

Algebraic Semantics-based Verification for EPDL at Task Level

Jinzhuo Liu

School of Software,
Yunnan University

Kunming, 650091, China
E-mail: jinzhuo.liu@hotmail.com

Lixia Wang

School of Economics,
Yunnan University

Kunming, 650091, China
E-mail: lxwang@ynu.edu.cn

Wei Wang, Xuan Zhang, Ye
Qian, Rui Zhu

School of Software,
Yunnan University

Key Laboratory in Software
Engineering of Yunnan Province,

Kunming, 650091, China

Abstract— The algebraic semantics has been applied to
describe and verify semantics for a long period of time. In this
paper, the algebraic semantics of EPDL of task level is studied.
The paper is divided into two parts. In the first part, the initial
algebraic semantics of EPDL (AS-EPDL) of task level is given.
As a consequence of the practical purpose, we give the
expansion type, which can help the modularization of
programming. However, there are two key problems we should
concern about when the expansion type is built - hierarchy-
consistency and sufficient-completeness. Therefore, we give
the verification of these two properties in the second part of the
paper.

Keywords- Software Evolution Processes; Task; Activity;
EPDL; algebraic semantics.

I. INTRODUCTION

With the dramatically increase of legacy systems in the
last few years, software evolution is becoming increasingly
important. Software systems change trigger by the changes
in techniques and requirements. Software processes is a set
of interrelated software processes which can provide a
framework to manage activities in software development.
Software evolution process is the interdisciplinary of
software process and software evolution which becomes a
key area in software engineering.

A software evolution process is a set of interrelated
software processes under which the corresponding software
is evolving[1]. A software evolution process description
language that is used to describe software evolution
processes[1]. Li[1] defined a formal evolution process meta-
model(EPMM) which is based on the extended Petri Net
mixed with object-oriented technology and Hoare Logic to
construct software evolution process models with four-level
architecture-the global level, the process level, the activity
level, the task level. However, EPMM is hard to enact
directly because EPMM is an abstract description of
software evolution process model. Therefore, Li[1] designed
a detailed description of a software evolution process-
software evolution process description language (EPDL).

As Osterweil has pointed out Human being must employ
some powerful process abstractions owing to the complexity
of software process entities[2]. Because software processes
are complex entities, researchers have created a number of
language that make it possible to represent in a precise and

comprehensive way a number of software process features
and facets[1]. These languages must be tolerant and allow for
incomplete, informal, and partial specification [4].

EPDL is an object-oriented computer language that
expends the descriptive power of EPMM. As the EPDL is
designed based on EPMM, the syntax of EPDL also map
into four levels- the global model level, the software process
level, the activity level and the task level. The structure of
EPDL is exactly the same as EPMM. To describe a software
process correctly EPDL needs to capture the aspects of
software evolution processes. Li[1] defined the syntax of
EPDL in formally with Extended Backus-Naur Form without
giving a formal semantics of it. In order to make the
semantics of EPDL more explicit, we give the formal
semantics of EPDL of task level based on algebraic
semantics in this paper. In this paper, we use the abstract
data type to define the task level of EPDL. The task level
describes the function and messages of a task. A task is a
method (or operation) of an activity[1].

Furthermore, we give an expansion type of the original
semantics we defined which can help the modularization and
reuse of the algebraic semantics. As the expansion type may
cause new inconformity problems, we give the verification
of hierarchy-consistency and sufficient-completeness
afterwards.

II. BACKGROUND INFORMATION

The definitions of algebraic semantics using in this paper
are show in the following. Because of the limit of pages,
some formal definitions are omitted. In this paper, we use the
abstract data type to describe EPDL. The abstract data type
contains sorts, operation and axiom which its formal
definition listed below.

Definition 1 Keynote[3] is 2-tuple ∑=(S, O) iff
1) S={si | i∈I}s a finite set. I is a finite subscript set.

Each si is called a sort. si = sj or si ≠ sj or si ∩ sj = ∅ or si ∩
sj ≠ ∅;

2) O={oj | j∈J}is a finte set. J is a finite subscript set.
Each oj is called a operation.

