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Abstract

In a recent paper we introduced a new 2 + 1-dimensional non-isospectral extension
of the Volterra lattice hierarchy, along with its corresponding hierarchy of underlying
linear problems. Here we consider reductions of this lattice hierarchy to hierarchies of
discrete equations, which we obtain once again along with their hierarchy of underly-
ing linear problems. We obtain a generalized discrete first Painlevé hierarchy which
includes as special cases, after further summation, both the standard discrete first
Painlevé hierarchy and a new extended version of the discrete thirty-fourth Painlevé
hierarchy.

1 Introduction

Non-isospectral scattering problems were introduced very soon after isospectral scattering
problems were used to solve the Korteweg-de Vries (KdV) [5] and nonlinear Schrödinger
[28] equations. The first example of a nonlinear equation having such a scattering problem
is due to Calogero [2]; since then a great many papers have been published on such systems,
both continuous, e.g. [17]—[22], and discrete, e.g. [19, 20]. Of particular relevance here is
the link, observed in [21], between non-isospectral scattering problems for PDEs or lattice
equations, and linear problems for ODEs or discrete equations, respectively. It is this link
that we have exploited (and generalized) in our work on continuous and discrete Painlevé
hierarchies.

In a series of recent papers [6]—[8] (see also [9]) a method has been developed which
allows the construction, starting from a partial differential equation (PDE) having a non-
isospectral scattering problem of a certain kind in 2 + 1 dimensions, of a whole hierarchy
of PDEs having non-isospectral scattering problems in 2 + 1 dimensions. This involves
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interpreting the PDE and its non-isospectral scattering problem as defining a recursion
relation between successive members of the hierarchy and their corresponding scattering
problems. Reductions of the resulting hierarchies then yield hierarchies of PDEs in fewer
dimensions (isospectral or non-isospectral), and also hierarchies of ordinary differential
equations (ODEs), all along with corresponding underlying linear problems. In this way
a variety of hierarchies of ODEs having as first member a Painlevé equation, or a higher
order analogue thereof, were successfully obtained. Such Painlevé hierarchies are a topic
of much intensive current research.

In a still more recent paper [10] the current authors have extended the above-mentioned
approach to the discrete case. In particular we obtained a new non-isospectral extension of
the Volterra hierarchy to 2 + 1 dimensions — with two continuous independent variables,
t and y, and one discrete independent variable, n — along with its underlying linear prob-
lem. A variety of reductions of this hierarchy were also considered, to lattice hierarchies,
differential-delay hierarchies, and also to a discrete hierarchy. It was noted in particular
that the first non-trivial member of this discrete hierarchy contained as special cases, after
further summation, the discrete first Painlevé (dPI) equation and an extended version
of the known discrete thirty-fourth Painlevé equation: we thus referred to our hierarchy
as a generalized dPI hierarchy, and argued that it is our extended discrete thirty-fourth
Painlevé equation — which we called the dP34 equation — which should properly be un-
derstood as the analogue of the well-known continuous P34 equation. We also observed
that the second non-trivial member of our hierarchy contained as a special case the known
fourth-order dPI equation, as obtained in [4]. We remark that, in fact, in [4] a dPI hier-
archy and a discrete second Painlevé (dPII) hierarchy were found, and it was also shown
how, from a special case of this last, a discrete thirty-fourth Painlevé hierarchy can be
constructed.

The aim of the present paper is to explore further the generalized dPI hierarchy found in
[10]. We claim that this hierarchy corresponds to a discrete version of the ODE hierarchy
(3.29) of [7], but with an additional parity-dependent term, and that it contains as special
cases, after further summation, the dPI hierarchy of [4] and an extended version of the
discrete thirty-fourth Painlevé hierarchy of [4]. In order to support this claim, we consider
in detail the first two non-trivial members of our hierarchy. We also give an alternative
approach to the construction of Bäcklund transformations, which allows us to relate our
dP34 hierarchy to the general case of the dPII hierarchy. In addition, we illustrate how
for a special case of our hierarchy, the linear problem can be used to obtain constants of
summation.

