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Abstract—Linear cryptanalysis is a statistical analysis method. 
Linear cryptanalysis constructs probabilistic patterns first and 
then distinguishes the cipher from a random permutation 
using lots of plaintext-ciphertext pairs. Linear cryptanalysis 
has a big data complexity. Algebraic attack attempts to exploit 
the algebraic structure of the cipher by expressing the 
encryption transformation as a set of polynomial equations 
and then attempts to solve the system to recover the encryption 
key. Algebraic attacks do not need too much data. This paper 
combines these two methods by using algebraic techniques in 
linear cryptanalysis, and proposes a new cryptanalysis method 
called Algebraic Techniques in Linear Cryptanalysis. This new 
method is used in the existing linear cryptanalysis of 
PRESENT. To recover 8-bit key information of 21-round 

PRESENT, the data complexity is 62 and the time complexity 

is 62 .Compared with the result of linear cryptanalysis, the data 
complexity is obviously decreased. 

Keywords- linear cryptanalysis; algebraic attack; data 
complexity 

I.  INTRODUCTION  

A new cryptanalytic method against block cipher 
“Algebraic Techniques in Linear Cryptanalysis” is proposed 
by combining both algebraic attack and linear cryptanalysis. 
The new method is applied to the lightweight block cipher 
PRESENT. Similar to Algebraic Techniques in Differential 
Cryptanalysis, the new method constructs probabilistic 
patterns based on the algebraic structure of the algorithm and 
the linear trails, and then tries to recover the key by solving 
the system. In this way, the data complexity will be 
decreased obviously. This paper is structured as follows. 
First, the block cipher PRESENT is briefly described in 
section 2. Then linear cryptanalysis and algebraic attack are 
described in section 3.Section 4 gives the details of the new 
cryptanalytic method. Section 5 describes the application of 
the new attack against reduced round PRESENT. And a brief 
summary is presented in section 6. 

II. BLOCK CIPHER PRESENT 

The block cipher PRESENT was proposed by Bogdanov 

et al. at CHES 2007 as an ultra-lightweight block cipher
[1]

. 
PRESENT is an SP-network with a blocksize of 64 bits and 
consists of 31 rounds. Two key sizes of 80 and 128 bits are 
supported. Each round of the cipher has three layers: 
KeyAddLayer, SboxLayer and Player. In every round, a 
single 4-bit S-box is applied 16 times in parallel. 

AddRoundKey. Given round key 63 0
i iK k k=  , 1 32i≤ ≤ and the 

current state 63 0...b b ,AddRoundKey consists of the operation 

for 0 63j≤ ≤ , i
j j jb b k→ ⊕ . 

SboxLayer. The S-box of PRESENT is a 4-bit to 4-bit S-
box : 4 4

2 2F F→ . 
Player. The bit permutation is given by that bit i is moved to 
bit position ( )P i . 
KeySchedule. PRESENT can take keys of 80 or 128 bits. 
Here the key schedule PRESENT-80 is focused. The user-
supplied key is stored in a key register K and represented 
as 79 78 0k k k . At round i the 64-bit round key 63 62 0iK k k k=   
consists of the 64 leftmost bits of the current contents of 
register K. After extracting the round key iK , the key 
register 79 78 0...K k k k= is updated as follows. 

a． 79 78 0 18 17 20 19[ ] [ ]k k k k k k k=   

b． 79 78 77 76 79 78 77 76[ ] [ ]k k k k S k k k k=  

c． 19 18 17 16 15 19 18 17 16 15[ ] [ ] _k k k k k k k k k k round counter= ⊕  

III. BRIEF INTRODUCTIONS OF LINEAR CRYPTANALYSIS 

AND ALGEBRAIC ATTACK 

A. Linear cryptanalysis 

Linear cryptanalysis
[2][3]

 is a known plaintext attack. The 
basic idea is recovering some key bits by using the 
unbalanced linear approximations between plaintext, 
ciphertext and key of the cipher. Firstly, linear cryptanalysis 
needs to find an “effective” linear expression of a given 
cipher as follows: 

1 2 1 2 1 2[ , ... ] [ , ... ] [ , ... ]a b ci i i j j j k k kP C K⊕ = , here 

1 2 1 2 1 2, ... , , ... , , ...a b ci i i j j j k k k are fixed bits. For randomly given 

plaintext P and ciphertext C , the probability of the equation 
is 1/ 2p ≠ .and bias | 1/ 2 |pε = −  gives the validity of the 
equation and is called the advantage of the approximation. 
To find an effective linear approximation, the statistical 
method is used to give some linear approximations of the 
input and the output of the main part of the round function. 
After connecting the approximations of each round and 
eliminating the intermediate variables, approximations called 
linear trails which only involve the plaintext、the ciphertext 
and the key will be received. If an effective linear expression 
is already known, then a key bit can be tested as follows: 
(1) Let T  be the number of the plaintexts which satisfy that 

the left of the equation equals to 0. 
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(2)If / 2T N> ( N is the number of plaintexts), then 
when 1/ 2p > ,

1 2[ ... ] 1
ck k kK = ; when 1/ 2p < ,

1 2[ ... ] 0
ck k kK = . 

