

Distributed Computing Design Methods for Multicore Application Programming

Qian Yu, Tong Li, Zhong Wen Xie, Na Zhao, Ying Lin
School of Software, Yunnan University, Kun Ming, 650091, China

Key Laboratory in Software Engineering of Yunnan Province
yuqian2001cn@163.com

Abstract—In order to solve the serial execution caused by
multithreaded concurrent access to shared data and realize the
dynamic load balance of tasks on shared memory symmetric
multi-processor (multi-core) computing platform, new design
methods are presented. By presenting multicore distributed
locks, multicore shared data localization, multicore distributed
queue, the new design methods can greatly decrease the
number of accessing the shared data and realize the dynamic
load balance of tasks. For illustration, design scheme of
multicore task manager of server software are given by using
new design methods. Results shows the new design methods
reduce the number of access shared resources, partially resolve
the serial execution of cooperative threads and realize the
dynamic task balance of server software, which validate the
superiority of this approach.

Keywords- multithread concurrency; multicore distributed
lock; multicore shared data localization;multicore distributed
queue.

I. INTRODUCTION

Shared memory symmetric multiprocessor is the
mainstream platform of multicore computing. The
architectures mainly focus on exploiting thread-level
parallelism rather than instruction-level parallelism.
Traditional multithread concurrent access mechanisms have
lock-based access models [1]-[4] and lock-free access model
[5]-[8]. Exclusive locks [1] only allows one thread to enter
mutual section at the same time, other shared threads are be
blocked and queued to access the resource. Conditional lock
[2] allows a thread to wait or wake other threads when a
particular condition is satisfied, which doesn’t provide no-
starvation implementation on common data structures.
Conditional lock reduces the number lock is used, much
better performance than the mutually exclusive lock. Fich [3]

puts forward ways to mutually exclusive access to the share
register. Hierarchical lock [4] is to enable more users to
concurrently access to database resources. The shared
resource protected by coarse lock contains the resource
protected by fine-grained lock. Accessing shared resource at
lower lever causes the data contend.

Lock-free concurrent access implements by atomic
operations CAS (compare and swap). Lock-free concurrent
access better performance than locking concurrency, but
Lock-free-based programming is difficult to grasp. The
method is very complex and causes deadlock.

The efficiency by solving a recursive equation that

depends on the distribution of task service times and the

expected number of tasks needed to be synchronized,
efficiency decreases with an increase in the number of
processors [10]. Eliminating barrier synchronization [11] for
compiler-parallelized codes on software distributed shared
memory. In parallel computing, task time that it takes for a
processor to complete a task using local synchronization [12]
approaches an exact limit as the number of processors in the
cycle approaches infinity. Under global synchronization,
however, the time is unbounded, increasing logarithmically
with the number of processors. Local barriers and predictive
barriers scheduling for reducing synchronization overhead
are presented in the simulation of message-passing multi-
computers [13].

However, multicore environment is different from
multicomputer in which we mainly focus on communication
and data migration of global data.

In multi-core environment if thread concurrent access to
shared resources using coarse-grained locks, threads must be
queued waiting for a shared resource and the serial execution.
No more thread executing in system leads to the CPU core
be idle and in a State of hunger.

The paper presents multicore distributed lock, the design
method of multicore distributed data structure and multicore
shared data localization in order to reduce the times of lock
operation and decrease synchronization queuing times of
waiting for shared resource.

The paper is structured as follows. The second section
presents multicore distributed lock to avoid blocked
multithread queuing caused by using centralized lock. The
third section introduces the method of multicore shared data
localization. The fourth section introduces t design scheme
of multicore task manager of server software. The fifth
section analyses the running result of task manager.