2 A 2 + 1 non-isospectral Volterra lattice hierarchy

Our 2 + 1-dimensional non-isospectral Volterra lattice hierarchy in u(n) = u(n, t, y), as
obtained in [10], has the form

u
(n)
tm

= Q(n)
m =

(

R(n)
)m

u(n)
y +

m−1
∑

j=0

αm−j

(

R(n)
)j

K
(n)
1 +

m
∑

j=0

βm−j

(

R(n)
)j

u(n), (2.1)
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where αk and βk are functions of (tm, y), any m, R(n) is the recursion operator of the
Volterra lattice,

R(n) = u(n)
(

1 + E−1
)

(

u(n) − u(n+1)E2
)

(E − 1)−1
(

u(n)
)

−1
, (2.2)

where E is the shift operator (Ez(n) = z(n+1)), and

K
(n)
1 = u(n)

(

u(n−1) − u(n+1)
)

. (2.3)

The corresponding hierarchy of underlying linear problems, with associated non-isospectral
condition

λtm = λmλy +
m
∑

j=0

λm+1−jβj , (2.4)

is

Eφ(n) =

(

1 u(n)

1/λ 0

)

φ(n), (2.5)

φ
(n)
tm

= Γmφ(n)
y + H(n)

m φ(n)

= λmφ(n)
y +





m
∑

j=1

λm−jG
(n)
j



φ(n), (2.6)

with each G
(n)
j given by

G
(n)
j =

(

A
(n)
j B

(n)
j

C
(n)
j D

(n)
j

)

, (2.7)

where for j > 1,

A
(n)
j = (E − 1)−1

(

u(n) − u(n+1)E2
)

[

αj + (E − 1)−1

(

Q
(n)
j−1

u(n)

)]

, (2.8)

B
(n)
j = λu(n)

[

αj + (E − 1)−1

(

Q
(n+1)
j−1

u(n+1)

)]

, (2.9)

C
(n)
j =

[

αj + (E − 1)−1

(

Q
(n)
j−1

u(n)

)]

, (2.10)

D
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u(n−1) − u(n)E2
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[

αj + (E − 1)−1

(

Q
(n−1)
j−1

u(n−1)

)]

−λ

[

αj + (E − 1)−1

(

Q
(n)
j−1

u(n)

)]

− βj , (2.11)
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and

A
(n)
1 = (E − 1)−1

(

u(n) − u(n+1)E2
)

[

α1 + (n − 1)β0 + (E − 1)−1

(

u
(n)
y

u(n)

)]

,

(2.12)

B
(n)
1 = λu(n)

[

α1 + nβ0 + (E − 1)−1

(

u
(n+1)
y

u(n+1)

)]

, (2.13)

C
(n)
1 =

[

α1 + (n − 1)β0 + (E − 1)−1

(

u
(n)
y

u(n)

)]

, (2.14)

D
(n)
1 = (E − 1)−1

(

u(n−1) − u(n)E2
)

[

α1 + (n − 2)β0 + (E − 1)−1

(

u
(n−1)
y

u(n−1)

)]

−λ

[

α1 + (n − 1)β0 + (E − 1)−1

(

u
(n)
y

u(n)

)]

− β1 − λβ0. (2.15)

The first term of the right-hand-side of equation (2.1) corresponds to our non-isospectral
extension of the Volterra lattice hierarchy to 2+1 dimensions; the second term consists of
a sum of standard (isospectral) Volterra lattice flows [25, 14, 24]. The third term consists
of additional 1 + 1-dimensional non-isospectral terms which in the general case are both
non-autonomous (depend explicitly on n) and non-local. To the best of our knowledge
the 2 + 1-dimensional hierarchy (2.1) is new, although 1 + 1-dimensional non-isospectral
modifications of Volterra lattice flows, or indeed such terms alone, have been considered
before, e.g. in [21, 23, 29].

For m = 1 we obtain the equation

u
(n)
t1

= Q
(n)
1 = R(n)u(n)

y + α1K
(n)
1 + β0R

(n)u(n) + β1u
(n), (2.16)

which, noting that

R(n)u(n) = u(n)
(

(n − 2)u(n−1) − u(n) − (n + 1)u(n+1)
)

, (2.17)

we can rewrite as

u
(n)
t1

= u(n)
(

u(n)w(n) + u(n−1)w(n−1) − u(n)w(n+1) − u(n+1)w(n+2)
)

+α1u
(n)
(

u(n−1) − u(n+1)
)

+ β0u
(n)
(

(n − 2)u(n−1) − u(n)

−(n + 1)u(n+1)
)

+ β1u
(n), (2.18)

where we have also used a potential:

w(n+1) − w(n) =
u

(n)
y

u(n)
. (2.19)
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This equation has the linear problem

Eφ(n) =

(

1 u(n)

1/λ 0

)

φ(n), (2.20)

φ
(n)
t1

= λφ(n)
y +









v(n) λu(n)
(

α1 + nβ0 + w(n+1)
)

α1 + (n − 1)β0 + w(n) v(n−1) − β1 − λβ0

−λ
(

α1 + (n − 1)β0 + w(n)
)









φ(n)

(2.21)

where

v(n+1) − v(n) =
(

u(n) − u(n+1)E2
)(

α1 + (n − 1)β0 + w(n)
)

(2.22)

and λ = λ(t1, y) satisfies the non-isospectral condition

λt1 = λλy + β1λ + β0λ
2. (2.23)

In [10] we considered reductions of our hierarchy (2.1) to lattice and differential-delay
hierarchies, and to a hierarchy of discrete equations. Here we concentrate on this last
case, and the resulting generalized discrete Painlevé hierarchies.

