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Abstract—A new alternating segment explicit-implicit and 
alternating segment implicit-explicit methods for solving the 
payment of dividend Black-Scholes equation are presented. 
These new methods have several advantages such as: good 
parallelism, unconditional stability, convergence and better 
accuracy. Numerical experiments show that the methods 
improve the calculation speed greatly.  
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I.  INTRODUCTION 

The option is one of the most important financial 
derivatives which has an extremely significant position in the 
modern finance activity[1]. Although the European option 
has analytic expression, it cannot meet the effective 
requirement as the form of the expression is too complex to 
calculate quickly. In practice, we usually use the numerical 
method instead, such as the finite difference numerical 
method. Lifei Wu and Xiaozhong Yang(2010) first put 
forward the ‘explicit-implicit’ and ‘implicit-explicit’ 
difference schemes for solving the payment of dividend 
Black-Scholes equation[3]; Xiaozhong Yang and Yangguo 
Liu(2007) proposed the general difference scheme for 
solving the Black-Scholes equation[5]. However, most of the 
schemes are calculated in serial way and the efficiency is 
very low.  

So far, the numerical solution method for the option 
pricing problems is divided into two types: explicit method 
and implicit method. As we know, the explicit method has 
features of simple calculation but poor stability and low 
precision; the implicit method is well stability, high precision 
but not suitable for parallel computing[4]. With the rapid 
development of multi-core and cluster technology, parallel 
programming becomes one of the mainstream technology for 
improving the calculation efficiency. Therefore, construct the 
difference scheme with high stability and intrinsic 
parallelism is considerable important from the scientific and 
practical views. This paper gives the parallel difference 
schemes for solving the payment of dividend Black-Scholes 
equation: the alternating explicit-implicit scheme and the 
alternating implicit-explicit scheme. Meanwhile, this paper 
also analyzes the stability, convergence and computing 
economy. Finally, some numerical examples verify the 
effectiveness of these schemes.  

 

II. ALTERNATING SEGMENT EXPLICIT-IMPLICIT SCHEME 

A. The payment of dividend Black-Scholes equation  

Assume that the underlying asset is the dividend-paying 
stock, by the ∆-hedging principle, we can get the following 
equation[1,2]: 
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 In theory, the solving area of this equation is: 

( ) min max{ , , [0, ]}S t S S S t TΩ = < < ∈  

 In order to solve Eq.(1), we can substitute its  variables 
as follows: 

xeS = , τ−= Tt , ),(),( τxUtSV =  
Then this pricing model will be transformed into the initial-
boundary value problem of partial differential equation with 
constant coefficients: 
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B. Alternating Segment Explicit-Implicit Scheme 

Make a mesh partition on the area Ω, let h as the space 
step and k as the time step, and the number of grid points 

are )1()1( +×+ nm , 21 h
kr = . We use j

iU  to denote the 

finite difference approximations of ),( jixU τ . In order to 

construct the alternating segment explicit-implicit scheme, 
we give some difference schemes of the Eq. (2). 

First, the classical explicit scheme[8]. 
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That is: 
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Then, give the classical implicit scheme[8]. 
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At last, we present the improved Saul’yev asymmetric 

scheme. In order to meet the parallelism of the difference 
equation, we construct two improved Saul’yev asymmetric 
schemes of Eq.(2) as follows: 
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 Then give the accuracy analysis of the scheme. Make   
difference between the two sides of Eq.(5) and Eq.(6), and 
we will get the truncation error: 
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Here 4=+ βα . As the alternative use of the scheme (5) 
and scheme (6) at different time interval, parts of the error 
terms in the two truncation error expressions can be 
counterbalanced. Therefore we will get the following 
theorem: 
Theorem 1: The calculation accuracy of the improved 
Saul’yev asymmetric scheme (5) and (6) of the dividend-

paying option pricing is )( 222
h

khk ++ο . 
Among the schemes mentioned above, the classic explicit 

scheme (3) has the nature property of parallelism and is very 
suitable for parallel computing, but it is conditionally stable; 
the classic implicit scheme (4) is stable unconditional, but it 
needs to solve an algebraic equation which cannot be 
implemented on parallel computer. 

