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Abstract—This paper is concerned with the sliding mode 
control for an active vehicle suspension system. The 

suspension system is first decomposed into two virtual 
subsystems via a linear transformation. By considering the tire 
deflection of the suspension system as a virtual control for the 
first subsystem, the virtual state feedback H controller is 

derived. Then, based on the virtual H controller, a novel 
sliding mode surface is proposed. Third, a sliding mode 

controller is designed to ensure that the state trajectories 
can reach the sliding surface in finite time and maintain on it 
thereafter. Simulation results show that the designed controller 
can achieve the specified H  performance for the active 
suspension system and preserve the asymptotic stability of the 
closed-loop system. 
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I.  INTRODUCTION  
Suspension system plays an import role in modern 

vehicles to provide vehicle support, safety, ride comfort, 
road holding, and suspension deflection. Vehicle 
suspensions systems including passive [1], semi-active [2] 
and active suspensions [3], [4] have gained wide concern 
over the last few decades. A considerable amount of 
theoretical and experimental research has been carried out to 
improve the control performance of the suspension systems. 
Due to the fact that the active suspensions can continuously 
change the vibration energy of the vehicle body induced by 
the road excitation, the active suspensions have a great 
potential to improve both ride comfort and handling 
performance. Various schemes have been developed to 
improve the performance of active vehicle suspension 
systems, such as linear quadratic control [5], [6], adaptive 
control [7], H  control [8], [9], and preview control [10], 
etc. 

∞

As is well known, sliding mode control is effective to 
achieve high-performance robust control against external 
disturbances and unpredictable parameter variations, one 
can see [11], [12] and the references therein. Sliding mode 
control for the active suspension systems are intensively 

investigated in the context of robustness and disturbance 
attenuation. For example, by combining the optimal control 
scheme and the sliding mode control scheme, a feedforward 
and feedback optimal sliding mode control scheme has been 
developed to improve the control performance of the 
suspension system [6]. Based on two-time scale singularly 
perturbed dynamic model, a sliding mode control strategy 
has been proposed to deal with the design of active vehicle 
suspension control systems [13]. In [14] and [15], fuzzy 
sliding mode control schemes have been presented to 
control the active suspension systems. These control 
schemes are capable of improving the control performance 
of the suspension systems to some acceptable level. 
However, it should be pointed out that in [6], the optimal 
sliding mode controller design is based on the fact that the 
road surface disturbance acting on the suspension system is 
formulated as the output of an exogenous linear system. 
This indicates that the road surface disturbance is regarded 
as a deterministic input signal. In fact, on the one hand, the 
road surface disturbance is random and irregular. On the 
other hand, as the dimension of the exogenous system 
increases, the calculated quantity rapidly does. Therefore, 
from a point of implementation view, the optimal sliding 
mode control scheme is not always work.  

In this paper, for a quarter-car model with active 
suspension systems, a sliding mode  control scheme will 
be proposed to improve the control performance of the 
suspension system. Compared with the design of the optimal 
sliding mode controller in [6], the design of the sliding mode 

H∞

H∞  controller is based on the assumption that the random 
road surface disturbance is unknown but bounded. The 
suspension system is decomposed into two subsystems such 
that the road surface disturbance and the active control input 
are in the different subsystems. By considering the tire 
deflection of the suspension system as a virtual control force 
for the first subsystem, the virtual controller is designed. 
Then, a novel sliding mode surface is proposed via the 
obtained virtual H

H∞

∞ controller. Third, a sliding mode 
H∞ controller is developed to guarantee that the state 
trajectories are reachable in finite time and maintain on the 
sliding surface thereafter. Simulation results are given to 
show the effectiveness of the proposed control scheme.  
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Throughout this paper, all the matrices are real matrices. 
The superscripts ‘−1’ and ‘T’ mean the inverse and transpose 
of a matrix, respectively; means that the matrix P  is 
a positive-definite symmetric matrix;  is the identity matrix 
of appropriate dimensions. 

0P >
I

II. SYSTEM MODELING 
A two-degree-of freedom quarter-car suspension system 

considered in this paper is shown in Fig. 1, where sm  is  the 

sprung mass,  is  the unsprung mass, um sk is the stiffness 

of the suspension, sc  is  the damping of the suspension,  

is the stiffness of the tire, 
tk

sz  is the displacements of the 

sprung,  is  the displacements of unsprung masses, is 
the road displacement input, and  is  the active control. 

uz rz
u

 
 

 
Fig. 1  Quarter-car suspension system. 

 
Assume that the characteristics of all passive suspension 

elements are linear, the tire does not leave the ground, and 

sz  and  are measured from the static equilibrium point. 
The model can be represented by the equations: 

uz

 

          

(1) 

( ) ( ) 0,
( ) ( ) ( )

s s s u s s u s

u u s u s s u s t u r

m z k z z c z z u
m z k z z c z z u k z z

− − − − − =
+ − + − + + − = 0.