3 Generalized discrete Painlevé hierarchies

If in the 2 + 1 lattice hierarchy (2.1) we now take the reduction ∂tm = ∂y = 0, we obtain
a hierarchy of discrete equations:

m−1
∑

j=0

αm−j

(

R(n)
)j

K
(n)
1 +

m
∑

j=0

βm−j

(

R(n)
)j

u(n) = 0. (3.1)

This hierarchy arises as the compatibility condition





m
∑

j=0

λm+1−jβj



F
(n)
λ

+ F (n)H(n)
m − H(n+1)

m F (n) = 0 (3.2)

of the associated hierarchy of linear problems

Eφ(n) = F (n)φ(n), (3.3)




m
∑

j=0

λm+1−jβj



φ
(n)
λ = H(n)

m φ(n), (3.4)

where

F (n) =

(

1 u(n)

1/λ 0

)

, H(n)
m =

m
∑

j=1

λm−jG
(n)
j (3.5)



Non-isospectral 2 + 1 lattice hierarchies 185

and the matrices G
(n)
j are obtained from those of Section 2 in the appropriate way. Here

all αk and βk are now constants.

This hierarchy contains, in the general case, non-local terms: although we could con-
sider this hierarchy in its full generality, by introducing auxiliary potential functions, we
prefer here to consider the case where βk = 0, k = 0, 1, . . . ,m − 2, i.e.

P (n)
m ≡

1

u(n)





m−1
∑

j=0

αm−j

(

R(n)
)j

K
(n)
1 + βm−1R

(n)u(n) + βmu(n)



 = 0. (3.6)

We claim that (3.6), for βm−1 = 0, sums to the dPI hierarchy given in [4], and for
βm−1 6= 0, sums to give an extended version of the discrete thirty-fourth Painlevé hierarchy
of [4]. We now consider the cases m = 1, m = 2 and m = 3.

3.1 The case m = 1

For m = 1, (3.6) gives the linear equation

P
(n)
1 ≡ α1

(

u(n−1) − u(n+1)
)

+β0

(

(n − 2)u(n−1) − u(n) − (n + 1)u(n+1)
)

+β1 = 0, (3.7)

which is readily solved. The solution of this equation is in fact useful when we come to
consider cases having m > 1. First we observe that this equation can be written in the
form

(E2 − 1)

[

−α1u
(n−1) +

(

1

2
β1

)

n

]

−β0(E + 1)
[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

= 0, (3.8)

and so it is straightforward to pass to the first order equation

P̃
(n)
1 ≡ (E − 1)

[

− α1u
(n−1) +

1

2
β1n

]

− β0

[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

−ω1(−1)n = 0, (3.9)

where ω1 is an arbitrary constant. The case β0 = 0, which was dealt with in [4], gives
(after a shift on n) the solution defined by the equation

−α1u
(n) +

1

2
β1n − ν1 − µ1(−1)n = 0, (3.10)

where µ1 = 1
2ω1 and ν1 is a second arbitrary constant. The case β0 6= 0 has the solution

defined by the equation

D
(n)
1 ≡ u(n−1) (−β0n − α1 + β0) (−β0(n − 1) − α1 + β0)

−
β1

β0

(

−C1 −
1

2
β0(n − 1) +

1

2
(−α1 + β0)

)(

C1 −
1

2
β0n

+
1

2
(−α1 + β0)

)

− ω1

(

1

2
(−α1 + β0)(−1)n−1 + B

(n)
1

)

= 0, (3.11)
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where C1 is an arbitrary constant of summation (included as above in order to make clear
the relationship with our later results for m > 1), and

B
(n)
1 =







1
2β0n, n even,

−1
2β0(n − 1), n odd.

(3.12)

Here we have made use of the summing factor (−β0n − α1 + β0):
(

− β0n − α1 + β0

)

P̃
(n)
1 = (E − 1)D

(n)
1 . (3.13)

3.2 The case m = 2

For m = 2, (3.6) gives the first of our nonlinear equations,

P
(n)
2 ≡ α1

[

u(n+1)
(

u(n) + u(n+1) + u(n+2)
)

− u(n−1)
(

u(n) + u(n−1) + u(n−2)
)]

+α2

(

u(n−1) − u(n+1)
)

+ β1

(

(n − 2)u(n−1) − u(n) − (n + 1)u(n+1)
)

+ β2 = 0.