The alternating explicit-implicit is constructed based on 
the combined use of the schemes mentioned above, the 
design is as follows: 

Let Nlm =−1 , here N is a positive odd number, l  is a 
positive integer, 3, ≥lN , we divide the points on each time 

level into N sections. And on the even level, we arrange the 
computation according to the rule of 'the explicit segment-
the implicit segment- -the explicit segment'[7]. For realize 
the parallel computing, the left endpoint of the implicit 
segment is calculated with the improved Saul’yev scheme 
(5), the right endpoint is calculated with the improved 
Saul’yev scheme (6). When it turns to the odd level, the rule 
changes into ‘the implicit segment-the explicit segment- -
the implicit segment’, then the alternating segment explicit-
implicit scheme can be expressed as 
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Here, 
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C. Stability and convergence analysis 

By eliminating 1+jU  from Eq.(7), we obtain 
'2 bTUU jj +=+  

in which 
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For stability it is necessary that 1≤T . In proving the 

stability condition, the following lemma Kellogg is used. 

Lemma 1[6]: If 0>ρ  and )( TCC +  is non-negative (or 

positive) define, then 
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~
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which is similar to T  and thus has the same eigenvalues as 

T. With using Eq.(8), T
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Since )( 11
TGG +  and )( 22

TGG + are non-negative, definite 
form (9) and Lemma 1, the unconditional stability condition 
is obtained for scheme governed by (7) for all 01 >r . Hence 
one can state the following theorem. 
Theorem 2: The parallel implementation of alternating 
segment explicit-implicit scheme (7) for the solution of the 
dividend-paying option pricing equation (2) is unconditional 
stable. 

By Lax Theorem[4], we can also obtain the following 
corollary. 
Corollary 1: The parallel implementation of alternating 
segment explicit-implicit scheme (7) for the solution of 
dividend-paying option pricing equation (2) is convergent. 

Similarly, if we adopt the rule of ‘the implicit segment-
the explicit segment- -the implicit segment’ on the even 
level, and adopt the rule of ' the explicit segment-the implicit 
segment- -the explicit segment' on the odd level, we can 
construct the alternating implicit-explicit scheme as follows: 
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And if we apply the same method on the alternating 

implicit-explicit scheme (10), we will get the similar theorem. 
Theorem 3: The parallel implementation of alternating 
segment implicit-explicit scheme (10) for the solution of 
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dividend-paying option pricing equation (2) is unconditional 
stable and convergent. 

III. NUMERICAL EXPERIMENTS 

Here, we consider a European call option on stocks with 
dividends. Assuming the strike price of option is 90 dollars, 
the risk-free interest rate is 0.06 per year, the dividend rate is 
0.01 per year, the volatility is 0.3. Consider the deadline of 
the option is 3 and 6 months[2]. 

The numerical experiment is done in Matlab R2009 
environment[9]. The comparison among the analytic solution 
and numerical solutions, such as the results of the alternating 
segment explicit-implicit scheme (ASE-I), the explicit-
implicit scheme and the Crank-Nicolson scheme is shown in 
the following table and the comparison of the parallel 
calculation time and the serial calculation time is shown in 
the following figure. 

TABLE I.  COMPARISON OF SEVERAL  SCHEMES'  RESULTS WITH THE 
ANALYTIC SOLUTION. 

 
The Schemes 3 months($) 6 months($) Relative errors

Analytic solution[1] 5.909983 8.628140  

Crank-Nicolson[5]  5.910371 8.628440 0.0065% 

Explicit-implicit[3] 5.910323 8.628148 0.0057% 

Implicit-explicit[3] 5.910323 8.628148 0.0057% 

ASE-I 5.910328 8.628431 0.0058% 

ASI-E 5.910328 8.628431 0.0058% 

 

Then we compare these schemes’ calculation time, the 
result is shown in the following figure. 

 
Figure 1.   The comparison of some schemes’ calculation time 

 

 

From the table and the figure of the comparison among 
analytic solution and numerical solution of several schemes 
above, we can see the alternating segment explicit-implicit 
has the similar calculation accuracy with the explicit-implicit, 
but the calculation time is 1/2 of that of the explicit-implicit 
scheme and 1/5 of that of the Crank-Nicolson scheme. Thus 
the scheme given by this paper improves the calculation 
speed greatly and has greater advantage in solving the option 
pricing problem. 
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