II. MULTICORE DISTRIBUTED LOCK

 In order to analyze the performance of multi-threaded
concurrent access mechanism, two concepts of thread
granularity[9] (expressed by Tgranularity) and lock granularity
(expressed by Keygranularity) are defined. Thread granularity is
the ratio of effective computing time in thread and thread
computing time, that is, Tgranularity =（tinside+tparallel）/tlockunlock,
tinside expresses running time of operations inside lock,
tlockunlock expresses running time of lock operations, tparallel
expresses parallel computing time of operation outside lock.
Thread granularity is proportional to the effective
computing time inside thread and inversely proportional to
lock operation time inside thread. The larger the effective

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0364

computing within thread, the greater the thread granularity,
so applications that execute in parallel, less break down the
number of threads. Lock granularity [5] is used to measure
the size of a shared resource. It is associated with a shared
resource data and the operation of shared data. There are
coarse grained lock and fine-grained lock.
 This paper defines lock granularity (Keygranularity), which
is the ratio of tinside and tlockunlock, that is, Keygranularity = tinside/
tlockunlock. Operation time is small in coarse-grained lock, but
lock contend time in order to waiting for shared resource
becomes longer. The smaller fine-grained lock protects
shared-resource, the shorter lock contend time. Fine-grained
lock can decrease the time queued shared resources.

As tlockunlock is a constant in multicore environment, and
therefore make the lock granularity smaller lock, can only
reduce the amount of internal calculations. In fine-grained-
lock-based access model, the lock internal computing only
relates to the shared resources, the non-shared resource
computing must be moved to the lock external computing; if
the lock is the large calculation of the shared resource, it can
be decomposed into smaller shared resource calculation to
set fine-grained-lock, but also can reduce the probability of
each shared resource synchronization queued by thread.

Multi-core distributed lock synchronous mechanism is to
break large sharing data down into small blocks, and to set
fine-grained lock on each small piece of shared data,
avoiding creating a multithreaded queue caused by multiple
threads to synchronize access to a lock or use atomic
operations to access the same variable. As shown in Figure 1,
No. 1 thread, No. 2 thread, No. 3 thread, No. 4 thread share
large data block by synchronizing access.

Figure 1. shared resource using Centralized lock

To makes thread use more fine-grained locks, shared data
operations need to be split into more small operation blocks
for which set a lock. Thread of shared same block data are
divided into a group, in which threads contend for same lock.
Any two threads which are not in same group do not occur
lock contend. It is multicore distributed lock policy.

As shown in Figure 2, six threads to synchronize access
to shared data are broken down into three chunks, and six
threads are divided into three groups. No.1 thread and No.2
thread, No.3 thread and No.4 thread, No.5 thread and No.6
thread respectively synchronize access to data block 1, data
block 2 and data block 3.

Figure 2. thread contend in group by multicore distributed lock

However, under normal circumstances, only part of the
threads can grouped to synchronize access to same shared
data, others which cannot be in group because they need to
synchronize access to different shared data. As shown in
Figure 3, No.1 thread need access to all shared data, however,
any two threads of No.2, No.3, No.4 threads are independent.
Each of three threads must synchronize access to shared data
block respectively with No.1 thread.

Figure 3. partial threads contend in group by multicore distributed lock

Sometimes while shared data can be divided into
multiple small data block, multiple threads must access all of
small data block, which threads cannot group. This paper
take measure to random access any data block by using
distributed lock, so there does not exists synchronization
contend as long as each moments the thread access different
of data block. As shown in Figure 4, thread No.1or 2or 3 to
randomly access the shared data blocks NO.1or 2or 3. The
performance of this distributed lock is less than grouping
threads synchronize access to shared resources, but better
than the performance of centralized synchronization for
accessing data.

Figure 4. random competition share resources using multicore distributed

lock

III. THREADS SHARED DATA LOCALIZATION

The cache locality of sequential programs has been
improved relying upon hints provided at the time of thread
creation to determine a thread execution order likely to
reduce cache misses [14].

