
XML Retrieval with Results Clustering on Android

Pengfei Liu,Yanhua Chen,Wenjie Xie, Qiaoyi Hu
Department of Mathematics

South China Agricultural University
Guangzhou, China

pfliu@scau.edu.cn, chen_yanhua123@126.com, wenjiexie@stu.scau.edu.cn,huqiaoyi@scau.edu.cn

Abstract—XML receives widely interests in data exchanging
and information management on both traditional desktop
computing platforms and rising mobile computing platforms.
However, traditional XML retrieval does not work on mobile
devices due to the mobile platforms’ limitations and diversities.

 Considering that XML retrieval on mobile devices will
become increasingly popular, in this article, we have paid
attention to the design and implementation of XML retrieval
and results clustering model on the android platform, building
on jaxen and dom4j, the XML parser and retrieval engine;
furthermore, the K-means clustering algorithm.

 As an example of usage, we have tested the prototype on
some data sets to the mobile scenario and illustrated the
feasibility of the proposed approach. The model demonstrated
in this article is available on the mobile XML Retrieval project
website: http://code.google.com/p/mobilexmlretrieval/.

XML; retrieval; clustering; Android

I. INTRODUCTION

XML (Extensible Markup Language) is designed to store
and process data, structure and semantic information, and
have become the standard language for data transmission and
exchanging on the web due to its flexibility and self-
description [1].

With the mobile computing development and a large
number of documents from the web or other origins, more
and more information on the mobile platform is being
organized in XML format. There is an increasing need to be
able to automatically process those structurally rich
documents for information retrieval applications on the
mobile platform and it is somewhat challenging.

Information retrieval is the foundation for the XML
search engine. Jaxen is an open-source XPath library written
in Java [2]; while dom4j is an open-source library that works
with XML, XPath and XSLT on the Java platform [3].

XML clustering is to group similar documents to
facilitate searching due to similar documents can be searched
and processed within a specific category. The clustering of
XML documents is effective for document management and
the storage of XML documents [4].

Evidently, XML retrieval and mining plays an important
role in computing research areas and is mostly done on
computers in the past, but few relative researches on mobile
sets are reported. Supposing that one day every mobile
device can easily connect to other devices, including data

generating devices and can exchange data freely via
Bluetooth or WIFI, and then we can process data just by
mobile devices realtime. The idea of mining XML
documents anywhere and anytime is very amazing but not
crazy.

Clustering XML data is more complicated than common
text data as XML allows inserting structural and conceptual
aspects into document content. An XML document includes
tags and data; while tags describing names of elements
contain concepts as text data. Besides that, structure tags also
show the relationship between elements.

Now, research work dedicated to XML document
clustering mainly has three types, including structure-based
method, content-based method and combination of both.

Recently, several clustering techniques that consider the
structure and the contents of XML documents are studied.
References [5-8] had applied different clustering techniques
to XML documents represented in different models.

Most of the popular XML retrieval models are designed
to work on computers. There are no corresponding models
on mobile computing environments and not much works
about data mining or XML mining devoted on mobile
environment. Liu et al have designed and implemented a
mobile data mining tool on the android platform [9]. Gillick
et al have presented the demonstration of cluster
visualization technique for mobile devices [10].

Considering the advantages of mobile XML data mining,
which need not send local data to other servers; the model
just runs the data on local and this is an interesting idea. This
paper has proposed a model about XML document retrieval
and clustering on the Android platform. The experiments
have shown that the model works well and efficiently.

The rest of the paper is organized as follows. In section II,
we have proposed a method to apply classical K-means
clustering algorithm to XML documents. In section III, we
have evaluated the effectiveness of our model with several
examples. Finally, we have made a conclusion in section IV.

II. METHOD

In this part, we have offered an implementation of the
core retrieval functions underlying jaxen and dom4j. TF-IDF,
term frequency-inverse document frequency, is often used as
a weighting factor in information retrieval and text mining
[11]. It is used in this project as a numerical statistic that
reflects how important a word is to a document in a
collection or corpus .

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0271

public double[] buildTagTF_IDF(int[] wrod_frequency,
int[] contentString,

int numString, int sizeString, int a) {
 double[] tf_idf = new

double[wrod_frequency.length];
 for (int i = 0; i < wrod_frequency.length;

i++) {
 double tf = (double)

wrod_frequency[i] / sizeString;
 double idf =

Math.log10((double) numString / contentString[i]);
 tf_idf[i] = tf * idf / (a + i);

