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Abstract—Black-Scholes equation is the basic equation of 
option pricing in financial mathematics, it is important to 
study its numerical solution in financial market. This paper 
constructs a new kind of high order accuracy numerical 
algorithm (Three-layer difference scheme) for Black-Scholes 
equation with payment of dividend. Secondly, it gives the 
convergence of scheme. Thirdly, the stability and error 
estimates are analyzed. Finally, the numerical examples show 
the feasibility and effectiveness of the scheme. The truncation 
error of Three-layer scheme is little worse than Crank-
Nicolson scheme and computational cost is little better than 
Crank-Nicoslon scheme. Therefore, the scheme is better 
suitable for applying to calculate the option pricing in the 
demanding high level of instantaneity. 

Keywords-component; Black-Scholes equation; Three-layer 
difference scheme; calculation stability; error estimate; 
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I.  INTRODUCTION  

In the financial market, the option is a kind of important 
financial derivatives and the core of risk management tools 
for reducing investment risk. Along with the development of 
the financial market, the investors put forward new 
requirements for the option pricing modeling. For example, 
they begin to consider paying a dividend transaction costs 
and other practical factors. Therefore, the numerical method 
for Black-Scholes equation with payment of dividend is 
researched in this paper. 

Currently based on a series of extended assumptions, 
another differential equation is well-know about the pricing 
of stock options with paying dividends[1,2]: 
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Here,V  is option price; S is native asset price; r is risk 
free rate; q is dividend yield; σ and t represent volatility 
and time. The explicit expression of Black-Scholes equation 
with paying dividend: 
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is called the standard 

normal cumulative probability distribution function in 
probability. 

Although analytical solution of expression the payment 
of dividends under the Black-Scholes equation, it cannot 
meet the effective requirement in option pricing.   

In practice, the numerical method has been widely 
used, such as the Monte Carlo method and the Binary 
Tree method [4], but the two methods have less accuracy 
than the finite difference method. Therefore, we usually 
adopt finite difference method. Yang Xiaozhong, Liu 
Yangguo(2007) put forward a new kind of universal 
difference schemes for solving Black-Scholes equation[5], 
but not involved in the case of payment dividends. Wu Lifei 
(2011) proposed semi-implicit difference scheme 
(asymmetric difference scheme) for solving Black-
Scholes equation with paying dividends[6]. The 
computational cost of asymmetric scheme is approximately 
95% less than Crank-Nicolson scheme, but it has less 
accuracy. 

For these reason, in this paper, taking European put 
option pricing as an example, we put forward a kind of high 
order accuracy difference schemes (Three-layer difference 
shcheme) for solving the payment of dividends under the 
Black-Scholes equation. And the analyses of stability and 
convergence have been given; finally, numerical examples 
demonstrate the effectiveness of the schemes. 

II. CONSTRUCTION OF DIFFERENCE SCHEME 

A. The Definite of Solution Problem 

In order to get the value of a European put option, 
equation (1) must be integrated with the boundary 
conditions for numerical solution. There are three boundary 
conditions: 

1) The profit and loss status: ( , ) ( )V S t K S += − . 
This condition is quite clear, the profit and loss when the 
option expires is its price. 
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2) when S  (native asset prices) is zero, the option price 

is close to rtKe− . 

3) when S  is sufficiently great, the option is 
approximate to zero. 

So on the European put option pricing is to solve the 
following equation: 
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Boundary conditions:  

( )(0, ) r T tV t Ke− −= , 

lim ( , ) 0
S
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= . 

Solution region:  

{0 ,0 }S t TΣ = ≤ < ∞ ≤ ≤ . 

Eq. (3) is anti-variable coefficients parabolic equation. 
So make the following coordinate transform: 

x InS= , T tτ = − . 

Eq.(3) converse into constant coefficients parabolic 
equation Cauchy problem, as follows: 
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Boundary conditions converse into: 
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x
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Solution region converse into: 

0 { ,0 }x TτΣ = −∞ ≤ < +∞ ≤ ≤ . 

B. Construction of Three-layer Difference 
Scheme 

Let us first discretize the region 0Σ  as a uniform grid 

with space step h and time step k , 
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Let us denote the numerical approximation of the 

solution by ( , )τ=n
j j nV V x . At the point ( , )j nx τ ，we 

adopt 1-order and 2-order central difference scheme for 
space derivatives Eq.(4) in the spatial direction. 
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For space derivatives of Eq.(4), we adopt its 
approximation value  
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Then the equation (4) will be discredited into 
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III. TRUNCATION ERROR ANALYSIS 

In order to analysis the accuracy of scheme (6), the 
solution converse into:  

1 { ,0 }M x M TτΣ = − ≤ ≤ + ≤ ≤ . 

Boundary conditions converse into: 

0 max{ ,0}, ( 0, 1, 2, , )jh
jV K e j J= − = ± ± ±  

0n
JV =  

-nkrKe ,( 0,1,2, , )n
JV n N− = =   

The truncation error of a difference equation is the 
difference between its left side and right side after the 

approximate value n
jV  is replaced by the analytic solution 

),( nj txV  of the original differential equation.  

