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Abstract— The algebraic semantics has been applied to 
describe and verify semantics for a long period of time. In this 
paper, the algebraic semantics of EPDL of task level is studied. 
The paper is divided into two parts. In the first part, the initial 
algebraic semantics of EPDL (AS-EPDL) of task level is given. 
As a consequence of the practical purpose, we give the 
expansion type, which can help the modularization of 
programming. However, there are two key problems we should 
concern about when the expansion type is built - hierarchy-
consistency and sufficient-completeness. Therefore, we give 
the verification of these two properties in the second part of the 
paper. 

Keywords- Software Evolution Processes; Task; Activity; 
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I.  INTRODUCTION 

With the dramatically increase of legacy systems in the 
last few years, software evolution is becoming increasingly 
important. Software systems change trigger by the changes 
in techniques and requirements. Software processes is a set 
of interrelated software processes which can provide a 
framework to manage activities in software development. 
Software evolution process is the interdisciplinary of 
software process and software evolution which becomes a 
key area in software engineering. 

A software evolution process is a set of interrelated 
software processes under which the corresponding software 
is evolving[1]. A software evolution process description 
language that is used to describe software evolution 
processes[1].  Li[1] defined a formal evolution process meta-
model(EPMM) which is based on the extended Petri Net 
mixed with object-oriented technology and Hoare Logic to 
construct software evolution process models with four-level 
architecture-the global level, the process level, the activity 
level, the task level. However, EPMM is hard to enact 
directly because EPMM is an abstract description of 
software evolution process model. Therefore, Li[1] designed 
a detailed description of a software evolution process-
software evolution process description language (EPDL).  

As Osterweil has pointed out Human being must employ 
some powerful process abstractions owing to the complexity 
of software process entities[2]. Because software processes 
are complex entities, researchers have created a number of 
language that make it possible to represent in a precise and 

comprehensive way a number of software process features 
and facets[1]. These languages must be tolerant and allow for 
incomplete, informal, and partial specification [4]. 

EPDL is an object-oriented computer language that 
expends the descriptive power of EPMM. As the EPDL is 
designed based on EPMM, the syntax of EPDL also map 
into four levels- the global model level, the software process 
level, the activity level and the task level. The structure of 
EPDL is exactly the same as EPMM. To describe a software 
process correctly EPDL needs to capture the aspects of 
software evolution processes. Li[1] defined the syntax of 
EPDL in formally with Extended Backus-Naur Form without 
giving a formal semantics of it. In order to make the 
semantics of EPDL more explicit, we give the formal 
semantics of EPDL of task level based on algebraic 
semantics in this paper. In this paper, we use the abstract 
data type to define the task level of EPDL. The task level 
describes the function and messages of a task. A task is a 
method (or operation) of an activity[1].  

Furthermore, we give an expansion type of the original 
semantics we defined which can help the modularization and 
reuse of the algebraic semantics. As the expansion type may 
cause new inconformity problems, we give the verification 
of hierarchy-consistency and sufficient-completeness 
afterwards.  

II. BACKGROUND INFORMATION 

The definitions of algebraic semantics using in this paper 
are show in the following. Because of the limit of pages, 
some formal definitions are omitted. In this paper, we use the 
abstract data type to describe EPDL. The abstract data type 
contains sorts, operation and axiom which its formal 
definition listed below. 

Definition 1 Keynote[3] is 2-tuple ∑=(S, O) iff 
1) S={si | i∈I}s a finite set. I is a finite subscript set. 

Each si is called a sort. si = sj or si ≠ sj or si ∩ sj = ∅ or si ∩ 
sj ≠ ∅; 

2) O={oj | j∈J}is a finte set. J is a finite subscript set. 
Each oj is called a operation. 

Definition 2 suppose 2-tuple ∑=(S, O) is a keynote, 2-
tuple(A, F) is called a ∑ algebra[3]. iff 

1) A={ai | i∈I} is a bearing set. Each ai could be mapped 
into si and si also could be mapped into ai; 
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2) F={fj | j∈J} is an operation set. Each function fj 
could be mapped into oj and oj also could be mapped into fj. 

Definition 3 abstract data type[3] is 2-tuple D = <∑, E> 
iff 

1) ∑ is a keynote; 
2) E is an equation. 

III. THE ALGEBRAIC SEMANTICS AT TASK LEVEL 

The algebraic semantics of the task level are defined in 
the following based on the abstract data type. 

Type TASK = { 
 Sort       Message, Task, TargetTask, PreC, 

PostC,  P(x),  bool 
 Operation   RECEIVE: Message →Task 
        TEXE: PreC×Message →PostC 
        SEND: Task×TargetTask →bool 
        NOT: bool →bool 
        AND: bool×bool →bool 
        OR: bool×bool →bool 
        IMPLY: P(x)×P(x) →bool 
        IFF: P(x)×P(x) →bool 
        ALL: x×P(x) →bool 
        EXIST: x×P(x) →bool 
 
 Declare       m: message; t: task; td: the target task; 

Exp: the predicate formula; prec: refers to precondition, a 
precondition is a first-order predicate formula which defines 
the state before a task is executed; postc: refers to 
postcondition, a postcondition is a first-order predicate 
formula which defines the state after a task is executed; P(x): 
refers to a first-order predicate formula. 