 }

return tf_idf;
 }

public XMLTreeElement[][] cluster(double[][] tag,
double[][] content, int k) {

 int numTagKeyWord = tag[0].length;
 int numContentKeyWord =

content[0].length;
 double[][] tagCenter = new

double[k][numTagKeyWord];
 double[][] contentCenter = new

double[k][numContentKeyWord];
 double[][] newTagCenter = new

double[k][numTagKeyWord];
 double[][] newContentCenter = new

double[k][numContentKeyWord];
 int[][] clusters;

 for (int i = 0; i < k; i++) {
 contentCenter[i] = content[i].clone();

 tagCenter[i] = tag[i].clone();
 }

 while (true) {
clusters = group(tag, content, tagCenter, contentCenter);

newTagCenter = newClusterCenter(tag, clusters);
newContentCenter = newClusterCenter(content,

clusters);
 if (!equal(tagCenter, newTagCenter)

 && !equal(contentCenter, newContentCenter))
{

 tagCenter = newTagCenter.clone();
 contentCenter = newContentCenter.clone();
newTagCenter = new double[k][numTagKeyWord];

newContentCenter = new
double[k][numContentKeyWord];
 } else

 break;
 }

 XMLTreeElement[][] result = new
XMLTreeElement[clusters.length][];

 for (int i = 0; i < result.length; i++){
result[i] = new XMLTreeElement[clusters[i].length];

 for (int j = 0; j < clusters[i].length; j++){
 result[i][j] = elements[clusters[i][j]];

 }

 }
 return result;

}

For quick computing, we have used the vector space
model (VSM) as the algebraic model for representing text
documents; It is used for representing text documents as
vectors of identifiers. VSM is widely used in information
filtering, information retrieval, indexing and relevancy
rankings [12]. We have used cosine similarity as measure of
similarity between two vectors of an inner product space [13].
The general clustering algorithm of k-means [14] to locate a
document in its proper cluster; it tries to partition n
observations into k clusters in which each observation
belongs to the cluster with the nearest mean.

In this project, we adopt the combined similarity of
structure and content method as the solution for clustering
XML documents considering previous researches.

We have specified a similarity to each existing cluster.
For each entering document, if the similarity is bigger than
the threshold, then it is placed in the corresponding cluster;
else a new cluster is created, and the document is placed in it.
Below is the flow chart of the algorithm. A strictly prove of
the algorithm’s convergence is not given, but in the practical
tests in next section, it can achieve a fast convergence.

Input: a number of leaf nodes got by retrieval operations.
Output: Clustering results of several groups.
Step 1: If the input number of leaf nodes is less than the

threshold, just set each leaf node as a cluster and return; else
go to Step 2;

Step 2: Select the first batch of leaf nodes as the cluster
centers.

Step 3: Calculate the similarity between each leaf node
and each cluster center by distance combination of tag and
content, the leaf nodes belongs to the most similar cluster.

Step 4: Recalculate the cluster centers including tag
centers and content centers, and determine whether the
cluster centers change; if changed, then repeat step 3 and
step 4, otherwise turn to step 5.

Step 5: Returns clustering results.

TABLE I. CODE OF BUILDING TAG VSM

TABLE II. CODE OF CLUSTERING

 To demonstrate the VSM,TF-IDF and clustering
application in XML searching and clustering coding, a VSM
and a TF-IDF builder based on the XML’s tag and content,
also the clustering method are displayed to fulfill the models
demanded by the architecture; they are listed in TABLE I,
II,III respectively. Of course, there are still many key codes

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0272

public double[][] buildTagVsm(String[] tag, String[]
keyWords) {

 double[][] vsm = new
double[tag.length][keyWords.length];

 int[][] tagWordF = new
int[tag.length][keyWords.length];

 int sizeWord = 0;
 for (int i = 0; i < tag.length; i++) {

 Pattern p =
Pattern.compile("[/!.?<>\\,\"]");

 String[] strs = p.split(tag[i]);
 sizeWord = strs.length;

 tagWordF[i] =
wordFrequency(strs, keyWords, includeTagKeyWords);

 }
 for (int i = 0; i < tag.length; i++) {

 vsm[i] =
buildTagTF_IDF(tagWordF[i], includeTagKeyWords,

 tag.length, sizeWord, 1);
 }

 return vsm;
 }

of the project that not listed; nevertheless, we plan to release
this work as an open source project in the future.

TABLE III. CODE OF BUILDING TAG IDF

 In the next subsection, we will introduce model’s tests with
details.

III. EXPERIMENT

To fully test mobileXMLRetrieval, the experimental

mobile device of HTC Dream mobile phone (also known as
T-Mobile G1) is used. The processor of G1 is ARM based
MSM7201A with 528 MHz speed and a 192MB RAM
memory; while development tools are Android SDK and
development language of Java.

In order to validate the approach proposed, we had
evaluated the retrieval and clustering performance of the
prototype model by running time. We have measured the
effectiveness of models by running time together with a test
collection built from the XML Data Repository
(http://www.cs.washington.edu/research/xmldatasets/).Test
results are shown in table IV and table V.

