,Vol.26(2007),p.80-113

[3] Han,T.D.,Abdelrahman,T.S:IEEE Transactions,Vol.2(2011),p.78-90

[4] Xiaoli Song, Qing Wang: Computer Measurement & Control,In
Chinese,Vol.17(2009),p.1169-1171

[5] Joaquín Franco, Gregorio Bernabé:IEEE Computer
Society,Vol.40(2009),p.111-118

[6] Sunpyo Hong,Hyesoon Kim:ACM SIGARCH Computer
Architecture News,Vol.37(2009),p.152-163

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0266