Definition 2 suppose 2-tuple ∑=(S, O) is a keynote, 2-
tuple(A, F) is called a ∑ algebra[3]. iff

1) A={ai | i∈I} is a bearing set. Each ai could be mapped
into si and si also could be mapped into ai;

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0360

2) F={fj | j∈J} is an operation set. Each function fj
could be mapped into oj and oj also could be mapped into fj.

Definition 3 abstract data type[3] is 2-tuple D = <∑, E>
iff

1) ∑ is a keynote;
2) E is an equation.

III. THE ALGEBRAIC SEMANTICS AT TASK LEVEL

The algebraic semantics of the task level are defined in
the following based on the abstract data type.

Type TASK = {
 Sort Message, Task, TargetTask, PreC,

PostC, P(x), bool
 Operation RECEIVE: Message →Task
 TEXE: PreC×Message →PostC
 SEND: Task×TargetTask →bool
 NOT: bool →bool
 AND: bool×bool →bool
 OR: bool×bool →bool
 IMPLY: P(x)×P(x) →bool
 IFF: P(x)×P(x) →bool
 ALL: x×P(x) →bool
 EXIST: x×P(x) →bool

 Declare m: message; t: task; td: the target task;

Exp: the predicate formula; prec: refers to precondition, a
precondition is a first-order predicate formula which defines
the state before a task is executed; postc: refers to
postcondition, a postcondition is a first-order predicate
formula which defines the state after a task is executed; P(x):
refers to a first-order predicate formula.

 Axiom RECEIVE (m) = m
 SEND(t1,t2) = True

TEXE(prec, RECEIVE(m)) = postc or
TEXE(prec, m) = postc or
TEXE(SEND(t1,t2)) = True

 NOT(exp) = if exp = True then False
 else True fi

 AND(exp,NOT(exp)) = False
 AND(exp1,exp1) = exp1
 AND(exp1,exp2) = if exp1 = True and exp2 = True

then True
 else False fi
 OR (exp,NOT(exp)) = True

 OR(exp1,exp1) = exp1
OR(exp1,exp2) = if exp1 = False and exp2 = False

then False
 else True fi
 IMPLY(exp1,exp2) = if exp1exp2 then True

 else False fi
 IFF(exp1,exp2) = if exp1 ⇔exp2 then True

 else False fi
 ALL(x,P(x)) = if (∀x)(P(x)) then True
 else False fi
 EXIST(x,P(x)) = if(∃x)(P(x)) then True

 else False fi
}

When we design the algebraic semantics, the keynote Σ =
<T, Ωt> is always defined first. It contains seven sorts, every
sort is declared in the Declare of the algebraic semantics
description of the task level. “RECEIVE”, “TEXE”,
“SEND”, “NOT”, “AND”, “OR”, “IMPLY”, “IFF”, “ALL”
and “EXIST” are used to define the rules in the Operation
elements which are used in the axioms.

The Operation “RECEIVE: Message →Task” illustrates
the operation name is RECEIVE and indicates that this task
received the message that was sent by other tasks. Thereby,
in the axioms, the axiom “RECEIVE(m) = m” is valid
according to the operation element.

The Operation “SEND: Task×TargetTask →bool”
illustrates the operation name is Send and indicates that the
task send message to other tasks. Hence, the axiom
“SEND(m) = True” means this task send message to others
and they received according to the operation element.

The Operation “TEXE: PreC×Message →PostC”
illustrates the operation name is TEXE and indicates that the
execution of tasks. Precondition defines the state before task
t is executed and postcondition defines the state after task t is
executed. And A(F) = ({Q1}, {Q2}) is called a 2-assertion,
which defines the function of task t, as shown in Figure 3.3.
So, in the axioms, the axiom “TEXE(prec) = postc” denotes
the execution of tasks. “TEXE(prec, RECEIVE(m)) = postc”
denotes that when the task is executing, it may receive
messages from other tasks otherwise it cannot keep
executing. And the function of some tasks is to send
messages, consequently “TEXE(SEND(t1,t2)) = True”
denotes the success of sending message.

