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Abstract-In order to solve Black-Scholes equation of basket 
option pricing model by numerical method. This paper used 
Additive Operator Splitting (AOS) algorithm to split the multi-
dimensional Black-Scholes equation into equivalent one-
dimensional equation set, and constructed 'Explicit-Implicit' 
and 'Implicit-Explicit' schemes to solve it. Then compatibility, 
stability and convergence of those schemes were analyzed. 
Finally, this paper compared computation time and precision 
of the schemes through numerical experiments. 'Explicit-
Implicit' and 'Implicit-Explicit' schemes of AOS algorithms 
have both higher accuracy and faster computing speed and 
them have practical significance in solving basket option 
pricing model. 

Keywords-basket option pricing model; Additive Operator 
Splitting (AOS); difference schem;  stability;  numerical 
experiment. 

I. INTRODUCTION 

Option is significant financial derivatives. Multi-assets 
option is the most widely used option in the real financial 
market. Basket option is a kind of multi-asset option, and its 
price depends on the average price of two or more assets. 
Basket options are widely used in hedging. According to the 
portfolio theory, volatility of basket risk asset is relatively 
small. Option premium of basket option is less than the sum 
of every option. Therefore, it has practical significance to 
research the pricing of basket option [1]. 

Assume that ( )niS i ,,2,1 =  is the exchange rate of 

n currency, and they obey geometry Brown motion. 
Through δ Hedge principle, the Black-Scholes equation of 
basket option price ( )tSSSf n ,,21 ，  is as follows [2]: 
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Here, r is risk-free interest rate of our own country, and 
( )niqi ,,2,1 = is risk-free interest rate of the country using 

currency i . If the profit of basket option on the expiry date is 
geometrical average of n kind of underlying assets, namely: 
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And analytical solution of (1) is that: 
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This paper discussed basket option pricing model, and 

committed to find new difference algorithm for multi-asset 
option pricing problem. Weickert Joachim (1998) firstly 
used the Additive Operator Splitting (AOS) method to solve 
the multi-dimensional partial differential equations in image 
processing [5]. Yi Zhang and Xiaozhong Yang (2010) 
proposed the accelerated AOS schemes for non-linear 
diffusion filtering [6], this method reduce the computation 
time and storage space. Xiaozhong Yang and Gaoxin Zhou 
(2011) have applied AOS algorithm on solving dual currency 
option pricing model [8], which has achieved good effect in 
the practical application. In this paper, AOS method is 
applied into basket option pricing model, and it will get the 
same good result as before. 

II. DETERMINE INITIAL-BOUNDARY VALUE FOR BLACK-
SCHOLES EQUATION OF BASKET OPTION PRICING MODEL 

In theory, the solving area of this equation is: 

( ) [ ]{ }.,0,,,2,1,0, TtniStS ii ==+∞≤≤   

But in actual transaction, the price of the underlying asset 
will not always appear to be zero or infinity. Therefore, the 
financial institution provides a small enough value 

( )0minmin >ii SS   as the lower bound and a large enough 

value ( )+∞<maxmax ii SS as the upper bound. Then the 

pricing problem can be solved in a bounded area: 

( ) [ ]{ }.T0,,,,2,1,, maxmin ==≤≤=Ω tniSSStS iiii 
    To construct the difference scheme for Black-Scholes 
equation of basket option pricing, this paper must gain the 
boundary condition of (1). Take foreign call option for 
example. For the reason that option pricing is a backward 
problem, the initial condition is the value at the time: 

.Tt = Suppose that the profit of basket option on the 
expiry date is geometrical average of n kind of the 
underlying assets. Then the boundary condition is that: 

( ) ,0,,,,, min21 =tSSSSf ni   

( ) .,,2,1,0,,,,,, max21 nitSSSSf ni  ==  

   To solve (1), we must replace its variables: 

