
An Android Terminal in TelosB Wireless Sensor Networks

Siquan Hu, Xiaoli Zhang
School of Computer and Communication Engineering

University of Science and Technology Beijing
Beijing, China

husiquan@ustb.edu.cn

Hui Yao, Chundong She
Ruijie Networks Co., Ltd.

Beijing, China
yaohui@ruijie.com.cn

Abstract—In the deployment of a wireless sensor network, a
portable device can be used on protocol analysis or in-situ
network diagnose, which is more convenient than the
traditional gateway solution. In this paper, based on the
Android devolvement board and TelosB mote, the Android
terminal was built to collect data from a wireless sensor
network composed of TelosB motes. The middleware was
implemented on this Android terminal to parse the sensor data
and store the data into databases. The evaluation process
verified the deign feasibility.

Keywords-Android terminal, wireless sensor networks;TelosB;
data gathering

I. INTRODUCTION

Internet of things (IOT) is an emerging trend in industry
in recent years especially after economic depression. As one
of the key technologies in IOT, wireless sensor networks can
be used to monitor environment, industry devices, vehicles
and even human bodies. In a typically deployment, a
wireless sensor network is composed of many sensor nodes,
which are connected via wireless star or mesh topology. Data
are gathered by the sensor, and routed to a base station.
Traditionally, a base station is connected to a computer,
which may have three software components: a database to
store the sensor data, a middleware to accept, interpret and
store sensor data from the base station, GUI software to
visualize the sensor data. In such kind of deployment, the
computer is attached to the base station via serial or USB
link, and it acts as a data center.

However, a portable device such as a smart phone or a
tablet is more convenient in some circumstance. For instance,
in a large-scale deployment of wireless sensor network, a
portable device can display the in-net data and can be used a
handheld diagnose equipment or protocol analyzer. Wireless
body sensor network is another example showing the benefit
of a portable device as a data gathering terminal for its small
footprint. In such case, the vital body parameters are
collected by the portable devices and alarm can be made
when abnormality is detected.

Using portable device as a data gathering terminal is not
a novel design in wireless sensor networks, Crossbow
Stargate [1] and Linksys NSLU2 [2] have been popular
gateways in wireless sensor network community. However,
due to lack of display, this portable device can only be used
as gateway, users can only view the gathered data on a
computer connected to the gateway via IP network. So a
portable device with a display will benefit the WSN diagnose

or WBAN information visualization. Android tablets or
Android mobile phones are a very efficient option to meet
such demand.

Currently, Android is one of the most popular smart
phone and tablet platforms [3]. Additionally, because of
Android‘s open source and high flexibility, software
developers can access to hardware and rich software easily.
Some developers begin to use Android platform in wireless
sensor networks field. Android smart phones were used to
monitor the road surface in [4] in vehicle sensor networks.
An android device is used to track heartbeat data in the body
sensor network [5]. However, due to lack of WSN radio such
as Zigbee [6] or other short range wireless in off-the-shelf
android devices, above cases used Wi-Fi or Bluetooth and
cannot be used directly as a data gathering terminal in
wireless sensor networks.

In this paper, we present our work on building an android
device to collect data from a wireless sensor network
composed of many TelosB [7] motes. The application
architecture and hardware issues are presented in part II; the
middleware software on Android is presented in part III; Part
IV is the evaluation result and Part V is the conclusion.

II. ARCHITECTURE AND HARDWARE

Figure 1. The deloyment Architecture of Android Terminal in WSN

An Android terminal in wireless sensor network is a
special portable device deployed in the range of network to
collect the sensor data or overhear the protocol data. The
typical deployment architecture is illustrated in Fig. 1.

In our experimental wireless sensor networks, all nodes
are TelosB motes. The nodes get local temperature, humidity
and light readings periodically. The network is multi-hop and

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0429

CONFIG_USB_SUPPORT=y
CONFIG_USB_SERIAL=y
CONFIG_USB_SERIAL_FTDI_SIO=y

ad-hoc. The sensor data are sent to next hop by CC2420
radio. Any node who has received sensor data from its child
will relay the data to next hop. Ultimately, all the sensor data
are routed to the Android Terminal who has a attached
CC2420 radio.