(3.14)

This last equation has the linear problem formed by (3.3) together with

(β1λ
2+β2λ)φ

(n)
λ

=























−α1λu(n) + v(n) λ2α1u
(n) + λu(n)

(

α2 + nβ1

−α1(u
(n+1) + u(n))

)

λα1 + α2 + (n − 1)β1 v(n−1) − β2 − λβ1

−α1(u
(n) + u(n−1)) −λ

(

α2 + (n − 1)β1

−α1(u
(n) + u(n−1))

)

−α1λu(n−1) − α1λ
2























φ(n), (3.15)

where v(n) satisfies the equation

v(n+1) − v(n) =
(

u(n) − u(n+1)E2
)(

α2 + (n − 1)β1 − α1

(

u(n) + u(n−1)
))

. (3.16)

As we see shortly, equation (3.14) is a generalization of a well-known discrete first
Painlevé (dPI) equation. Thus our hierarchy of discrete equations (3.6) corresponds to a
new generalized dPI hierarchy. First we note that (3.14) can be written in the form

(E2 − 1)

[

α1u
(n−1)

(

u(n) + u(n−1) + u(n−2)
)

− α2u
(n−1) +

(

1

2
β2

)

n

]

−β1(E + 1)
[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

= 0, (3.17)

and so we can sum to obtain

P̃
(n)
2 ≡ (E − 1)

[

α1u
(n−1)

(

u(n) + u(n−1) + u(n−2)
)

− α2u
(n−1) +

(

1

2
β2

)

n

]

−β1

[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

− ω2(−1)n = 0, (3.18)

where ω2 (labelled using m) is an arbitrary constant. We now see that this third order
discrete equation corresponds to the case n = 1 of equation (3.29) in [7], but with an
additional parity-dependent term. It should therefore be expected that, in two different
cases, it can be summed to give an analogue of PI or of P34. This is precisely what
happens: for each of the cases β1 = 0 and β1 6= 0, we obtain a second order equation,
maintaining moreover the parity-dependence of (3.18).
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3.2.1 Continuum limit for ω2 = 0

We now consider the continuum limit of equation (3.18) in the special case ω2 = 0,

P̃
(n)
2 ≡ (E − 1)

[

α1u
(n−1)

(

u(n) + u(n−1) + u(n−2)
)

− α2u
(n−1) +

(

1

2
β2

)

n

]

−β1

[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

= 0. (3.19)

Setting

u(n) = 1 + h2y(x), x = nh, (3.20)

we obtain, with the identifications

α2 = α1(6 − a1h
2), β1 = −2α1g0h

3, β2 = 2α1(g1h
5 − 4g0h

3), (3.21)

the continuum limit

y′′′ + 6yy′ + a1y
′ + 2g0(xy′ + 2y) + g1 = 0. (3.22)

This last corresponds to (3.29) in [7] in the case n = 1 (although in (3.29) of [7] we have
assumed that a1 = 0, since this can always be done using a shift on y).

This continuum limit is of interest since we expect that our hierarchy corresponds to a
discrete version of (3.29) in [7], but with an additional parity-dependent term.

3.2.2 Summation to dPI

In the case β1 = 0, we obtain from (3.18) (after a shift on n) the second order discrete
equation

α1u
(n)
(

u(n+1) + u(n) + u(n−1)
)

− α2u
(n) +

(

1

2
β2

)

n − ν2 − µ2(−1)n = 0, (3.23)

where µ2 = 1
2ω2 and ν2 is a second arbitrary constant (again labelled using m). Equation

(3.23) is the version of dPI , containing a parity-dependent term, which includes both the
first and second Painlevé equations amongst its continuum limits; see [11], as well as [21]
and [4]. In our framework this equation corresponds to the special case β1 = 0 of our more
general integrable discrete equation (3.14) [or (3.18)].

We note that it is straightforward, using our above results, to give a linear problem for
(3.23) not involving the potential v(n), whose compatibility condition is precisely equation
(3.23) rather than the higher order equivalents (3.14) or (3.18) with β1 = 0. This linear
problem consists of (3.3) together with

β2λφ
(n)
λ =

















−α1λu(n) − 1
2β2n λ2α1u

(n) + λ
(

α1u
(n)u(n−1)

+ν2 + µ2(−1)n +1
2β2n − ν2 − µ2(−1)n

)

λα1 + α2 −1
2β2(n + 1) + ν2 + µ2(−1)n−1

−α1(u
(n) + u(n−1)) −λ

(

α2 − α1(u
(n) + u(n−1))

)

−α1λu(n−1) − α1λ
2

















φ(n). (3.24)
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Of course, linear problems for equation (3.23) are well known.

