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Abstract—In order to solve the serial execution caused by 
multithreaded concurrent access to shared data and realize the 
dynamic load balance of tasks on shared memory symmetric 
multi-processor (multi-core) computing platform, new design 
methods are presented. By presenting multicore distributed 
locks, multicore shared data localization, multicore distributed 
queue, the new design methods can greatly decrease the 
number of accessing the shared data and realize the dynamic 
load balance of tasks. For illustration, design scheme of 
multicore task manager of server software are given by using 
new design methods. Results shows the new design methods 
reduce the number of access shared resources, partially resolve 
the serial execution of cooperative threads and realize the 
dynamic task balance of server software, which validate the 
superiority of this approach.  

Keywords- multithread concurrency; multicore distributed 
lock; multicore shared data localization;multicore distributed 
queue. 

I.  INTRODUCTION 

Shared memory symmetric multiprocessor is the 
mainstream platform of multicore computing. The 
architectures mainly focus on exploiting thread-level 
parallelism rather than instruction-level parallelism. 
Traditional multithread concurrent access mechanisms have 
lock-based access models [1]-[4] and lock-free access model 
[5]-[8]. Exclusive locks [1] only allows one thread to enter 
mutual section at the same time, other shared threads are be 
blocked and queued to access the resource. Conditional lock 
[2] allows a thread to wait or wake other threads when a 
particular condition is satisfied, which doesn’t provide no-
starvation implementation on common data structures. 
Conditional lock reduces the number lock is used, much 
better performance than the mutually exclusive lock. Fich [3] 

puts forward ways to mutually exclusive access to the share 
register. Hierarchical lock [4] is to enable more users to 
concurrently access to database resources. The shared 
resource protected by coarse lock contains the resource 
protected by fine-grained lock. Accessing shared resource at 
lower lever causes the data contend. 

Lock-free concurrent access implements by atomic 
operations CAS (compare and swap). Lock-free concurrent 
access better performance than locking concurrency, but 
Lock-free-based programming is difficult to grasp. The 
method is very complex and causes deadlock. 

 
The efficiency by solving a recursive equation that 

depends on the distribution of task service times and the 

expected number of tasks needed to be synchronized, 
efficiency decreases with an increase in the number of 
processors [10]. Eliminating barrier synchronization [11] for 
compiler-parallelized codes on software distributed shared 
memory. In parallel computing, task time that it takes for a 
processor to complete a task using local synchronization [12] 
approaches an exact limit as the number of processors in the 
cycle approaches infinity. Under global synchronization, 
however, the time is unbounded, increasing logarithmically 
with the number of processors. Local barriers and predictive 
barriers scheduling for reducing synchronization overhead 
are presented in the simulation of message-passing multi-
computers [13].  

However, multicore environment is different from 
multicomputer in which we mainly focus on communication 
and data migration of global data.  

In multi-core environment if thread concurrent access to 
shared resources using coarse-grained locks, threads must be 
queued waiting for a shared resource and the serial execution. 
No more thread executing in system leads to the CPU core 
be idle and in a State of hunger.  

The paper presents multicore distributed lock, the design 
method of multicore distributed data structure and multicore 
shared data localization in order to reduce the times of lock 
operation and decrease synchronization queuing times of 
waiting for shared resource. 

The paper is structured as follows. The second section 
presents multicore distributed lock to avoid blocked 
multithread queuing caused by using centralized lock. The 
third section introduces the method of multicore shared data 
localization. The fourth section introduces t design scheme 
of multicore task manager of server software. The fifth 
section analyses the running result of task manager. 