,,,2,1,ln niSx ii ==  
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.- tT=τ  
Then (1) is transformed into initial boundary value problem 
of constant coefficient parabolic equation: 
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III. CONSTRUCT AOS ALGORITHM FOR BASKET OPTION 

PRICING MODEL 

Additive Operator Splitting (AOS) algorithm is an 
effective method to solve multi-dimensional partial 
differential equations. This method firstly split the multi-
dimensional Black-Scholes equation of basket option 
pricing model into equivalent one dimensional equation set. 
Then compute value of one dimensional equation set by 
'Explicit-Implicit' and 'Implicit-Explicit' scheme. Finally, 
take the arithmetic mean value of one dimensional equation 
set as the final value. 

Make use of AOS algorithm to split (2) into equivalent 

equation set on the direction of .,,, 21 nxxx   
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Then, 'Explicit-Implicit' and 'Implicit-Explicit' scheme is 
constructed to solve the one dimensional equation set. 

Firstly, we construct ’Explicit-Implicit’ scheme. The 
method is to adopt the explicit scheme at the odd number 
floor, and implicit scheme at the even number floor. Then, 
the i equation of (3) became into: 











++
+

=

++
+

=

+
++

++
+++

+
++

++
+

22
22

1-
22

1222
22

22
1-

2222
12

1222

2
2
1-

2
122

22

2
1-

22
12

212

-
2

-

2

2--

-
2

-

2

2--

n
i

ii

n
i

n
in

ij

ii

n
i

n
i

n
i

n
i

n
i

n
i

ii

n
i

n
in

ij
ii

n
i

n
i

n
i

n
i

n
i

rf
h

ff
naFn

h

fff
n

k

ff

rf
h

ff
naFn

h

fff
n

k

ff

α
σ

α
σ

α
σ

α
σ

                        2ˆ
2

1
-ˆ- σqra =                     (4) 

Then, solve the above equation and denote the result on the 

direction ix  as
ixf .  

Finally, compute arithmetic mean of n  time layers, and 
take it as the new time layer result. 
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Similarly, if we adopt the implicit scheme at the odd 
number floor, and explicit scheme at the even number floor, 
we can construct the ’Implicit-Explicit’ scheme: 
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Then, take the same method to compute arithmetic mean of 
n time layers as the new time layer result. 

   When the traditional AOS scheme is adopted to 
calculate, it needs to solve an equation set that contains a 
triple diagonal matrix every step. Generally, we use the 
thomas method to solve it, and the computation is 

( ).
21

NMMMO
nxxx ×××  However, if we use AOS 

algorithm to construct the ’Explicit-Implicit’ and ’Implicit-
Explicit’ scheme, it only needs to solve the triple diagonal 

matrix every two step in the ix axis direction. Therefore, the 

total computation of the accelerated AOS scheme can be 
reduced greatly. 

IV. ANALYSIS OF COMPATIBILITY AND ACCURACY OF 

AOS ALGORITHM FOR BASKET OPTION PRICING MODEL 

   Firstly, ’Explicit-Implicit’ and ’Implicit-Explicit’ scheme 
of AOS algorithm is to be considered. Take ’Explicit-
Implicit’ scheme for example. Add up the two equations of 

equation set (4) to eliminate 12 +n
if on the direction of ix . 
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Substitute ( )txxxf n ,,,, 21  by n
if  in (6), then make 

difference between the two side of the equation, and we will 
get the truncation error ( )txxxT n ,,,, 21  . And expand 

( )txxxT n ,,,, 21  as the Taylor series at the point 

( )txxxx nji ,,,,,,,1  , and take the arithmetic mean 

of ( )nixi ,,2,1 = direction: 
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   Similarly, ’Implicit-Explicit’ scheme will get the same 
result. Then we can get that: 

Theorem 1: ’Explicit-Implicit’ and ’Implicit-Explicit’ 
scheme of AOS algorithm of basket option pricing model (4) 
and (5) has two-order space and time accuracy. And they are 
compatible with Black-Scholes equation (3) unconditionally. 