Here we have made use of the fact that, when β1 = 0, we can solve (3.16) to obtain

v(n) = α1u
(n)
(

u(n+1) + u(n) + u(n−1)
)

− α2u
(n), (3.25)

which by virtue of our equation (3.23) then gives

v(n) = −
1

2
β2n + ν2 + µ2(−1)n. (3.26)

We do not here consider the continuum limit of (3.23), since this has been considered
in [4]. In the case ω2 = 0, one limit is PI , whose derivative corresponds to a special case
of (3.22).

3.2.3 Summation to dP34

In the case β1 6= 0, we obtain the second order discrete equation

D
(n)
2 ≡ u(n−1)

(

α1u
(n) + α1u

(n−1) − β1n + 2γ
)(

α1u
(n−1) + α1u

(n−2) − β1(n − 1)

+2γ
)

− β̃2

(

α1u
(n−1) − C2 −

1

2
β1(n − 1) + γ

)(

α1u
(n−1) + C2 −

1

2
β1n

+γ
)

− ω2

(

α1u
(n−1)(−1)n−1 + γ(−1)n−1 + B

(n)
2

)

= 0, (3.27)

where C2 is an arbitrary constant of summation,

γ =
1

2

(

−α2 + β1 + α1
β2

β1

)

, β̃2 =
β2

β1
, (3.28)

and

B
(n)
2 =







1
2β1n, n even,

−1
2β1(n − 1), n odd.

(3.29)

Here we have made use of the summing factor (α1u
(n) + α1u

(n−1) − β1n + 2γ):

(

α1u
(n) + α1u

(n−1) − β1n + 2γ
)

P̃
(n)
2 = (E − 1)

(

D
(n)
2

)

. (3.30)

Equation (3.27), which we will call the dP34 equation, is a generalized version of the
known discrete thirty-fourth Painlevé equation. We note that when summing we have
retained the parity-dependent terms which appear in (3.18). In the special case ω2 = 0
this equation yields the discrete thirty-fourth Painlevé equation of [4].

We see from the above discussion that we have obtained a new generalized dPI hierarchy
(3.6): the first member of this hierarchy is a generalized dPI equation since, for the choice
β1 = 0, it sums to a known dPI equation. In addition, we have seen that this first member,
for the choice β1 6= 0, sums to a new dP34 equation.
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3.2.4 Obtaining the Bäcklund transformation to dPII

Our dP34 equation is related to the discrete second Painlevé equation (dPII) in its more
general form [21, 4, 12], i.e.

(

1 − (q(n))2
)(

q(n+1) + q(n−1)
)

− (A1 + A2n)q(n) − A3 − A4(−1)n = 0, (3.31)

via the Bäcklund transformation (BT)

u(n) =
1

4
β̃2

(

1 − q(n)
)(

1 + q(n+1)
)

, (3.32)

q(n) =
4(u(n−1) − u(n)) + β̃2(A3 + A4(−1)n)

4(u(n−1) + u(n)) − β̃2(A1 + A2n)
, (3.33)

where

β1 =
1

4
α1β̃2A2, (3.34)

ω2 = −
1

4
α1β̃

2
2A4, (3.35)

γ = −
1

8
α1β̃2A1, (3.36)

and where C2 = (α1β̃2/8)K2 and A3 are related by the equation

K2
2 − A2K2 + A2

4 + A2A4 − A2
3 + A2A3 = 0. (3.37)

This BT between our dP34 equation (3.27) and the dPII equation (3.31) is of course new.
Given that (3.18) is the discrete analogue, but now including parity-dependent terms, of
equation (3.29) of [7], the existence of this BT should be expected. We note that in the
special case ω2 = A4 = 0, this BT is as given in [4].

We do not here consider the continuum limit of (3.27), since this equation is related by
the above BT to (3.31), and the continuum limit of this last is discussed in [4].

We now comment briefly on how this BT may be found. We seek a relation between
u(n) and q(n) of the form (3.32),

u(n) = θ
(

1 − q(n)
)(

1 + q(n+1)
)

, (3.38)

where θ is a constant to be determined. (Thus of course we choose not to ignore what we
already know about our dP34 equation in the special case ω2 = 0. In fact the approach
which we outline here is the analogue of that which may be used to obtain the BT between
the continuous PII and P34 hierarchies: shortly we will see the result of its application to
a new fourth order dP34 equation.)