In the task level, it uses first-order predicate formula.
“NOT” denotes “¬”; “AND” denotes “∧”; “OR” denotes
“∨”; “IMPLY” denotes “”; “IFF” denotes “ ⇔ ”; “ALL”
denotes “∀” and “EXISTS” denotes “∃”.

So, in the axioms, the axiom “NOT(exp) = if exp = True
then False else True” denotes that if the expression is true
NOT(exp) is false and vice versa.

The axiom “AND(exp1,exp2) = if exp1 = True and exp2 =
True then True else False” denotes that if the expression1 and
the expression2 are all true and(exp) is true and vice versa.

The axiom “OR(exp1,exp2) = if exp1 = False and exp2 =
False then False else True” denotes that if the expression1
and the expression2 are false OR(exp1,exp2) is false and vice
versa.

The axiom “IMPLY(exp1,exp2) = if exp1exp2 then
True else False” denotes that if the expression1 implies the
expression2 IMPLY(exp1,exp2) is true and vice versa.

The axiom “IFF(exp1,exp2) = if exp1 ⇔ exp2 then True
else False” denotes that if the truth value of the expression1 is
equivalent to the truth value of the expression2 IFF(exp1,exp2)
is true and vice versa.

∀x denotes all x in the field. (∀x)(P(x)) denotes all x
have the characteristic P in the field. The axiom “ALL(x,
P(x)) = if (∀x)(P(x)) then True else False” denotes that if all
x in the field have the characteristic P ALL(x, P(x)) is true
and vice versa.

∃x denotes that the x is exist in the field. (∃x)(P(x))
denotes that x has the characteristic P in the field. The axiom

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0361

“EXIST(x, P(x)) = if(∃x)(P(x)) then True else False” denotes
that if there is a x in the field which has the characteristic P
EXIST(x, P(x)) is true and vice versa.

IV. HIERARCHY-CONSISTENCY AND SUFFICIENT-
COMPLETENESS

So far, a type is always described as an entirety when the
algebraic semantics described based on abstract data type.[3]
Nevertheless, this idea have contradicts with the
modularization of program design in reality. It may easy
make mistakes during writing a large abstract data type. For
sake of correctness and modularization, we can divide the
abstract data type into modules. In addition, the reuse of data
type module is also important such as bool, int etc. They are
usually written separately but used combinatorial. In
consideration of the above principles, we rewrite the
expansion type of the AS-EPDL at task level. We extract the
bool type separately in the following to improve the
modularization and correctness.

Type TASK = {BOOL+
 Sort Message, Task, TargetTask, PreC,

PostC, P(x)
 Operation RECEIVE: Message →Task
 TEXE: PreC×Message →PostC
 SEND: Task×TargetTask →bool
 NOT: bool →bool
 AND: bool×bool →bool
 OR: bool×bool →bool
 IMPLY: P(x)×P(x) →bool
 IFF: P(x)×P(x) →bool
 ALL: x×P(x) →bool
 EXIST: x×P(x) →bool
 Declare m: message; t: task; td: the target task;

Exp: the predicate formula; prec: refers to precondition, a
precondition is a first-order predicate formula which defines
the state before a task is executed; postc: refers to
postcondition, a postcondition is a first-order predicate
formula which defines the state after a task is executed; P(x):
refers to a first-order predicate formula.

 Axiom RECEIVE(m) = m
 SEND(t1,t2) = True

TEXE(prec, RECEIVE(m)) = postc or
TEXE(prec, m) = postc or
TEXE(SEND(t1,t2)) = True

 NOT(exp) = if exp = True then False
else True fi

AND(exp, NOT(exp)) = False
 AND(exp1,exp1) = exp1
 AND(exp1,exp2) = if exp1 = True and exp2 = True

then True
 else False fi
 OR (exp, NOT(exp)) = True

 OR(exp1,exp1) = exp1
OR(exp1,exp2) = if exp1 = False and exp2 = False

then False
 else True fi

 IMPLY(exp1,exp2) = if exp1exp2 then True
 else False fi

 IFF(exp1,exp2) = if exp1 ⇔exp2 then True
 else False fi

 ALL(x, P(x)) = if (∀x)(P(x)) then True
 else False fi
 EXIST(x, P(x)) = if(∃x)(P(x)) then True

 else False fi
}
After the expansion type of original semantics is given,

two problems are coming up:
1) Whether the two basic type in the original

semantics which are not equal become equally in the
expansion type;

2) During the expansion, it may add new basic types
which are not original exist.