TABLE IV. RESULTS OF SINGLE DOCUMENT SEARCHING.

Document name Size (KB) Time(s)

club4 10 0.382
club5 3 0.06
club6 7 0.291
club7 8 0.267
club8 9 0.397

 TABLE V. THE RESULTS OF MULTIPLE DOCUMENTS SEARCHING.

 The above experiments and their results have shown that
the model works well and efficiently.
 During the test procedure, we have taken some
screenshots of mobileXMLretrieval. Figure 1 (a) shows the
node searching screen; Figure 1 (b) shows searching tag
results; Figure 1 (c) shows the searching content result;
Figure 1 (d) shows the clustering result.

 (a) Node searching (b) Tag searching result

 (c) Content searching result (d) Clustering result

Figure 1. Screenshots of examples.

 The main finding is that retrieval engine and clustering
algorithm work well on the Android, and it is a
complementary approach for finding information in XML
format.

Amount of documents Size (KB) Time(s)

5 37 1.754
4 28 1.472
3 20 0.821
2 17 0.764

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0273

IV. CONCLUSION

We have presented a mobile XML retrieval and
clustering model named mobileXMLretrieval that works
well on test data sets; that reveals the possibility of XML
clustering on mobile devices.

XML clustering on mobile devices is not very practical
now; however, it will be accepted without waiting too long
with the rapid developments of mobile hardware in short
years. Furthermore, mobileXMLretrieval can be transplanted
to other mobile sets with the Java environment. We plan to
release this work as an open-source project in the future.

As future developments of the mobileXMLretrieval, we
plan to enhance the model by improving the clustering
algorithm, also completing other functions such as XML
classification.

ACKNOWLEDGMENT

Funding: Supported by Scientific Research Foundation of
South China Agricultural University (4900-k11045) and
Natural Science Foundation of Guangdong Province, China
(No.S2011040004387, No.S2011040001127 and No.
S2012010009961), National Natural Science Foundation of
China, Tian Yuan Special Foundation（No. 11226186）.

REFERENCES

[1] "XML Media Types, RFC 3023". IETF. 2001-01. pp. 9–11.

[2] jaxen: universal Java XPath engine. http://jaxen.codehaus.org/

[3] Dom4j. http://dom4j.sourceforge.net/

[4] Jianghui Liu, Jason T. L. Wang, Wynne Hsu, et al, “XML Clustering
by Principal Component Analysis,” International Conference on
Tools with Artificial Intelligence,IEEE Press, Nov,2004, pp. 658-662.

[5] Jong P. Yoon, Vijay Raghavan, “Bitmap Indexing-based Clustering
and Retrieval of XML Documents,” ACM SIGIR’01 Workshop on
Mathematical/Formal Methods in IR Naive clustering of a large XML
document collection. ACM Press, 2001.

[6] Gianni Costa, Giuseppe Manco, Riccardo Ortale and Andrea
Tagarelli, “A Tree-Based Approach to Clustering XML Documents
by Structure,” KNOWLEDGE DISCOVERY IN DATABASES:
PKDD 2004 Lecture Notes in Computer Science, Springer-Verlag,
Volume 3202, Sept,2004, pp.137-148.

[7] Sangeetha Kutty, Richi Nayak, and Yuefeng Li, “XML documents
clustering using a tensor space model,” In Proceedings of the 15th
Pacific-Asia conference on Advances in knowledge discovery and
data mining, Springer-Verlag. Volume Part I ,May,2011:488-499

[8] Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel,et al, “A
methodology for clustering XML documents by structure,”
Information Systems. Volume 31, Issue 3, pp. 187-228,2006.

[9] Pengfei Liu, yanhua Chen, Wu lei tang, et al, “Mobile weka as a data
mining tool on android,” Advances in Electrical Engineering and
Automation. Springer-Verlag, 2012, pp. 139:75-80.

[10] Gillick, Brett; AlTaiar, Hasnain; Krishnaswamy, Shonali, et al,
“Clutter-adaptive visualization for mobile data mining,” 10th IEEE
International Conference on Data Mining Workshops, IEEE Press,
2010,pp.1381-1384.

[11] Salton G; McGill MJ. Introduction to modern information retrieval.

 McGraw-Hill.1986

[12] G. Salton , A. Wong , C. S. Yang, “A vector space model for

 automatic indexing,” Communications of the ACM, v.18 n.11,

 pp.613-620,1975

[13] P.-N. Tan, M. Steinbach & V. Kumar, Introduction to Data Mining,

 Addison-Wesley. 2005.

[14] MacQueen, J. B. "Some Methods for classification and

 Analysis of Multivariate Observations," Proceedings of 5th

 Berkeley Symposium on Mathematical Statistics and Probability.

 University of California Press.1967, pp. 281-297.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0274