We solve (3.38) for q(n+1),

q(n+1) = −1 +
u(n)

θ
(

1 − q(n)
) , (3.39)

and a shifted version (n → n − 1) for q(n−1),

q(n−1) = 1 −
u(n−1)

θ
(

1 + q(n)
) . (3.40)
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Substitution into (3.31) then leads to an algebraic equation in q(n) which turns out to be
linear, and so allows us to easily obtain the inverse BT,

q(n) =
(u(n−1) − u(n)) + θ(A3 + A4(−1)n)

(u(n−1) + u(n)) − θ(A1 + A2n)
. (3.41)

Elimination between (3.38) and (3.41) then yields equation (3.31) (by construction) and,
with θ = β̃2/4 and the relations (3.34)—(3.37) satisfied, equation (3.27). We note that
obtaining a linear equation for q(n) after substitution of q(n+1) and q(n−1) above into
(3.31) is analogous to obtaining a linear algebraic equation for the PII hierarchy dependent
variable V after setting V ′ − V 2 = Y in that hierarchy (see [3]).

It is worth making here some comments in order to clarify terminology. The transfor-
mation (3.32) is of course the Miura transformation which relates the Volterra lattice to
the modified Volterra lattice, and has long been referred to as such within the realm of
lattice equations; here we refer to [26]—[16]. It is thus distinguished from the notion of
auto-BT for lattice equations. We, however, have followed standard practice within the
context of Painlevé equations, where, under reduction from higher dimensional equations,
Miura maps often become invertible and the resulting pair of equations is referred to as a
BT: it is thus that we call (3.32), (3.33) a BT.

3.2.5 Constants of summation from the linear problem

Here we consider the linear problem in the case β1 = 0 and β2 = 0. Substituting (3.25)
into (3.15), and setting also β2 = 0, we obtain the matrix

Ĥ
(n)
2 =























−α1λu(n) − α2u
(n) λ2α1u

(n) + λu(n)
(

α2

+α1u
(n)
(

u(n+1) + u(n) + u(n−1)
)

−α1(u
(n+1) + u(n))

)

λα1 + α2 α1u
(n−1)

(

u(n) + u(n−1)

−α1(u
(n) + u(n−1)) +u(n−2)

)

− α2u
(n−1) − λ

(

α2

−α1(u
(n) + u(n−1))

)

−α1λu(n−1) − α1λ
2























.

As in the continous case, the coefficients of λ in the determinant of this matrix then give
constants of integration (now summation) for the corresponding equation,

P̂
(n)
2 ≡ α1

[

u(n+1)
(

u(n) + u(n+1) + u(n+2)
)

− u(n−1)
(

u(n) + u(n−1) + u(n−2)
)]

+α2

(

u(n−1) − u(n+1)
)

= 0. (3.42)

For this particular example, we find

det
[

Ĥ
(n)
2

]

= Ω0 + Ω1λ (3.43)
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where

Ω0 = u(n)u(n−1)

(

α1

(

u(n+1) + u(n) + u(n−1)
)

− α2

)(

α1

(

u(n) + u(n−1)

+u(n−2)
)

− α2

)

, (3.44)

Ω1 = −α1u
(n)u(n−1)

(

α1

(

u(n+1) + u(n) + u(n−1) + u(n−2)
)

− α2

)

. (3.45)

Thus here we have that (E − 1)Ω0 = 0 and (E − 1)Ω1 = 0 when (3.42) holds.

The above illustrates a general method, analogous to the continuous case, of obtaining
constants of summation when βm = βm−1 = 0 in the hierarchy (3.6).

3.3 The case m = 3

We now consider the case m = 3 of (3.6), which may be written

(E2 − 1)

{

− α1u
(n−1)

(

u(n)u(n+1) + u(n)2 + 2u(n−1)u(n) + u(n−2)u(n−3)

+u(n−2)2 + 2u(n−1)u(n−2) + u(n−1)2 + u(n−2)u(n)
)

+ α2u
(n−1)

(

u(n) + u(n−1) + u(n−2)
)

− α3u
(n−1) +

(

1

2
β3

)

n

}

− β2(E + 1)
[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

= 0. (3.46)

The linear problem for this equation may also be given explicitly, using the results given
earlier, but we choose not to do so here. We can sum this last to obtain

P̃
(n)
3 ≡(E − 1)

{

− α1u
(n−1)

(

u(n)u(n+1) + u(n)2 + 2u(n−1)u(n) + u(n−2)u(n−3)

+u(n−2)2 + 2u(n−1)u(n−2) + u(n−1)2 + u(n−2)u(n)
)

+ α2u
(n−1)

(

u(n) + u(n−1) + u(n−2)
)

− α3u
(n−1) +

(

1

2
β3

)

n

}

− β2

[

u(n−1) + (E − 1)
(

(n − 1)u(n−1)
)]

