

The Algebraic Semantics of EPDL at Activity Level and Verification

Jinzhuo Liu

School of Software,
Yunnan University

Kunming, 650091, China
E-mail: jinzhuo.liu@hotmail.com

Lixia Wang

School of Economics,
Yunnan University

Kunming, 650091, China
E-mail: lxwang@ynu.edu.cn

Tong Li, Qian Yu, Na Zhao,
Feilu Hang

School of Software,
Yunnan University

Key Laboratory in Software
Engineering of Yunnan Province,

Kunming, 650091, China

Abstract— In recent years, algebraic semantics and its
verification are increasingly important in software engineering.
In this paper, firstly, the algebraic semantics of software
evolution process description language (AS-EPDL) at activity
level is explored. The algebraic semantics of activity level in
EPDL provide an accurate framework for defining the
semantics. In addition, the hierarchy-consistency and
sufficient-completeness properties of the AS-EPDL at activity
level are verified.

Keywords- Software Evolution Processes; Activity; EPDL;
algebraic semantics.

I. INTRODUCTION

Software evolution process is the interdisciplinary of
software process and software evolution which are two key
areas in software engineering.

A software evolution process is a set of interrelated
software processes under which the corresponding software
is evolving [1]. The traditional software process cannot well-
supported a software evolution framework. Therefore, Li[1]
defined a formal evolution process meta-model(EPMM)
which is based on the extended Petri Net mixed with object-
oriented technology and Hoare Logic to construct software
evolution process models with four-level architecture. But
EPMM as a software evolution process model is only a static
and abstract description of a software evolution process.
Therefore, Li[1] designed a more detailed description of a
software evolution process-software evolution process
description language (EPDL) which expend the description
power of EPMM. EPDL is an object-oriented computer
language. The syntax of EPDL is formally defined with
Extended Backus-Naur Form. However the most important
semantics of EPDL are described informally. This may lead
to ambiguity and affect the proper use of language. In this
paper, we effectively describe the semantics of activities
level of EPDL based on algebraic semantics. And also we
verified the hierarchy-consistency and sufficient-
completeness properties. Its use, however, is contributed to
the normalization and correctness of the definition of
semantics.

II. BACKGROUND INFORMATION

A. Introduction to EPDL
As Osterweil[2] has showed clearly that Human being

must employ some powerful process abstractions due to the
complexity of software process entities. Because software
processes are complex entities, researchers have created a
number of language that make it possible to represent in a
precise and comprehensive way a number of software
process features and facets[1]. These languages must be
tolerant and allow for incomplete, informal, and partial
specification [4].

A software evolution process description language is a
computer language that is used to describe software
evolution processes [1]. As the EPMM only defined in an
abstract way, it cannot be executed. So, a software evolution
description language should be defined as a program to show
the detail of a software evolution process. Due to the
requirement of software evolution, Li[1] designed an object-
oriented software evolution process description language
(EPDL).

As EPDL expend EPMM, EPDL syntax components
have four levels: the task, the activity, the software process,
the global model. The structure of EPMM and EPDL are the
same. EPDL can embody the evolutionary characteristic and
give worthy information of every abstraction level.

In this paper, we define the activity level of EPDL based
on abstract data type. Afterwards, we verify two properties -
hierarchy-consistency and sufficient-completeness based on
algebraic semantics.

The activity level describes the inner structure of an
activity. An activity is a set of tasks. The task level describes
the function and messages of a task. A task is a method (or
operation) of an activity[1]. It describes a class in an object-
oriented system. A software process can be regarded as an
object-oriented system[1].

B. Preliminary
The following is the definition of algebraic semantics

using in this paper. For the sake of conciseness, some of the
formal definitions are omitted. ∑ Algebra is directly used to
describe EPDL. The abstract data type is made up of sorts,
operation and axiom. In order to clearly understanding the

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0356

description, the following algebraic definitions need to
introduce beforehand.

Definition 2.1[3] keynote is 2-tuple ∑=(S, O) iff
1) S={si | i∈I}s a finite set. I is a finite subscript set.

Each si is called a sort. si = sj or si ≠ sj or si ∩ sj = ∅ or si ∩
sj ≠ ∅;

2) O={oj | j∈J}is a finte set. J is a finite subscript set.
Each oj is called an operation.

Definition 2[3] suppose 2-tuple ∑=(S, O) is a keynote,
2-tuple(A, F) is called a ∑ algebra[3]. iff

1) A={ai | i∈I} is a bearing set. Each ai could be mapped
into si and si also could be mapped into ai;

2) F={fj | j∈J} is a operation set. Each function fj
could be mapped into oj and oj also could be mapped into fj.

Definition 3[3] abstract data type[3] is 2-tuple D = <∑,
E> iff

1) ∑ is a keynote;
2) E is an equation.