Breaking the data into the thread-private data, there does
not exist data competition between threads, so thread
calculation does not require locks and do not need to use
atomic operations when the thread data is localized. No
synchronization of threads running fast, the shared data for

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0365

those existing data competition issues in multi-core
processor systems, should try to break it down into the
thread-private data, which can reduce the calculation access
to shared resources. This is multicore distributed lock
competition mode with local computing.

As shown in Figure 5, group synchronization threads
share data, and each thread has a private data for local
computing, which can reduce the number of access thread
locks so as to improve the parallel degree of threads in
multicore environment.

Figure 5. threads contend in group with localized data

Shared bulk data can be extracted as local data of thread,
which design method can reduce the access number of thread
synchronization data and increase the parallelism of threads
in multi-core environment.

IV. DESIGN SCHEME OF MULTICORE TASK MANAGER OF

SERVER SOFTWARE

Task manager of server software is a producer-consumer
model implemented by programming interface provided by
the operating system.

As shown in Figure 6, Traditional design mode is that
producers in the server accept the clients’ incoming requests
and assign a thread to handle them, while a consumer get and
handle a task from shared queue. When producer put the task
into shared queue, consumers don’t get the task from it and
must wait for producer release the access right of the shared
queue. Any two of consumers must exclusively access the
shared queue, which lead to some CPU core idle.

Figure 6. traditional design mode of server software

In order to resolve the above problem, we present a new
design scheme for multicore application which has three
strategies. The first strategy is to let threads contend in group.
There are two groups of producer threads and consumer
threads in this example. The second strategy is to change the
single shared queue into distributed shared queue which is
two-level or multilevel queue. Distributed lock is used on
distributed shared queue to ensure multi-threads

synchronously access shared sub-queue. The third strategy is
to add each consumer with a local queue. The data in local
queue is private data of each consumer thread which data can
be bulk get from distributed shared queue in order to reduce
the number of access the shared data.

The new design method has three key components which
are multicore distributed shared queue with distributed lock,
thread pool and local queue of each consumer respectively.

As shown in Figure 7, distributed queue realizes mutually
access the shared sub-queue and dynamic load balance, only
when producer and one consumer or any two consumers
access the same sub-queue, they must mutually access,
which reduce the probability of queue for shared resources.
In others circumstances, producer and consumer can run in
parallel. Every consumer has a local queue into which
consumer get tasks in bulk from shared queue in order to
greatly reduce the number of access shared resource.

s
h
a
r
ed

su
b
q
u
eu
e

s
h
a
r
ed

su
b
q
u
eu
e

s
h
a
r
ed

su
b
q
u
eu
e

s
h
a
r
ed

su
b
q
u
eu
e

L
o
ca
l

q
u
eu
e

L
o
ck

L
o
ck

L
o
ck

L
o
ck

L
o
ca
l

q
u
eu
e

Figure 7. threads contend in group with localized data, distributed queue

and distributed lock

V. RUNNING RESULTS ANALYSIS

Implementation of server software has three functions:
producer producing tasks and putting them into shared sub-
queue, consumer bulk getting tasks into its local queue form
shared queue and taking tasks from its local queue to
implement them one by one, tracking each thread handling
tasks processes as well as load per thread.

The server software has six components which are
Thread Pool, Distribute Queue, Local Queue, Share Queue,
Task Manager, Scheduler respectively. Thread Pool
component can produce the consumer threads. Distribute
Queue component sets the number of local queue according
to the number of threads and gets bulk tasks from shared
sub-queues into the local queue from which thread can get
task and implement. Component of Task Manager creates
distributed queue, local queue and thread pool preparing for
scheduling task. Scheduler tracks all actions of server
software from creating producer thread and consumer
threads to putting the tasks into shared queue of distributed
queue by producer thread, from getting the tasks from shared
queue and putting them into local queue to pop the task to
handle it.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0366

As shown in the figure 8, by tracking the actions of
scheduling tasks, all the tasks has been present which each
consumer thread has completed.