− ω3(−1)n = 0, (3.47)

where ω3 is an arbitrary constant. We will see that this fifth order discrete equation
can be summed once again in order to give, for each of the cases β2 = 0 and β2 6= 0, a
fourth order equation. These are, of course, respectively the fourth-order dPI of [4] and
— analogously to the case m = 2 — an extended version of the fourth-order discrete
thirty-fourth Painlevé equation of [4].
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3.3.1 Summation to fourth-order dPI

In the case β2 = 0, we obtain (after a shift on n) the fourth order discrete equation

−α1u
(n)
(

u(n+1)u(n+2) + u(n+1)2 + 2u(n)u(n+1) + u(n−1)u(n−2) + u(n−1)2

+2u(n)u(n−1) + u(n)2 + u(n−1)u(n+1)
)

+ α2u
(n)
(

u(n+1) + u(n) + u(n−1)
)

−α3u
(n) +

(

1

2
β3

)

n − ν3 − µ3(−1)n = 0, (3.48)

where µ3 = 1
2ω3 and ν3 is a second arbitrary constant. This last is, as expected, the

fourth-order dPI equation, containing a parity-dependent term, given in [4].

We note that the continuum limit of (3.48) has been considered in [4].

3.3.2 Summation to fourth-order dP34

In the case β2 6= 0, we obtain the fourth order discrete equation

D
(n)
3 ≡ u(n−1)

(

α1

[

u(n+1)u(n) + (u(n))2 + 2u(n)u(n−1) + (u(n−1))2

+u(n−1)u(n−2)
]

− ǫ
[

u(n) + u(n−1)
]

+ β2n − 2δ

)(

α1

[

u(n)u(n−1)

+(u(n−1))2 + 2u(n−1)u(n−2) + (u(n−2))2 + u(n−2)u(n−3)
]

− ǫ
[

u(n−1)

+u(n−2)
]

+ β2(n − 1) − 2δ

)

− β̃3

[

α1

(

u(n)u(n−1) + (u(n−1))2

+u(n−1)u(n−2)
)

− ǫu(n−1) +
1

2
β2n − δ

][

α1

(

u(n)u(n−1) + (u(n−1))2

+u(n−1)u(n−2)
)

− ǫu(n−1) +
1

2
β2(n − 1) − δ

]

+
1

64
β̃3

3β2α1C3

+
1

1024
β̃5

3α2
1C

2
3 − ω3

(

− α1

[

(u(n−1))2 + u(n)u(n−1)

+u(n−1)u(n−2)
]

(−1)n−1 + ǫu(n−1)(−1)n−1 + δ(−1)n−1 + B
(n)
3

)

= 0

(3.49)

where C3 is an arbitrary constant of summation (included as above in order to ease com-
parison with the results of [4]),

δ =
1

2

(

− α3 + β2 + α2

(

β3

β2

)

− α1

(

β3

β2

)2)

, ǫ = α2 − α1
β3

β2
, β̃3 =

β3

β2
, (3.50)

and

B
(n)
3 =







1
2β2n, n even,

−1
2β2(n − 1), n odd.

(3.51)
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Once again we have made use of a summing factor S:

SP̃
(n)
3 = (E − 1)D

(n)
3 , (3.52)

where

S = −α1

[

u(n+1)u(n) + (u(n))2 + 2u(n)u(n−1) + (u(n−1))2 + u(n−1)u(n−2)
]

+ǫ
(

u(n) + u(n−1)
)

− β2n + 2δ. (3.53)

Equation (3.49) is new. It is this equation that we present as a fourth order dP34 equation.
In the case ω3 = 0 this equation reduces to that given in [4].

3.3.3 Obtaining the Bäcklund transformation to fourth-order dPII

We are also able to give a BT which relates our new fourth order dP34 equation to the
fourth order dPII equation given in [4], i.e.

(

1 − (q(n))2
)

(

[

1 − (q(n+1))2
]

q(n+2) +
[

1 − (q(n−1))2
]

q(n−2)

−
[

q(n+1) + q(n−1)
]2

q(n)

)

− A5

(

1 − (q(n))2
)(

q(n+1) + q(n−1)
)

−(A1 + A2n)q(n) − A3 − A4(−1)n = 0. (3.54)

The BT which relates (3.49) and (3.54) is

u(n) =
1

4
β̃3

(

1 − q(n)
)(

1 + q(n+1)
)

, (3.55)

q(n) =
π

Π
, (3.56)

where

π = 16
[

u(n)u(n+1) + (u(n))2 − (u(n−1))2 − u(n−1)u(n−2)
]

+4β̃3(A5 + 2)
[

u(n−1) − u(n)
]