III. THE ALGEBRAIC SEMANTICS AT ACTIVITY LEVEL

A. Syntax
The following is the syntax of EPDL at the activity level

based on Extended Backus-Naur Form (EBNF) which was
defined by Li[1].

< Activity >::= ACTIVITY < Activity Name > [FROM
[< Software Process Name >.] < Activity Name >]
[IMPORTS < Variable Declaration List > ;] [EXPORTS
< Variable Declaration List > ;] [LOCALS < Variable
Declaration List > ;] BEGIN < Activity Body > END;
< Variable Declaration List > : : = < Variable
Declaration > | < Variable Declaration > ; < Variable
Declaration List >
< Variable Declaration List > is a set of variable
declarations.
< Variable Declaration > : := <Variable List>:<Variable
Type>
< Variable Declaration List > declares variables used by an
activity.
< Task List > : : = < Task > | < Task > < Task List >
< Task List > is a set of definitions in which the tasks of the
activity are defined.
< Activity Body > : : = < Task List > | < Software Process
Name >

B. Semantics
The activity is an abstract data type which defines the

data structures and the tasks. According to the syntax of the
activity level, the following model was defined which is
based on abstract data type.

Type ACTIVITY = {

Sort Task, Process, Message, Activity, Sub
Activity, Activity Object, bool

Operation RECEIVE: Message →Activity

 AEXE:Activity×Message →ActivityObject
 SET: Task×Task×...×Task →Activity
 REFINE: Activity →Process
 INHERIT: Activity×Sub Activity →bool
Declare t: task; sp: software process which the activity

is refined as; m: message; a: this activity; ao: activity object;
Axiom RECEIVE(m) = A

 AEXE(m, Receive(m)) = ao or
 AEXE(m, Set(t1,t2,…,tn)) = ao
 REFINE(A) = sp
 INHERIT(∅ , Suba1) = False
INHERIT(a1,Suba1) = if Suba1 inherit a1 then True

else False fi
 }

At activity level, the keynote Σ = <A, Ωa> was defined at
first. It contains six sorts, every sort is declared in the
Declare of the algebraic semantics description. In the
Operation elements, “RECEIVE”, “AEXE”, “SET”,
“REFINE” and “INHERIT” are used to define the rules
which are in the axioms.

Fig. 1 Send message between activities.

In EPDL, activities are made up of a set of tasks.
Therefore, the execution of activities is the execution of a
series of tasks. In this paper, SET(t1,t2,…,tn) denotes that an
activity is a set of tasks. Tasks interact with each other by
sending message. The task may receive message from other
tasks during the execution, as shown in Figure 4. Therefore,
the Operation “RECEIVE: m →a” illustrates the operation
name is Receive and indicates that this task received the
message, as shown in Fig. 1.

Fig. 2 The refinement of activity

Activity i This Activity

Task 1 Task 2 Task n… Task 1 Task 2 Task n…

message

Activity i

The high level software
process

Activity

The low level software process

refine as

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0357

The Operation “AEXE: a×m →ao” illustrates the
operation name is AEXE and denotes the execution of
activity. So, in the axioms, the axiom “AEXE(m,
RECEIVE(m))=ao or AEXE(m, SET(t1,t2,…,tn))=ao” means
that when an activity is executed, an activity object is created.
And its task Main (one of the tasks in the activity) is
executed firstly on receiving the message Execution. As is
mentioned above, SET(t1,t2,…,tn) denotes an activity is a set
of tasks, thus, the execution of activity can also be regarded
as AEXE(m, SET(t1,t2,…,tn))=ao.

A new software process is created on a lower level if an
activity is defined a software process, as shown in Fig. 2.
The software process on the lower level is refined by the
higher level of software process. The axiom
“REFINE(A)=sp” denotes the process of refinement.

IV. HIERARCHY-CONSISTENCY AND SUFFICIENT-
COMPLETENESS

So far, a type is always described as an entirety when the
algebraic semantics described based on abstract data type.[3]

However, it contradicts with the modularization of
program design in practical. To write a large abstract data
type is easy to make mistakes. If the abstract data type can be
divided into modules, it would be likely programming and
also easy to keep the correctness. In the meantime, the reuse
of data type module is another important principle, especially
some common use basic types (bool, int etc.) are better to be
written separately and will be combinatorial used.
Considering the above principles, the modularization and
combination of algebraic semantics should be paid more
attention.

At activity level, there is only one basic type (bool) we
can reuse. So we write an expansion type of the semantics
described above. We extract the bool type separately in the
following in order to reuse.