Figure 2. The hardare of Android Terminal

To simplify hardware set up, the Android Terminal is
built up based on an Android development board and a
TelosB mote illustrated in Fig.2. The Android development
board is based on Samsung S3C6410 MCU. The TelosB
mote is connected to the USB host port of the Android board.
TelosB uses a FTDI chip to achieve USB-to-serial
conversion. The default kernel of the Android system doesn’t
support it. So we rebuild the Linux kernel of the Android
system after verifying the configuration in Fig.3. is assured.

Figure 3. The kernel configuration for FTDI driver

To store the sensor data, a database is needed. There are
two options for the designed Android terminal to use. One is
use a traditional DBMS such as PostgreSql or Oracle on a
server which can be accessed via Wi-Fi, the other is use local
embedded database SQLite [8] on Android. The second
option is preferred when a Android terminal is acting as a
protocol analyzer or network diagnosis tool. Most Android
system is shipped with SQLite. When SQLite is not available,
it can be compiled on a Linux machine and installed easily
on Android by copying the executable and library to android
platform.

III. MIDDLEWARE DESIGN

After the virtual serial port received a sensor data packet,
the Android terminal needs a software component to process
the data. This could be a serial port demon or an in-memory
process. It is a middleware as a bridge between the sensor
network and the backend database. The main function of the
middleware is receiving the sensor data, parsing the data and
storing the data to the local or remote database.

Figure 4. The flowchart of the middleware

We have implemented the middleware in C language.
The middleware will run in the Android system, which make
the compilation different from that on standard Linux
platform, although Android is based on the Linux kernel.
This is because that Android uses its own C library – “Bionic
Libc” rather than traditional glibc in Linux. To simplify the
process to make a C program run on Android, we use static
compilation to include all needed elements in the C
executable. In this way, we can ignore the difference
between Linux and Android, C program can run in Android
without dependence on the dynamic link libraries in Android.
The simplest way to achieve static compilation is use –static
compilation flag. In our implementation, it is specified in the
MAKEFILE of the middleware with a line as: CFLAGS+=–
static.

The main flowchart is showed in Fig.4. The middleware
is configured to run with some arguments. The arguments

No

No

No

No

No

Yes

Yes

Yes

Start

Init arguments, serial
port,DB etc.

Monitor serial port, go
when packet received

Show parsed?

Convert?

Log locally?

Log remotely?

Parse data into
different fields

Convert fields
into engineering

Store data into
local SQLite

Store data into
remote RDBMS

Yes Output raw data Show raw?

Yes

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0430

int xdb_execute(char *command) {
char rc; sqlite3 *db; char *zErrMsg = 0;
printf("%s\n", command);
//open the database
rc = sqlite3_open(g_dbname,&db);
if(rc){

fprintf(stderr, \
"Can't open db: %s\n", sqlite3_errmsg(db));

sqlite3_close(db);
exit(1); }

//execute the log comand
rc = sqlite3_exec(db,\

command,callback,0,&zErrMsg);
if(rc!=SQLITE_OK){

fprintf(stderr, "SQL error: %s\n", zErrMsg);
sqlite3_free(zErrMsg);}

//close the database
sqlite3_close(db);
return 0;

}

sprintf (command,"INSERT into %s (result_time,

node_id,temperature,humidity) values
(datetime(),%u,%u,%u)",table,data->nodeid, data-
>temp, data->humidity, data->therm);

xdb_execute(command);

specify the requirement of serial port number and baud rate,
display options, database options. Thereafter, the middleware
will open the serial port with the specified arguments and
listen to it. When a legal packet is received, the packet
processing begins.

If the raw packet display option is enabled, the raw
hexadecimal format will be print in command line. If the
parsed display option is enabled, the packet will be displayed
field by field, but each field is still in hex format, e.g.
“temperature=0x1739”, mostly showing the ADC results. If
the option to convert the data is enabled, the hex data will be
convert into engineering units, e.g. “temperature=25 degC”.
The conversion formula can be found in the sensor datasheet
or the mote board user guide.