− β̃2
3(A3 + A4(−1)n), (3.57)

Π = −16
[

u(n)u(n+1) + (u(n))2 + 2u(n)u(n−1) + (u(n−1))2 + u(n−1)u(n−2)
]

+4β̃3(A5 + 2)
[

u(n) + u(n−1)
]

+ β̃2
3(A1 + A2n), (3.58)

and

β2 = −
1

16
α1β̃

2
3A2, (3.59)

ω3 =
1

16
α1β̃

3
3A4, (3.60)

δ =
1

32
α1β̃

2
3A1, (3.61)

ǫ =
1

4
α1β̃3(A5 + 2), (3.62)

and where C3 and A3 are related by the equation

C2
3 − A2C3 + A2

4 + A2A4 − A2
3 + A2A3 = 0. (3.63)
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In the case ω3 = A4 = 0, this BT, which is new, reduces to that given in [4].

We do not here consider the continuum limit of (3.49), since this equation is related
via the above BT to (3.54), and the continuum limit of this last has been considered in
[4].

This BT can be obtained as indicated earlier in the case of our second order dP34

equation: starting once again with (3.38), we use shifted versions of (3.39) and (3.40),

q(n+2) = −1 +
u(n+1)

θ
(

1 − q(n+1)
) , (3.64)

q(n−2) = 1 −
u(n−2)

θ
(

1 + q(n−1)
) , (3.65)

to replace q(n+2) and q(n−2) in (3.54), and then (3.39) and (3.40) themselves to replace
q(n+1) and q(n−1). The result is an algebraic equation in q(n) which, as in our previous case,
turns out to be linear, and so easily solvable in order to obtain the inverse BT. Elimination
between (3.38) and this inverse BT then yields (3.54), which follows by construction, and,
with θ = β̃3/4 and the relations (3.59)—(3.63) satisfied, our fourth order dP34 equation
(3.49). Thus we see that our new fourth order dP34 equation is related to the fourth order
dPII equation (3.54) in the same way as obtained earlier for the corresponding second
order equations (3.27) and (3.31).

This approach can also be used for higher members of the dPII hierarchy, in order to
obtain a BT to (and find) the corresponding member of the dP34 hierarchy. We expect
the expression for u(n) in terms of q(n) in this BT always to be of the form (3.38).

4 Conclusions

We have given a new non-isospectral generalization of the Volterra hierarchy in 2 + 1
dimensions, and have considered a reduction to a generalized dPI hierarchy. This last,
whose corresponding linear problem follows easily from that given for our 2+1-dimensional
hierarchy, corresponds to a discrete version of the ODE hierarchy (3.29) in [7], but with
an additional parity-dependent term. It contains as special cases both the known dPI

hierarchy and an extended version of the known discrete thirty-fourth Painlevé hierarchy.
We have also seen how BTs can be constructed between members of our dP34 hierarchy
and those of the known dPII hierarchy.

There is of course still much scope for future work on our Volterra hierarchy in 2 +
1 dimensions and its reductions to lattice and differential-delay hierarchies [10]. One
particularly interesting question is the form of the multi-soliton solutions of the members of
our 2+1-dimensional hierarchy, and in particular for equation (2.16). The soliton solutions
of this 2 + 1-dimensional non-local lattice equation are presumably discrete analogues of
the “breaking soliton” solutions of Calogero’s equation [2], as given in [1]. A complete
analysis of such solutions could be undertaken, for example, by deriving an auto-BT for
equation (2.16), either related to the underlying linear problem of (2.16), or for its bilinear
form. In the case of the Volterra equation itself, these approaches can be found in [15]
and [13], respectively. The extension of such results to our 2 + 1-dimensional case will be
the subject of future papers.
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lattice, J. Phys. Soc. Japan 67 (1998), 2237–2241.
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[25] Volterra V, Leçons sur la théorie mathematique de la lutte pour la vie, Gauthier-Villars,
Paris, 1931.

[26] Wadati M, Transformation theories for nonlinear discrete systems, Suppl. Prog. Theor. Phys.
59 (1976), 36–63.

[27] Yamilov R I, Construction scheme for discrete Miura transformations, J. Phys. A 27 (1994),
6839–6851.

[28] Zakharov V E and Shabat A B, Exact theory of the two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media, Zh. Eksp. Teor. Fiz. 61 (1971),
118–134; Sov. Phys. JETP 34 (1972), 62–69.

[29] Zhu Z-N and Tam H-W, Nonisospectral negative Volterra flows and mixed Volterra flows:
Lax pairs, infinitely many conservation laws and integrable time discretization, J. Phys. A
37 (2004), 3175–3187.