Choosing the state variables as 
 

1 3

2 4

( ) ( ) ( ), ( ) ( ),
( ) ( ) ( ), ( ) ( ),

s u s

u r u

x t z t z t x t z t
x t z t z t x t z t

= − =
= − =

              (2) 

 
where 1( )x t  is the suspension deflection, 2 ( )x t  is the tire 

deflection, 3 ( )x t  is the velocity of car body and 4 ( )x t  is 

the velocity of tire.  

     Denote [ ]1 2 3 4
Tx x x x x=  and ( ) ( ).rv t z t=  

Then, system (1) can be rewritten as the state space form 
 

( ) ( ) ( ) ( ),x t Ax t Bu t Dv t= + +                        (3) 
where 
 

[ ]
[ ]

0 0 1 1
0 0 0 1

,
0

0 0 1 1 ,

0 1 0 0 .

s s s s s s

s u t u s u s u

T
s u

T

A
k m c m c m

k m k m c m c m

B m m

D

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

= −

= −

      (4) 

 
It is assumed that the road surface disturbance term 

2( ) [0, )v t L∈ ∞ ,  and *( )v t v≤ , where  is a 
known constant. .In what follows, we will design a sliding 
mode 

* 0v >

H∞ control scheme to improve the performance of the 
suspension system.   

III. SLIDING MODE CONTROL DESIGN H∞

A. System Decomposition 
In this subsection, based on a linear transformation, we 

decompose the system (3) into two subsystems.  
Let 

x Mx=                                          (6) 
 

where 
1 0 0 0
0 1 0 0
0 0 1
0 0 0 1

u s

M
m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                          (7) 

 
From (3) and (6), one yields the following two 

subsystems. The first subsystem is in the form 
 

1 11 1 12 2( ) ( ) ( ) ( ),x t A x t A x t Dv t= + +                 (8) 
 

where 3
1x R∈  is the state variables and 2x R∈  is the 

virtual control variable, and  
 

tk  

s sk c u  

rz
 

uz
 

sz
 sm  

um  
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[ ]

11 12

0 0 1 ( )
0 0 0 , 1
0 0 0

0 1 0 .

u s s

t s

T

m m m
A A

k m

D

− +⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
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,
⎤
⎥
⎥
⎥⎦

     

   (9) 
The second subsystem is as  
 

2 22 2 21 1( ) ( ) ( ) ( )x t A x t Bu t A x t= + +               (10) 
 
where  

[ ]21

22

,
( ) ,

1 .

s u t u s u

s u s u s

u

A k m k m c m
A c m m m m
B m

= −

= − +

= −
             (11) 

B. Sliding Surface Design 
To design a sliding surface, for the first subsystem (8), 

we introduce the control output equation as 
 

1 1( ) ( ) ( ),z t C x t D v t= +                           (12) 
 

where  and 1C 1D  are problem-dependent constant matrices 
with appropriate dimensions.  

Now, we intend to design a virtual state feedback H∞  
control law 

 

2 1( ) ( ),x t Kx t=                              (13) 
 

such that under the designed control law, the subsystem (8) 
with  is asymptotically stable; and under the zero 

initial condition, the  performance 

( ) 0v t =
H∞

 
( ) ( ) ,z t v tγ≤                               (14) 

 
of the resulting closed-loop subsystem is guaranteed for 
nonzero  and a prescribed ( )v t 0γ > ,  where 1 3K R ×∈  is 
the gain matrix to be determined. 
      The matrix 1D  in output equation (12) and the H∞  
performance level γ  are assumed to satisfy the constraint as 
 

2
1 1
TD D Iγ<                                    (15) 

 
Substituting (14) into (8) yields 
 

1 11 12 1( ) ( ) ( ) ( ).x t A A K x t Dv t= + +              (16) 
 

Choose a Lyapunov function as 
 

                         (17) 1 1 1( ) ( ) ( ),TV x x t Px t=
 

 where 3 3P R ×∈  and . 0P >
Taking the derivative of   with respect to t  along 

the state trajectory of the subsystem (16), after simple 
manipulation, it can be obtained that under the constraint 
(15), for given scalar 

1( )V x

0γ > , the closed-loop subsystem (16) 

with ( ) 0v t =  is asymptotically stable, and the H∞  

performance  (14)  is guaranteed,  if there exist 1 3K R ×∈  
and  3 3 0,P R P×∈ >  such that  

 

11 11 12 12 1
2

1

1 1

0

T T T T

T T

A P PA A K K A D PC
D I
C P D I

γ
⎡ ⎤+ + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

D     

  (18) 
If the linear matrix inequality (18) is feasible, then the 

gain matrix  in (13) can be obtained as K 1K KP −= . Then, 
the virtual state feedback H∞  control law (13) is available.   

Now, we design a sliding surface function as: 
 

2 1( ) ( ) ( ),s t x t Kx t= −                           (19) 
 

It should be pointed out that on the above sliding surface, 
the subsystem (8) with  is asymptotically stable 

and the 

( ) 0v t =
H∞  performance is guaranteed. 