A linear approximation α β→ of an iterated block cipher 
is called a linear hull. A linear hull includes all the linear 
approximations which has input α and output β . When there 
is only one linear trail between a given pair, linear trail is the 
same with linear hull. A linear hull is a cluster of linear trails 
and its approximation advantage will be larger than any 
single linear trail. Given input mask a and output mask b and 
cipher ( , )Y Y X K= , the approximation advantage of a linear 

hull is 2 2( , ) ( ( 0) 1/ 2)
c

ALH a b p a X b Y c K ε= ⋅ ⊕ ⋅ ⊕ ⋅ = − = . And c is 

the key mask. To recover the key, 2/ ( , ) /N t ALH a b t ε= =  
known plaintexts are needed, t is a constant. 

B. Algebraic attack 

The basic idea of algebraic attack
[3][4]

 can be described as 
follows:(1)express the cipher as simple equations of several 
variables and these variables can be some fixed bits(or bytes) 
of plaintext、ciphertext and the key, or some bits of the 
intermediate state and the round subkeys;(2) substitute the 
equations in (1) with the collected plaintext-ciphertext pairs 
and try to solve the equations to recover the key. 

IV. ALGEBRAIC TECHNIQUES IN LINEAR CRYPTANALYSIS 

When algebraic attack is applied to a cipher, firstly the 
cipher will be expressed into a system of equations, then by 
solving the system some related key bits can be recovered. In 
order to make the system easy to solve, the problem how to 

increase the number of linear equations is considered
[5]

. 
Assume a equation system 'F can be constructed from a 

single plaintext-ciphertext pair ' '( , )P C , and then under the 

same encryption key, ''F can be constructed from another 
pair '' ''( , )P C . Combining 'F with ''F : ' ''F F F= ∪ . The number 
of linear equations is increased in this way. But even the 
initial key and the key strategy of 'F and ''F are the same, the 
intermediate variables are not absolutely the same. That is to 
say, while with the number of the equations is increased, the 
number of unknown variables in the system is also 

increased
[5]

. So another method is considered by applying 
the characteristic of linear approximations in Method-1. 

A. Method-1 

Assume the target cipher is an example of SP-network, 
and a linear trail 0 2( , , )rδ δ δΔ =  is obtained. 1i iδ δ− → means 

one round approximation with probability 1/ 2i ip ε= + . 

According to the Piling-Up Lemma of Matsui
[2]

, 
approximations of each round can be considered as mutually 

independent, so the probability of Δ can be 1

1
1/ 2 2

r
r

i
i

P ε−

=
= + ∏ . 

Let m
ijX m

ijY be the input and output of the m th active S-

box in the i th round, then system F is constructed. For each 
active S-box related to the known linear trail: 

1 1

0 0
0

s s
m m
ij ij

j j
X Y

− −

= =
⊕ =  ， 1, 2i r=  ， 0,1 1j s= − ， 1, 2 im m=   

im is the number of active S-boxes in the i th round. The 

probability of the above equation is 1/ 2im imp ε= +  

Then from n active S-boxes in the whole linear trail, 

0

r

i
i

n m
=

=  new equations can be achieved, and 

these n equations constitute F . 

Set 'F F F= ∪ , and F includes all the equations achieved 
from the related active S-boxes. The probability of F (equal 
to the probability of F ) is: 

1 2

0

11 1 21 1 1 1

1 0

(1/ 2 ) (1/ 2 )(1/ 2 ) (1/ 2 ) (1/ 2 ) (1/ 2 )

(1/ 2 ) 2 2

r

r

j
i

i

m m r m

mr m n
ij

i j

P ε ε ε ε ε ε

ε =
− −

= =

= + + + + + +


= + ≈ =∏ ∏

   

 

n is the number of all active S-boxes that the linear trail 
involves. 

Then 1/ 2 nP −≈ pairs of plaintext and ciphertext can be 
used to solve the above system F , and a non-empty solution 
can be expected. From the algebraic point of view, F is 
easier to be solved than 'F . Since unlike ''F , F increases the 
number of linear equations without adding new variables 
to 'F . However, to solve such a big system 1/ P times directly 
is also very difficult, so the following method-2 considers 
another way to recover the key to avoid this problem. 