According to the concern above, in the algebraic
semantics there are two properties which can check these
two problems.

Definition 4 hierarchy-consistency[3]Let D2 denote the
expansion type of D1. The expansion type D2 is called
hierarchy-consistency relative to D1, iff:

1) s ∈ S1. Each s is the consequence sort of basic types t
and t’ in D2;

2) t=t’is provable in D2 iff t=t’ is provable in D1.
Definition 5 Sufficient-completeness[3]Let D2 denote the

expansion type of D1. Suppose any s ∈ S1 and s is the
consequence sort of basic types t and t’ in D2, t=t’is provable
in D2 iff t=t’ is provable in D1. The expansion type D2 is
called sufficient-completeness relative to D1, iff:

1) s ∈ S1. Each s is the consequence sort of a basic type
t in D2;

2) t=t’ is provable in D2.
Proposition 1 TASK is hierarchy-consistency.
PROOF. As we only extract the basic type Bool, to

proof the hierarchy-consistency in the axiom of TASK, the
equation which the consequence sort is BOOL should
deduce True≠False. As AND(exp, NOT(exp))= False is the
only equation can deduce False, therefore, we need to prove
for all the AND(exp, exp)=TRUE, exp≠NOT(exp).
According to the axioms, there aren’t any axiom can deduct
to exp=NOT(exp). Hence, TASK is hierarchy-consistency.

Proposition 2 TASK is sufficient-completeness.
PROOF. For the sufficient-completeness, it involves the

following axioms: NOT(exp) , AND(exp1, exp2), OR(exp1,
exp2), IMPLY(exp1, exp2), IFF(exp1, exp2), ALL(x, P(x)),
EXIST(x, P(x)). We should prove for all exp, P(x) the
deductive result of these equations is True or False. For these
axioms, they only have two results True or False.
Consequently, we can deduct the result is True or False in
certainly steps. Therefore, the TASK is sufficient-
completeness.

V. CONCLUSIONS

It is important to describe the semantics of EPDL with
formal semantics. In this paper, we not only define the
algebraic semantics of EPDL at task level, but also expand

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0362

the expansion type of it, which can improve the
normalization, modularization. Furthermore, we verify the
expansion type of its hierarchy-consistency and sufficient-
completeness properties.

However, there still remains much work. Firstly, there’re
four levels of EPDL. In this paper, our works mainly focus
on the task level which can not reflect the entire formal
semantics of EPDL. Secondly, after the whole AS-EPDL is
given, the characteristic of AS-EPDL such as soundness and
completeness will be researched.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 61262024 and No.
61262025; the Key Subject Foundation of School of
Software of Yunnan University and the Open Foundation of
Key Laboratory in Software Engineering of Yunnan
Province under Grant No. 2010KS01; the Postgraduates
Science Foundation of Yunnan University under Grant
No.ynuy201131; Science Foundation of Yunnan Province
Education Department No. 2011Y121; Science Foundation
of Yunnan Province under Grant No. 2012FB118 and No.
2012FB119; Science Foundation of Yunnan Province
Education Department No. 2011Y120.

REFERENCES
[1] T. Li, “An Approach to Modelling Software Evolution Processes”

Springer-Verlag, Berlin, 2008.
[2] L.J. Osterweil, “Understanding process and the quest for deeper

questions in software engineering research” ACM SIGSOFT
Software Engineering Notes 8: 6-14.

[3] R.Q. Lu, “Formal semantics of computer language” Science press,
Peking, 1992.

[4] A. Fuggetta, “Software process: a roadmap” Proceedings of the
conference on the future of software engineering, ACM Press, New
York, pp 25-34.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0363