Type ACTIVITY = { BOOL+

Sort Task, Process, Message, Activity, SubActivity,
Activity Object

Operation RECEIVE: Message →Activity
 AEXE:Activity×Message →ActivityObject
 SET: Task×Task×...×Task →Activity
 REFINE: Activity →Process
 INHERIT: Activity×SubActivity →bool
Declare t: task; sp: software process which the activity

is refined as; m: message; a: this activity; ao: activity object;
Axiom RECEIVE(m) = A

 AEXE(m, RECEIVE(m)) = ao or
 AEXE(m, SET(t1,t2,…,tn)) = ao
 REFINE(A) = sp
 INHERIT(∅ , Suba1) = False
INHERIT(a1,Suba1) = if Suba1 inherit a1 then True

else False fi
INHERIT(a1, ∅) = True
}

There are two key problems that can reflect the semantics

of basic type when the expansion type is built:

1) In the basic type, two inequality basic type may
become equal in the expansion type.

2) The expansion type may add basic types which are
not original exist.

Definition 4 hierarchy-consistency[3]Let D2 denote the
expansion type of D1. The expansion type D2 is called
hierarchy-consistency relative to D1, iff:

1) s ∈ S1. Each s is the consequence sort of basic types t
and t’ in D2;

2) t=t’ is provable in D2 iff t=t’ is provable in D1.
Definition 5 Sufficient-completeness[3]Let D2 denote the

expansion type of D1. Suppose any s ∈ S1 and s is the
consequence sort of basic types t and t’ in D2, t=t’is provable
in D2 iff t=t’ is provable in D1. The expansion type D2 is
called sufficient-completeness relative to D1, iff:

1) s ∈ S1. Each s is the consequence sort of a basic type
t in D2;

2) t=t’ is provable in D2.
 Based on the definitions above, the verification of the
expansion type of hierarchy-consistency and sufficient-
completeness are proved in the following.

Proposition 1 ACTIVITY is hierarchy-consistency.
PROOF. To proof the hierarchy-consistency in the

axiom of ACTIVITY, the equation which the consequence
sort is BOOL should deduce True≠False. As INHERIT(∅ ,
Suba1)= False is the only equation can deduce False,
therefore, we need to prove for all the activity a INHERIT(a,
Suba1)=True, then, a1≠∅ . According to the equation, only
the axiom INHERIT(a, ∅)= True can deduct to True. But
there isn’t any axiom can prove a1= ∅ , so ACTIVITY is
hierarchy-consistency.

Proposition 2 ACTIVITY is sufficient-completeness
PROOF. For the sufficient-completeness, it only

involves the sixth axiom. We should prove for all a1 and
Suba1 the deductive result of INHERIT(a1, Suba1) is True
or False. For this axiom, there only have two results True or
False. Consequently, we can deduct the result is True or
False in certainly steps. Therefore, the ACTIVITY is
sufficient-completeness.

V. CONCLUSIONS

It is dramatically important to describe the algebraic
semantic of software evolution process description language
of activity level. After the description of the semantics of
EPDL in formal method, the EPDL become more accurately.
Moreover, based on the formal semantic this research also
verify its hierarchy-consistency and sufficient-completeness,
which is contributed to the modularization and correctness of
the EPDL semantics of the activity level.

However, there still remains much work. Firstly, there’re
four levels of EPDL. In this paper, our works mainly focus
on the activity level.

There’re the other levels’ semantics need to be described
using the method of algebraic semantics. And better to be
proof like this paper. And a full algebraic semantics of EPDL
(AS-EPDL) and its verification will be given at the end.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0358

Secondly, after AS-EPDL is given, the characteristic of
AS-EPDL such as soundness and completeness will be
researched.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61262024 and No.
61262025; the Key Subject Foundation of School of
Software of Yunnan University and the Open Foundation of
Key Laboratory in Software Engineering of Yunnan
Province under Grant No. 2010KS01; the Postgraduates
Science Foundation of Yunnan University under Grant No.
ynuy201131; Scientific Research Fund of Yunnan Provincial
Department of Education under Grant 2012C108; Science
Foundation of Yunnan Province under Grant No.
2012FB119; Science Foundation of Yunnan Province
Education Department No. 2011Y120; Yunnan Province
Science Youth Experts Fund No.2012FD005.

REFERENCES
[1] T. Li, “An Approach to Modelling Software Evolution

Processes[M],” Springer-Verlag, Berlin, 2008.
[2] L.J. Osterweil, “Understanding process and the quest for deeper

questions in software engineering research,” ACM SIGSOFT
Software Engineering Notes 8: 6-14.

[3] R.Q. Lu, “Formal semantics of computer language, ”Science press,
Peking, 1992.

[4] A. Fuggetta, “Software process: a roadmap,” Proceedings of the
conference on the future of software engineering, ACM Press, New
York, pp 25-34.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0359