 

II. MULTICORE DISTRIBUTED LOCK 

      In order to analyze the performance of multi-threaded 
concurrent access mechanism, two concepts of thread 
granularity[9] (expressed by Tgranularity) and lock granularity 
(expressed by Keygranularity) are defined. Thread granularity is 
the ratio of effective computing time in thread and thread 
computing time, that is, Tgranularity =（tinside+tparallel）/tlockunlock, 
tinside expresses running time of operations inside lock, 
tlockunlock expresses running time of lock operations, tparallel 
expresses parallel computing time of operation outside lock. 
Thread granularity is proportional to the effective 
computing time inside thread and inversely proportional to 
lock operation time inside thread. The larger the effective 
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computing within thread, the greater the thread granularity, 
so applications that execute in parallel, less break down the 
number of threads. Lock granularity [5] is used to measure 
the size of a shared resource. It is associated with a shared 
resource data and the operation of shared data. There are 
coarse grained lock and fine-grained lock. 
      This paper defines lock granularity (Keygranularity), which 
is the ratio of tinside and tlockunlock, that is, Keygranularity = tinside/ 
tlockunlock. Operation time is small in coarse-grained lock, but 
lock contend time in order to waiting for shared resource 
becomes longer. The smaller fine-grained lock protects 
shared-resource, the shorter lock contend time. Fine-grained 
lock can decrease the time queued shared resources. 

As tlockunlock is a constant in multicore environment, and 
therefore make the lock granularity smaller lock, can only 
reduce the amount of internal calculations. In fine-grained-
lock-based access model, the lock internal computing only 
relates to the shared resources, the non-shared resource 
computing must be moved to the lock external computing; if 
the lock is the large calculation of the shared resource, it can 
be decomposed into smaller shared resource calculation to 
set fine-grained-lock, but also can reduce the probability of 
each shared resource synchronization queued by thread. 

Multi-core distributed lock synchronous mechanism is to 
break large sharing data down into small blocks, and to set 
fine-grained lock on each small piece of shared data, 
avoiding creating a multithreaded queue caused by multiple 
threads to synchronize access to a lock or use atomic 
operations to access the same variable. As shown in Figure 1, 
No. 1 thread, No. 2 thread, No. 3 thread, No. 4 thread share 
large data block by synchronizing access. 

 
Figure 1.  shared resource using Centralized lock 

To makes thread use more fine-grained locks, shared data 
operations need to be split into more small operation blocks 
for which set a lock. Thread of shared same block data are 
divided into a group, in which threads contend for same lock. 
Any two threads which are not in same group do not occur 
lock contend. It is multicore distributed lock policy. 

As shown in Figure 2, six threads to synchronize access 
to shared data are broken down into three chunks, and six 
threads are divided into three groups. No.1 thread and No.2 
thread, No.3 thread and No.4 thread, No.5 thread and No.6 
thread respectively synchronize access to data block 1, data 
block 2 and data block 3. 

 
Figure 2.  thread contend in group by multicore distributed lock 

However, under normal circumstances, only part of the 
threads can grouped to synchronize access to same shared 
data, others which cannot be in group because they need to 
synchronize access to different shared data. As shown in 
Figure 3, No.1 thread need access to all shared data, however, 
any two threads of No.2, No.3, No.4 threads are independent. 
Each of three threads must synchronize access to shared data 
block respectively with No.1 thread. 

 
Figure 3.  partial threads contend in group by multicore distributed lock 

Sometimes while shared data can be divided into 
multiple small data block, multiple threads must access all of 
small data block, which threads cannot group. This paper 
take measure to random access any data block by using 
distributed lock, so there does not exists synchronization 
contend as long as each moments the thread access different 
of data block. As shown in Figure 4, thread No.1or 2or 3 to 
randomly access the shared data blocks NO.1or 2or 3. The 
performance of this distributed lock is less than grouping 
threads synchronize access to shared resources, but better 
than the performance of centralized synchronization for 
accessing data. 

 
Figure 4.  random competition share resources using multicore distributed 

lock 

III. THREADS SHARED DATA LOCALIZATION 

The cache locality of sequential programs has been 
improved relying upon hints provided at the time of thread 
creation to determine a thread execution order likely to 
reduce cache misses [14]. 