B. Method-2 

Still assume the cipher is an example of SP-network. A 
linear trail 0 2( , , )rδ δ δΔ =  is known with same probability P . 

A plaintext-ciphertext pair ( , )P C is called a right pair if it 
satisfies the linear trail Δ . For the sake of simplicity, the 
following analysis is based in the assumption that there is 
only one active S-box in the first round. And its input 
is 1 jX and output is 1 jY . Then 

1 0j j jX P K= ⊕ , 1 1 0( ) ( )j j j jY S X S P K= = ⊕ ， 0,1... 1j s= − . 

If ( , )P C is a right pair, there must be: 
1 1 1 1

1 1 0 0
0 0 0 0

( ) ( ) 0
s s s s

j j j j j j
j j j j

X Y P K S P K
− − − −

= = = =
⊕ = ⊕ ⊕ ⊕ =     

And 1 1j jX Y are not  zero at the same time. 

The above equation only has unknown variables 0 jK . So 

on the premise of a known right pair, a small system can be 
set up for each active S-box in the first round to recover 
some information of the first round key. And similarly, this 
method can be used to recover some information of the last 
round key. Let rjX be the input and rjY be the output of the 

last round, then there is: 
0rj rjX Y⊕ =   

Set up the small system, and some information of the last 
round key can be recovered by solving the system. 

The premise of Method-2 is a known right pair of the 
linear trail, so the next task is to consider how such a right 
pair can be obtained. 
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Here system 'F F F= ∪ in Method-1 can be a filter. 1t is 

denoted as the time to judge a right pair(determined by 
experiment) , and the time to judge a wrong pair is no more 
than 1t . A pair ( , )P C is substituted into the system F . If in 

time 1t , there is no conflict, ( , )P C will be a right pair of the 

linear trail. By this way, after a right pair is obtained, the 
small system in Method-2 can be constructed to recover the 
key information. 

Observe the process of the key recovery in Method-2, it 

only related to the approximations of the active S-boxes in 

the first and last round, but has no relation to the 

intermediate states of the linear trail Δ . This characteristic is 

similar to linear hull. So the linear trails will be replaced by 

linear hull in constructing the filtration system. 
Assume an r-round linear hull 0 rδ δ→ and a corresponding 

right pair is already obtained. Then similarly the small 

system in Method-2 can be used to recover the key. 
Let 1 1j jX Y be the input and output of the S-boxes in the i th 

round and then there is: 

1 0

1 1

0 0

1

0

0

( ) ( ) 0

( ) ( ) 0
j j j

rj j rj

j j
j j

rj rj
j j

j j j j
j jX P K

Y C K
j rj j rj

j j

X Y

X Y

P K S P K

S C K C K

= ⊕
−= ⊕

⊕ =

 ⊕ =


⊕ ⊕ ⊕ =
⎯⎯⎯⎯⎯⎯→

⊕ ⊕ ⊕ =


 

 

 

 

 

The above system is denoted as F . The probability of F is 
about 1 2(1/ 2)n n+ , 1n , 2n are the numbers of active S-boxes in 

the first an last round respectively, and 1 2n n n+ <= . Construct 

system 'F F F= ∪ , and F can be a filtration system. In 
F , F is much more simple than F in Method-1. Precisely, 
F is achieved from F by removing the equations 
corresponding to the active S-boxes in the middle round. 
And the equations corresponding to the last and first round 
active S-boxes constitutes F .The probability of F is 
about 1 2(1/ 2)n n+ , larger than (1/ 2)n in Method-1. That is to say, 

after 1 2(1/ 2)n n+ times filtering operations, rather than 

(1/ 2)n times in linear trail situation, a right pair can be 
expected. The decrease of filtering is the advantage of using 
linear hull instead of linear trails. At the same time, the 
number of equations in the filtration system is also decreased, 
then the time to judge a right pair (denoted as 2t )will be 

shorter than 1t . 

V. APPLY THE NEW METHOD TO PRESENT 

A. A single linear trail 

There is a 21-round linear trail of PRESENT-80
[4]

 : 

1 1

19

0000000000 00000 0000000000200000 0000000000200000

0000000000200000

r r

r

A ⎯⎯→ ⎯⎯→

⎯⎯⎯→
    According to Matsui’s Piling-up Lemma, the bias of this 
trail is 422ε −= . 22 active S-boxes are involved. System F in 
Method-1 can be constructed and its probability is 
about 222P −≈ . So after 222 times filtering of plaintext and 
ciphertext pairs, a right pair ( , )P C satisfying this linear trail 
can be obtained. 