 Axiom      RECEIVE (m) = m 
       SEND(t1,t2) = True 

TEXE(prec, RECEIVE(m)) = postc or 
TEXE(prec, m) = postc or 
TEXE(SEND(t1,t2)) = True 

     NOT(exp) = if exp = True then False 
                            else  True fi 

 AND(exp,NOT(exp)) = False  
 AND(exp1,exp1) = exp1   
 AND(exp1,exp2) = if exp1 = True and exp2 = True   

then True 
   else False fi 
 OR (exp,NOT(exp)) = True 

 OR(exp1,exp1) = exp1 
OR(exp1,exp2) = if exp1 = False and exp2 = False 

then False  
                                   else True fi 
 IMPLY(exp1,exp2) = if exp1exp2 then True 

       else  False fi 
 IFF(exp1,exp2) = if exp1 ⇔exp2 then True 

                else  False fi 
 ALL(x,P(x)) = if (∀x)(P(x)) then True 
         else  False fi 
 EXIST(x,P(x)) = if(∃x)(P(x)) then True 

             else  False fi 
} 

When we design the algebraic semantics, the keynote Σ = 
<T, Ωt> is always defined first. It contains seven sorts, every 
sort is declared in the Declare of the algebraic semantics 
description of the task level. “RECEIVE”, “TEXE”, 
“SEND”, “NOT”, “AND”, “OR”, “IMPLY”, “IFF”, “ALL” 
and “EXIST” are used to define the rules in the Operation 
elements which are used in the axioms.  

The Operation “RECEIVE: Message →Task” illustrates 
the operation name is RECEIVE and indicates that this task 
received the message that was sent by other tasks. Thereby, 
in the axioms, the axiom “RECEIVE(m) = m” is valid 
according to the operation element.  

The Operation “SEND: Task×TargetTask →bool” 
illustrates the operation name is Send and indicates that the 
task send message to other tasks. Hence, the axiom 
“SEND(m) = True” means this task send message to others 
and they received according to the operation element. 

The Operation “TEXE: PreC×Message →PostC” 
illustrates the operation name is TEXE and indicates that the 
execution of tasks. Precondition defines the state before task 
t is executed and postcondition defines the state after task t is 
executed. And A(F) = ({Q1}, {Q2}) is called a 2-assertion, 
which defines the function of task t, as shown in Figure 3.3. 
So, in the axioms, the axiom “TEXE(prec) = postc” denotes 
the execution of tasks. “TEXE(prec, RECEIVE(m)) = postc” 
denotes that when the task is executing, it may receive 
messages from other tasks otherwise it cannot keep 
executing. And the function of some tasks is to send 
messages, consequently “TEXE(SEND(t1,t2)) = True” 
denotes the success of sending message. 

In the task level, it uses first-order predicate formula. 
“NOT” denotes “¬”; “AND” denotes “∧”; “OR” denotes 
“∨”; “IMPLY” denotes “”; “IFF” denotes “ ⇔ ”; “ALL” 
denotes “∀” and “EXISTS” denotes “∃”.  

So, in the axioms, the axiom “NOT(exp) = if exp = True 
then False else True” denotes that if the expression is true 
NOT(exp) is false and vice versa.  

The axiom “AND(exp1,exp2) = if exp1 = True and exp2 = 
True then True else False” denotes that if the expression1 and 
the expression2 are all true and(exp) is true and vice versa. 

The axiom “OR(exp1,exp2) = if exp1 = False and exp2 = 
False then False else True” denotes that if the expression1 
and the expression2 are false OR(exp1,exp2) is false and vice 
versa. 

The axiom “IMPLY(exp1,exp2) = if exp1exp2 then 
True else False” denotes that if the expression1 implies the 
expression2 IMPLY(exp1,exp2) is true and vice versa. 

The axiom “IFF(exp1,exp2) = if exp1 ⇔ exp2 then True 
else False” denotes that if the truth value of the expression1 is 
equivalent to the truth value of the expression2 IFF(exp1,exp2) 
is true and vice versa.  

∀x denotes all x in the field. (∀x)(P(x)) denotes all x 
have the characteristic P in the field. The axiom “ALL(x, 
P(x)) = if (∀x)(P(x)) then True else False” denotes that if all 
x in the field  have the characteristic P ALL(x, P(x)) is true 
and vice versa.  

∃x denotes that the x is exist in the field. (∃x)(P(x)) 
denotes that x has the characteristic P in the field. The axiom 
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“EXIST(x, P(x)) = if(∃x)(P(x)) then True else False” denotes 
that if there is a x in the field which has the characteristic P 
EXIST(x, P(x)) is true and vice versa. 

IV. HIERARCHY-CONSISTENCY AND SUFFICIENT-
COMPLETENESS 

So far, a type is always described as an entirety when the 
algebraic semantics described based on abstract data type.[3] 
Nevertheless, this idea have contradicts with the 
modularization of program design in reality. It may easy 
make mistakes during writing a large abstract data type. For 
sake of correctness and modularization, we can divide the 
abstract data type into modules. In addition, the reuse of data 
type module is also important such as bool, int etc. They are 
usually written separately but used combinatorial. In 
consideration of the above principles, we rewrite the 
expansion type of the AS-EPDL at task level. We extract the 
bool type separately in the following to improve the 
modularization and correctness.  
 