Noticing ( ) 0s t = , combining (10) and (16), one yields 
the equivalent control law as 

 
1

11 12 21 1

1 1
22 2

( ) ( )

( ) ( )

( )equ t B x t

B x t B KDv t

KA KA K A

A

−

− −

=

− +

+ −
             (20) 

 
In this situation, the sliding motion can be obtained as  
 

2 1( ) ( )x t Kx t=                                   (21) 
 

which indicates that the sliding motion is asymptotically 
stable. 

C. Sliding mode H∞ controller design and the reachability 
condition 

The sliding mode H∞ controller is designed as 
 

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France. 
© the authors 

0296



1
11 12 21 1

1
22 2

( ) ( )

( )

[( )

( )sgn( ( ))],

u t B x t

B x t

KA KA K A

A t s tρ

−

−

=

− +

+ −
            (22) 

 
where  is the sign function, and sgn( )i ( )tρ  is the 
switching function as 

 
*( )t KD vρ η= +                            (23) 

 
where  0.η >  
      Choose a Lyapunov function as 
 

2( ( )) ( ) / 2SV s t s t=                            (24) 
Notice that  
 

2 11 12 1( )( ) ( ) ( )sgn( ( )).x tx t K A A K t s tρ+= +      (25) 
 
Then, from (19), one can obtain  
 

( ) ( ) ( ) sgn( ( )).s t KDv t t s tρ= −              (26) 
  
Further, from (23) , (24) and  (26), we have 
 

( ( )) ( ),SV s t s tη< −                       (27) 
 
which indicates that  under the sliding mode control law  
(22),  the state trajectory of the second subsystem (10) can be 
driven into the sliding surface  in finite time and 
maintain on it thereafter. 

H∞

( ) 0s t =

Remark 1.  To design the sliding mode controller (22), 

only the upper bound  of the road surface disturbance is 
needed, and the deterministic dynamic model of the road 
surface disturbance is not necessary. Therefore, compared 
with the feedforward and feedback optimal sliding mode 
controller [6], the sliding mode H controller is more 
practical than the optimal sliding mode controller. 

H∞
*v

∞

IV. SIMULATION EXAMPLE 
In this section, a simulation example is given to 

illustrate the effectiveness of the proposed sliding mode 
control scheme. In Fig. 1, the parameters of the 

suspension system are from [9], where 
H∞

 
972.2sm = kg, kg, Ns/m, 113.6um = 1095sc =

42719.6sk =  N/m,   N/m, 101115tk =
 

The vehicle is assumed to travel at a constant speed on a 
given horizontal road, the road surface disturbances can be 

approximated by the following series [9] 
 

 0
1

( ) sin( )
N

r i
i

z t s i t iω ϕ
=

=∑ +                       (28) 

 

where 2 ( )i gs s i= ΔΩ ΔΩ , 2 / lπΔΩ = ,  is the 

length of the road segment, 

l

0 0(2 / )l vω π= 0v,  is the 

horizontal speed of the vehicle, and nϕ  is random 

frequency, [ )0, 2nϕ π∈ ,  limits the considered 

frequency range, and  

N

 
1

2

0 0

0 0

( )( ) ,
( )

( )( ) ,

n
g

g n
g

t
s

t

−

−

⎧ 0

0

Ω Ω Ω Ω ≤Ω⎪Ω = ⎨
Ω Ω Ω Ω ≥Ω⎪⎩

             (29) 

 
where 0( )gt Ω  provides a measure for the roughness of the 

road,  and  are road roughness constant.  1n 2n
For the random road profile, the road roughness is 

chosen as [9], and let 6 3
0( ) 64 10gt m−Ω = × 0 20v = m/s, 

1 2n = , 2 1.5n = , 100l = , . In this case, the 
response of the road surface disturbance is presented by 
Figure 2, it can be computed that the upper bound of the 
road surface disturbance   .  

5N =

* 0.0746v =

Let the initial state [ ](0) 0.5 0.4 0.5 0.3 Tx = , 

0.01η = , and 0.2γ = . The matrices  and  in (12) 
is given as 

1C 1D

 

1 1

1 0 0 0.1
,

0 1 0 0.1
C D .⎡ ⎤ ⎡

= =
⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                 (30) 

 
By solving the linear matrix inequality (18), one yields the 
matrix K  in (13) as 
 

[ ]134.97 -20.2771 18.0791K = .         (31) 

When the sliding mode H controller (22) is used to 
control the suspension system, the variation of the sliding 
surface is shown in Figure 3, the responses of the deflection 
and the velocity of the suspension, the deflection and the 
velocity of the tire are depicted in Figs. 4-7, respectively, 
where, the controlled responses are compared with the ones 
when no controller is applied the system. Figure 8 presents 
the response of the control force required. 

∞
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Figure 2.  The random road surface disturbance. 
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Figure 3. Variation of the sliding surface function. 
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Figure 4. Deflection of the suspension. 
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Figure 5. Velocity of the suspension. 
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Figure 6. Deflection of the tire. 
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Figure 7. Velocity of the tire. 
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