The truncation error of the scheme (6) 
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    Expand the terms of ( , )T k h as Taylor expansion at the 

point ( , )τj nx . Because ),( txV  is the analytic solution of 

the Eq. (4), we have the preceding four term of ( , )T k h
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Besides, based on the functional difference theory and 
the equation (4), 
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Substituting equation (8) into (7), 

2 2( , ) ( )T k h O h k= +  

Therefore, we have 
Theorem 1. The truncation error of the Three-layer 

difference scheme (6) for solving the payment of dividend 

Black-Scholes equation is 2 2( )O h k+ , the truncation error 

of the scheme (6) has 2-order accuracy. 

IV. ANALYSIS OF THE STABILITY AND CONVERGENCE 

Now, we’ll consider the stability and convergence of the 

schemes (6). We firstly make Three-layer difference scheme 

format into an equivalent two levels difference scheme. 
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Let [ , ]TW V U= , the above equation can be written as 
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Denote n n ijQh
jV eν= , where 1i = − is the imaginary 

unit, Q  is the wave number. Hence, we get the growth 
matrix of the Three-layer difference scheme (6), 
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The infinite norm of growth matrix is 
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≤ ≤ . In other words, the two 

characteristic root of the growth matrix are less than or 
equal 1. Therefore, von Neumann condition is satisfied，the 
Three-layer difference scheme conditional stability.  

Through comprehensive analysis, we have  

Theorem 2. When 1 2min{ , } 1r r ≥ , the Three-layer 

difference scheme (6) of the payment of dividend Black-
Scholes equation is stable. 

Hereby, based on the Lax theorem [10], we obtain 

Corollary. When 1 2min{ , } 1r r ≥ , the Three-layer 

difference scheme (6) of the payment of dividend Black-
Scholes equation is convergent. 

 

V. NUMERICAL EXAMPLE  

In this section, we present and analyses some numerical 
results for pricing option, which was calculated by the 
Three-layer difference scheme and other difference schemes 
in MATLAB 7.6. 

Example 1[8]: Suppose Europe call option which is 
stock, the strike price is 50$, the risk-free nominal interest 
rate is 6%, the dividend yield is 1% (with the unit of time 
being one year), and the stock’s volatility is 0.4. 
Considering paying-dividend stock European call options 
those in 6 months. 

Solution:      
50,  0.5,  0.40,

 0.06,  0.01

K T

r q

σ= = =
= =

 

 
Figure 1.  Comparison between numerical solution and analysis solution 

Example 2: Suppose Europe call option which is stock, 
the strike price is 50$, the risk-free nominal interest rate is 
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6%, the dividend yield is 4% (with the unit of time being 
one year), and the stock’s volatility is 0.2. Considering 
paying-dividend stock European call options those in 6 
months, the stock current price is 50$. 

Solution: 5 0 ,  5 0 ,  0 .0 6 ,  

0 .2 ,  0 .0 4 ,  0 .5 .

S K r

q Tσ
= = =
= = =  

Figure 1 demonstrates that the Three-layer difference 
scheme’s solution can approximate to analytic solution. 

 Form the Table 1, we can obtain that the five difference 
schemes all can better approximate to analysis solution. The 
truncation error of Asymmetric scheme is the worst in the 
five difference schemes. Due to the semi-implicit character 
of Asymmetric scheme (implicit scheme, explicit calculate), 
the computational cost is the least in the five schemes. From 
Table 1, we can see that the computational cost (CPU time) 
of Asymmetric scheme can save approximately 95% for 
Crank-Nicolson scheme. We can also see that, the 
calculation accuracy of the Explicit-Implicit difference 
scheme is close to the famous Crank-Nicolson scheme, but 
the computation (Running Time) of those can save about 50% 
of Crank-Nicolson scheme’s.

 Three-layer scheme is closed to Crank-Nicolson scheme 
from truncation error and computational cost. The truncation 
error of Three-layer scheme is little worse than Crank-
Nicolson scheme and computational cost is little better than 
Crank-Nicoslon scheme. 

VI. CONCLUSION 

In this paper, we construct a kind of high order accuracy 
difference scheme (Three-layer difference scheme) for 
solving the Black-Schloes equation with payment of 
dividends, make the analysis of truncation error, stability and 
convergent for Three-layer scheme; at final the numerical 
examples show the well stability and calculation accuracy for 
the Three-layer scheme. Three-layer scheme is closed to 
Crank-Nicolson scheme from truncation error and 
computational cost. Our future work is to develop higher 

order computational precision and faster computer algorithm 
for option pricing. 
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Table 1. COMPARISON BETWEEN ASYMMETRIC SCHEME AND OTHER SCHEMES 

Numerical example 0.5 Relative error CPU 

Analysis solution[1] 
6.344806   

Crank-Nicolson scheme[5] 6.344796 0.002% 6.32 

Asymmetric scheme[6] 6.306952 0.59% 0.21 

Explicit-Implicit scheme[7] 6.344786 0.003% 3.98 

Three-layer scheme 6.346942 0.034% 4.53 

Note: X=6, M=500, N=3000. 
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