Type TASK = {BOOL+ 
 Sort       Message, Task, TargetTask, PreC, 

PostC, P(x) 
 Operation   RECEIVE: Message →Task 
        TEXE: PreC×Message →PostC 
        SEND: Task×TargetTask →bool 
        NOT: bool →bool 
        AND: bool×bool →bool 
        OR: bool×bool →bool 
        IMPLY: P(x)×P(x) →bool 
        IFF: P(x)×P(x) →bool 
        ALL: x×P(x) →bool 
        EXIST: x×P(x) →bool 
 Declare       m: message; t: task; td: the target task; 

Exp: the predicate formula; prec: refers to precondition, a 
precondition is a first-order predicate formula which defines 
the state before a task is executed; postc: refers to 
postcondition, a postcondition is a first-order predicate 
formula which defines the state after a task is executed; P(x): 
refers to a first-order predicate formula. 

 Axiom      RECEIVE(m) = m 
       SEND(t1,t2) = True 

TEXE(prec, RECEIVE(m)) = postc or 
TEXE(prec, m) = postc or 
TEXE(SEND(t1,t2)) = True 

     NOT(exp) = if exp = True then False 
else True fi 

AND(exp, NOT(exp)) = False  
 AND(exp1,exp1) = exp1   
 AND(exp1,exp2) = if exp1 = True and exp2 = True   

then True 
   else False fi 
 OR (exp, NOT(exp)) = True 

 OR(exp1,exp1) = exp1 
OR(exp1,exp2) = if exp1 = False and exp2 = False 

then False  
                                   else True fi 

 IMPLY(exp1,exp2) = if exp1exp2 then True 
       else  False fi 

 IFF(exp1,exp2) = if exp1 ⇔exp2 then True 
                else  False fi 

 ALL(x, P(x)) = if (∀x)(P(x)) then True 
         else False fi 
 EXIST(x, P(x)) = if(∃x)(P(x)) then True 

             else  False fi 
} 
After the expansion type of original semantics is given, 

two problems are coming up: 
1) Whether the two basic type in the original 

semantics which are not equal become equally in the 
expansion type; 

2) During the expansion, it may add new basic types 
which are not original exist. 

According to the concern above, in the algebraic 
semantics there are two properties which can check these 
two problems.  

Definition 4 hierarchy-consistency[3]Let D2 denote the 
expansion type of D1. The expansion type D2 is called 
hierarchy-consistency relative to D1, iff: 

1) s ∈ S1. Each s is the consequence sort of basic types t 
and t’ in D2; 

2) t=t’is provable in D2 iff t=t’ is provable in D1. 
Definition 5 Sufficient-completeness[3]Let D2 denote the 

expansion type of D1. Suppose any s ∈ S1 and s is the 
consequence sort of basic types t and t’ in D2, t=t’is provable 
in D2 iff t=t’ is provable in D1. The expansion type D2 is 
called sufficient-completeness relative to D1, iff: 

1) s ∈ S1. Each s is the consequence sort of a basic type 
t in D2; 

2) t=t’ is provable in D2. 
Proposition 1    TASK is hierarchy-consistency. 
PROOF.  As we only extract the basic type Bool, to 

proof the hierarchy-consistency in the axiom of TASK, the 
equation which the consequence sort is BOOL should 
deduce True≠False. As AND(exp, NOT(exp))= False is the 
only equation can deduce False, therefore, we need to prove 
for all the AND(exp, exp)=TRUE, exp≠NOT(exp). 
According to the axioms, there aren’t any axiom can deduct 
to exp=NOT(exp). Hence, TASK is hierarchy-consistency. 

Proposition 2    TASK is sufficient-completeness. 
PROOF.  For the sufficient-completeness, it involves the 

following axioms: NOT(exp) , AND(exp1, exp2), OR(exp1, 
exp2), IMPLY(exp1, exp2), IFF(exp1, exp2), ALL(x, P(x)), 
EXIST(x, P(x)). We should prove for all exp, P(x) the 
deductive result of these equations is True or False. For these 
axioms, they only have two results True or False. 
Consequently, we can deduct the result is True or False in 
certainly steps. Therefore, the TASK is sufficient-
completeness. 

V. CONCLUSIONS 

It is important to describe the semantics of EPDL with 
formal semantics. In this paper, we not only define the 
algebraic semantics of EPDL at task level, but also expand 
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the expansion type of it, which can improve the 
normalization, modularization. Furthermore, we verify the 
expansion type of its hierarchy-consistency and sufficient-
completeness properties. 

However, there still remains much work. Firstly, there’re 
four levels of EPDL. In this paper, our works mainly focus 
on the task level which can not reflect the entire formal 
semantics of EPDL. Secondly, after the whole AS-EPDL is 
given, the characteristic of AS-EPDL such as soundness and 
completeness will be researched. 
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