Figure 5. Middleware code for storing data into local databse

There are two options related to storing the data to
database. One is to store the data into local SQLite database;
the other is to log the data into remote relational DBMS. The
two options are similar in process logic except that remote
database need be specified the database host name or IP
address. Fig.5. gives the main process code for storing the
sensor data into local SQLite database. Of course a table is
needed beforehand; this table has fields for all the sensor
readings and other helpful information such as timestamp for
the packet, the sensor node identification, etc. When logging
a coming packet into local SQLite, xdb_execute() will be
called with a proper SQL stream - command. The SQL

stream could be assembled by sprinf() function as illustrated
in Fig.5.

IV. EVALUATION

To evaluate the development of the Android terminal
meets the requirement of data gathering for Telos wireless
sensor networks, a simple test deployment as Fig.1 is set up
in the lab environment. The test procedure is carried out on a
Ubuntu machine through ADB (Android Debug Bridge).
ADB is a debug tool used on the development host to send
shell command to the target Android board. The command
will be executed on Android and the result is showed in adb
shell of the development host.

Figure 6. The running middleware displays the sensor data

Firstly, run “adb devices” to check USB OTG connection
is ok and the adb service is running on the Android terminal.
Then upload the middleware to the target Android terminal
by “adb push ./xlisten-arm /user_app”. Start adb shell and
run the middleware. When the packets come from the
TelosB sensor network, the middleware will process the data,
display the data as Fig.6 and store them into database if
needed. The screenshot shows that the middleware parse and
convert the sensor data correctly

To verify the middleware store the data correctly, we let
the middleware in android terminal run for a hour to collect
enough quantity of sensor data in SQLite. Then start sqlite
client in Android from adb shell, and execute sql statement
to check whether the database table has correct data stored.
The screenshot in Fig.7 showed the sensor data had been
stored in the local SQLite correctly.

V. CONCLUSION AND FUTURE WORK

In the scenario of protocol analysis or in-situ diagnose of
wireless sensor network, a portable Android terminal has
advantage over traditional gateway solution. Based on the
Android devolvement board and TelosB mote, the Android
terminal is built to collect data from a wireless sensor
network composed of TelosB motes in this paper. The
middleware are implemented on this Android terminal to
parse the sensor data and store the data into databases. The
evaluation process verified the deign feasibility. Future work
will expand current work into an Android smart phone or

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0431

tablet and use native Android GUI to display the sensor data.
The protocol analyzer or other application will be also
implemented.

Figure 7. The sensor data are stored in the SQLite by the middleware

ACKNOWLEDGMENT

This project is sponsored by National Key Technology
R&D Program Grant #2012BAH25B02, and the Guangdong

Province University-Industry Cooperation Grant
#2011A090200008, and the Scientific Research Foundation,
Returned Overseas Chinese Scholars, State Education
Ministry.

REFERENCES

[1] Stargate: A platform X project, http://platformx.sourceforge.net/.

[2] K.Laufer, G.K.Thiruvathuka and C.R.Martinez-Eiroa,"Putting a Slug
to Work", Computing in Science Engineering,vol.11, no.2,pp62-68,
2009.

[3] Android, http://www.android.com

[4] G. Strazdins, A. Mednis, G. Kanonirs, R. Zviedris, and L. Selavo,
“Towards Vehicular Sensor Networks with Android Smartphones for
Road Surface Monitoring,” 2nd International Workshop on Networks
of Cooperating Objects (CONET’11), Electronic Proceedings of
CPSWeek'11, 2011.

[5] M. Mitchell, F. Sposaro, A. A. Wang, G. Tyson, “BEAT: Bio-
Environmental Android Tracking”, 2011 IEEE Radio and Wireless
Symposium (RWS), pp.402-405,2011.

[6] S.S.Riaz Ahamed, "The role of zigbee technology in future data
communication system", Journal of Theoretical and Applied
Information Technology,Vol.5, No.2, pp.129-135. 2009.

[7] J. Polastre, R. Szewczyk, and D. Culler, "Telos: Enabling Ultra-Low
Power Wireless Research", IEEE IPSN 2005 , pp. 364-369, 2005

[8] SQLite, http://www.sqlite.org.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0432