As shown in the figure 9, by giving the total calculation
completed by each thread, dynamic task scheduling balance
is realized by those new distributed design methods.

Figure 8. result of tracking thread

Figure 9. results of load balance scheduling tasks on each thread

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No. 60963007, No.
61262024 and No. 61262025; Scientific Research Fund of
Yunnan Provincial Department of Education under Grant
No.2012C108 and No. 2010Y250; Education Innovation
Fund of Software School of Yunnan University under Grant
No.2010EI13 and No.2010EI14; Talents training mode of
creative experiment project of Ministry of education under
Grant No. X3108005; Science Foundation of Yunnan
Province under Grant No. 2010CD026, No.2012FB118;
Science Foundation of Yunnan Education Department under
Grant No. 2012Y257; Science Foundation of Key
Laboratory of Software Engineering of Yunnan Province
under Grant No. 2011SE09.

REFERENCES
[1] DIJKSTRA, E. W. “Solution of a problem in concurrent

programming control,” Communication ACM 8, 9 ,Sept. 1965, 569.

[2] Leslie Lamport, “A fast mutual exclusion algorithm,”[J] ACM
Transactions on Computer Systems, Vol. 5 No. 1, 1987, pp. l-11.

[3] Fich, Faith; Hendler, Danny; Shavit, Nir. “On the inherent weakness
of conditional synchronization primitives,” Proceedings of the 23rd
Annual ACM Symposium on Principles of Distributed Computing,
PODC July 25 – 28,2004: St. John's, Newfoundland, Canada. New
York, NY: ACM Press. pp. 80–87.

[4] J. N. Gray, R. A. Lorie, and G. R. Putzolu. “Granularity of locks in a
shared data base,” In Proceedings of the 1st International Conference
on Very Large Data Bases (VLDB '75). ACM, New York, NY, USA,
1975,pp.428-451.

[5] Campbell, M.D. and Holt, R.L. “Lock-Granularity Analysis Tools in
WR4-MP,” [J]. Software, IEEE,10(2),1993,pp.66-70.

[6] Danny Hendler and Nir Shavit. “Non-blocking steal-half work
queues,” In Proceedings of the twenty-first annual symposium on

Principles of distributed computing. ACM, New York, NY, USA,
2002,pp. 280-289.

[7] Kogan, Alex; Petrank, Erez. “Wait-free queues with multiple
enqueuers and dequeuers,” Proceedings of the 16th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 2011,
pp.12-16.

[8] Kogan, Alex; Petrank, Erez. "A methodology for creating fast wait-
free data structures," Proceedings of the 17ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. New
Orleans, LA: ACM Press. 2012, pp. 141-150.

[9] Zhou Wei-ming. Multi-core computing and programming [M].
Wuhan:Huazhong University of Science & Technology Press,2009.

[10] Chang C S, Nelson R. “Bounds on the speedup and efficiency of
partial synchronization in parallel processing,” [J]. Systems Journal of
the Association for Computing Machinery, January 1995,42(1).

[11] Han H, Tseng C, Keleher P. “Eliminating barrier synchronization for
compiler-parallelized codes on software DSMs,” [J]. International
Journal of Parallel Programming,26(5), 1998, pp.591-612.

[12] Julia L, Quentiin F. Stout. “A performance analysis of local
synchronization,” [C]. In Proceedings of the 18th ACM Symposium
on Parallelism in Algorithms and Architectures, July 2006,254-260.

[13] Legedza U, Weihl W. “Reducing synchronization overhead in parallel
simulation,” [C]. In Workshop on Parallel and Distributed Simulation,
1996,pp.86-95.

[14] James Philbin, Jan Edler, Otto J. Anshus, Craig C. Douglas, and Kai
Li.. “Thread scheduling for cache locality,” SIGOPS Oper. Syst. Rev.
30, 5. 1996, pp.60-71.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0367