Construct the small system in Method-2 for active S-box 
10S in the first round: 

0 0 0

1 1 1

2 2 2

3 3 3

0 0 1 3 0 2 3 0 1 2 3 1 2 2 3

1 0 1 3 0 2 3 0 2 0 3 0 1 2 3

2 0 1 3 0 1 0 2 3 0 2 0 1 2 3 2

3 0 1 2 1 3

0 1 2 3 0 1 2 3

1

1

0

X P K

X P K

X P K

X P K

Y X X X X X X X X X X X X X X

Y X X X X X X X X X X X X X X

Y X X X X X X X X X X X X X X X

Y X X X X X

X X X X Y Y Y Y

= ⊕
= ⊕
= ⊕
= ⊕

= + + + + + + +
= + + + + + + +
= + + + + + +
= + + +
+ + + + + + + = （ added by














  the linear trail）

    0 1 2 3X X X X are 4 bits input and 0 1 2 3Y Y Y Y are the 4 bits output 

of 10S . The above system can be simply denoted as  

0 1 2 3( , , , ) 0X Y f k k k k+ = =  . 

There are 42 16= possible key candidates, set a counter for 
every candidate. If the key satisfies 

0 1 2 3( , , , ) 0X Y f k k k k+ = =   

its corresponding counter plus 1. 

 
Fig 1. Right pair detection in linear trails 

In a personal computer under the programming environment 
of visual studio 2012, the time to judge a right pair by using 
the above filtration system can be 1 10t s<= . 

When a right pair (0000000000 00000,0000000000200000)A  is 
obtained, the small system can be constructed for 10S in the 

first round, and simplify it: 0 1 2 3( , , , )X Y f k k k k⊕ =  . 

Substitute each key candidate into this equation and its 
counter plus 1 when it matches the conditions. Repeat this 
process m times, and take the key relevant to the peak 
counter as the right key. For example, let 8m = , then the 
counter relevant to the right key should be 8, and the 
probability of taking the wrong candidates is 82 0.01− < . Under 
the same programming environment, the time to judge a 
right candidate is 3 1t s<= . Then 8s are needed to detecting the 

key. 
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Fig 2. Key detection 

The 4 bits information of the first round key 0K can be 

recovered by using this attack. The data complexity is 
22 258 2 2× = , and the time complexity is  

22 4 25 7 28.32
1 32 2 2 10 2 2m t m t× × + × × <= × + ≈ . 

If m is bigger, the probability of taking the wrong key 
candidates will be much small, and the attack will be more 
accurate.   

On the basis of  the above attack, 4 bits information of the 
last round key can also be recovered. Then in all, 8 bits of 
the key can be recovered. The whole data complexity is 
still 252 , and the time complexity is  

22 4 4 28.32
1 3 42 2 2 2T m t m t m t= × × + × × + × × <=  

4t is the time needed for a single key detection in the last 
round. 4t is negligible compared to 1t . The remaining 72 bits 
can be obtained by using other linear trails, or be obtained by 
exhaustive search. 

B. Linear hull 

Taking the linear hull (0000000000200000,0000000000200000)  

instead of the linear trail
[4]

: 
1 200000000000 00000 0000000000200000 0000000000200000r rA ⎯⎯→ ⎯⎯⎯→

The system F constructed under the above hull has the 
probability about 3(1/ 2) . So after 32 times detections of 
plaintext and ciphertext pairs, a right pair satisfying the 
linear hull is expected. The next step will be constructing the 
small system for 10S in the first round and 10S in the last 

round and finally recover some key information. This 
process is actually the same with the case of a single linear 

trail. However, the time for detection of right pairs denoted 
as 2t  will be smaller. According to experiment, 2 1t <= . When 

8m = , the data complexity is 3 62 2m × = , and the time 

complexity is 3 4 4 8
2 3 42 2 2 2T m t m t m t= × × + × × + × × ≈ . 

The above results also hold with PRESENT-128. 

VI. SUMMARY OF THIS PAPER 

Based on the study of linear cryptanalysis and algebraic 
attack, and algebraic techniques in differential cryptanalysis, 
a new attack “Algebraic Techniques in Linear Cryptanalysis” 
is proposed. And the new method is applied to 21-round 
PRESENT-80. Under linear trail and linear hull, to recover 8 
bits of the key, the data complexities are 252 , 62 respectively; 
and the time complexities are 28.322 , 82 respectively. 
Compared to the results under traditional cryptanalysis, both 
the data complexity and the time complexity are obviously 
decreased (TABLEⅠ). 

TABLE I.  THE CRYPTANALYSIS RESULTS 

Key 
size 

round
Key 
bits

Data 
complexity 

Time  
complexity 

cryptanalysis

80/128 21 8 782  78.62  
LC 

(trail) 

80/128 21 4 69.32  64.92  
LC 

(hull) 

80/128 21 8 252  28.322  
This paper 

(trail) 

80/128 21 8 62  82  
This paper 

(hull) 
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