V. ANALYSIS OF STABILITY AND CONVERGENCE OF AOS 

ALGORITHM FOR BASKET OPTION PRICING MODEL 

Take the Fourier transformation on the two sides of the 
equation (4), and simplify it to get: 
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Therefore, the growth factor is: 
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By the Von Neumann Theorem, we can get that 
the ’Explicit-Implicit’ scheme of AOS algorithm of basket 
option pricing model is stable unconditionally. In addition, 
due to the Lax Theorem, we can get that the scheme is 
convergent. Therefore we can get the following theorems. 

Theorem 2: ’Explicit-Implicit’ scheme of AOS 
algorithm of basket option pricing model (4) is stable and 
convergent unconditionally. 
   Similarly, ’Implicit-Explicit’ scheme of AOS algorithm 
will get the same result. Then we can get that: 

Theorem 3: ’Implicit-Explicit’ scheme of AOS 
algorithm of basket option pricing model (5) is stable and 
convergent unconditionally. 

VI. NUMERICAL EXAMPLE 

Here, we consider one American basket Option, take the 
option is call option for example. The dividend rate is 0.03, 
the volatility is 0.2, the risk-free interest rate of American is 
0.08, the strike price of option is 30000$. Consider the 
deadline of the option is 3, 6, 9 and 12 months, and the final 
exchange rate is the spot exchange rate. 

The numerical experiment is done in MATLAB 2008 
environment. The comparison among analytical solution and 
numerical solution is as follows: 

TABLE I.  THE COMPASION OF ANALYTICAL AND NUMERICAL 
SOLUTION TABLE 

Time 
(month) 

3 6 9 12 
 relative 

error 

Analytical 
solution 

42.7913 45.9223 48.7165 49.5046 0 

’Explicit-
Implicit’ 
scheme 

42.5428 45.6596 48.4428 49.5929 0.00288

’Implicit-
Explicit’ 
scheme 

42.5428 45.6596 48.4428 49.5929 0.00288

 

 
Figure 1.  The compasion of analytical and numerical solution table. 

From table 1 and figure 1, we can see that ’Explicit-
Implicit’ and ’Implicit-Explicit’ scheme of AOS algorithm 
has higher calculation accuracy. With a longer deadline of 
the option, the advantage of the scheme is more obvious. The 
numerical result demonstrates the theoretic analysis 
that ’Explicit-Implicit’ and ’Implicit-Explicit’ scheme of 
AOS algorithm is effective. 

VII. CONCLUSION 

   In order to solve Black-Scholes equation of basket 
option pricing model by numerical method, we construct 
the ’Explicit-Implicit’ and ’Implicit-Explicit’ scheme of 
additive operator splitting algorithm. The main idea of the 
scheme is to split the multi-dimensional Black-Scholes 
equation into one-dimensional equation set, and this method 
can avoid the complexity of using difference method directly 
on high dimensional equation. Then construct the 'explicit-
implicit' and the 'implicit-explicit' schemes. Classical implicit 
scheme hides the potential stability, which is no use in the 
calculation, but when it is applied in the alternate scheme, 
this potential stability just cover the stability shortage of 
explicit scheme. Therefore those schemes are second-order 
accuracy, stable and convergent unconditionally. Finally, the 
total computation of these schemes is only a quarter of the 
traditional additive operator splitting scheme. Because the 
implicit scheme calculates the approximate value of the 
analytical solution from above, and the explicit scheme 
calculates it from below. Every two steps produce errors with 
the opposite symbol, which can counteract with each other, 
and then obtain the more accurate result. 

From the theory analysis and numerical experiment, it 
can be seen that the 'explicit-implicit' and the 'implicit-
explicit' schemes of additive operator splitting algorithm 
have practical significance in solving basket option pricing 
model. 
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