Breaking the data into the thread-private data, there does 
not exist data competition between threads, so thread 
calculation does not require locks and do not need to use 
atomic operations when the thread data is localized. No 
synchronization of threads running fast, the shared data for 
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those existing data competition issues in multi-core 
processor systems, should try to break it down into the 
thread-private data, which can reduce the calculation access 
to shared resources. This is multicore distributed lock 
competition mode with local computing.  

As shown in Figure 5, group synchronization threads 
share data, and each thread has a private data for local 
computing, which can reduce the number of access thread 
locks so as to improve the parallel degree of threads in 
multicore environment. 

 
Figure 5.  threads contend in group with localized data 

Shared bulk data can be extracted as local data of thread, 
which design method can reduce the access number of thread 
synchronization data and increase the parallelism of threads 
in multi-core environment. 

IV. DESIGN SCHEME OF MULTICORE TASK MANAGER OF 

SERVER SOFTWARE 

Task manager of server software is a producer-consumer 
model implemented by programming interface provided by 
the operating system.  

As shown in Figure 6, Traditional design mode is that 
producers in the server accept the clients’ incoming requests 
and assign a thread to handle them, while a consumer get and 
handle a task from shared queue. When producer put the task 
into shared queue, consumers don’t get the task from it and 
must wait for producer release the access right of the shared 
queue. Any two of consumers must exclusively access the 
shared queue, which lead to some CPU core idle.  

 
Figure 6.  traditional design mode of server software 

In order to resolve the above problem, we present a new 
design scheme for multicore application which has three 
strategies. The first strategy is to let threads contend in group. 
There are two groups of producer threads and consumer 
threads in this example. The second strategy is to change the 
single shared queue into distributed shared queue which is 
two-level or multilevel queue. Distributed lock is used on 
distributed shared queue to ensure multi-threads 

synchronously access shared sub-queue. The third strategy is 
to add each consumer with a local queue. The data in local 
queue is private data of each consumer thread which data can 
be bulk get from distributed shared queue in order to reduce 
the number of access the shared data. 

The new design method has three key components which 
are multicore distributed shared queue with distributed lock, 
thread pool and local queue of each consumer respectively.  

As shown in Figure 7, distributed queue realizes mutually 
access the shared sub-queue and dynamic load balance, only 
when producer and one consumer or any two consumers 
access the same sub-queue, they must mutually access, 
which reduce the probability of queue for shared resources. 
In others circumstances, producer and consumer can run in 
parallel. Every consumer has a local queue into which 
consumer get tasks in bulk from shared queue in order to 
greatly reduce the number of access shared resource. 
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Figure 7.  threads contend in group with localized data, distributed queue 

and distributed lock 

V. RUNNING RESULTS ANALYSIS 

Implementation of server software has three functions: 
producer producing tasks and putting them into shared sub-
queue, consumer bulk getting tasks into its local queue form 
shared queue and taking tasks from its local queue to 
implement them one by one, tracking each thread handling 
tasks processes as well as load per thread.  

The server software has six components which are 
Thread Pool, Distribute Queue, Local Queue, Share Queue, 
Task Manager, Scheduler respectively. Thread Pool 
component can produce the consumer threads. Distribute 
Queue component sets the number of local queue according 
to the number of threads and gets bulk tasks from shared 
sub-queues into the local queue from which thread can get 
task and implement. Component of Task Manager creates 
distributed queue, local queue and thread pool preparing for 
scheduling task. Scheduler tracks all actions of server 
software from creating producer thread and consumer 
threads to putting the tasks into shared queue of distributed 
queue by producer thread, from getting the tasks from shared 
queue and putting them into local queue to pop the task to 
handle it. 
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As shown in the figure 8, by tracking the actions of 
scheduling tasks, all the tasks has been present which each 
consumer thread has completed. 

As shown in the figure 9, by giving the total calculation 
completed by each thread, dynamic task scheduling balance 
is realized by those new distributed design methods. 

 
Figure 8.  result of tracking thread 

 
Figure 9.  results of load balance scheduling tasks on each thread 
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