
Object-Oriented Programming Hardware/Software Supports and Comparison

Junyi Li
Department of Computer Engineering

Dongguan Polytechnic
Dongguan, China

E-mail: lijunyi68@126.com

Yuhua Zhang, Zhenkun Li
Faculty of Computer

Guangdong University of Technology
Guangzhou, China

E-mail: gdutzyh@163.com

Anthony S. Fong
Department of Electronic Engineering

City University of Hong Kong
Kowloon Tong, Hong Kong

E-mail: anthony.fong@cityu.edu.hk

Abstract—Object-oriented programming has advantages of
reusability, more extensibility, and easier maintainability.
While it needs hardware/software environment to support the
OO behaviors. In the paper, three OO supporting mechanisms
are discussed, the advantages and disadvantages are compared.

Keywords - object-oriented programming; compilation; virtural
memory; virtual machine; object machine

I. INTRODUCTION

Object-oriented programming produces greater
reusability, more extensibility, and easier maintainability [1].
Modern applications are developed with object-oriented
programming languages. In traditional systems, processor
architecture like Complex Instruction Set Computer (CISC)
or Reduced Instruction Set Computer (RISC) [2] does not
support object manipulation. To support object technology
in nowadays system, different methods are proposed.
Methods can be roughly categorized into three kinds. They
are: compiling objects into native, developing of software
based object virtual machine, and developing of hardware
based object machine.

In this paper, we will go through these methods using in
current systems for the support of object-oriented
programming. The pros and cons of each method are
discussed.

II. OBJECT-ORIENTED PROGRAMMING AND

ENCAPSULATION

A. Basic Components in Object-oriented Languages
There are three basic components in the object-oriented

languages, which are classes and instances, instance
variables/fields and methods.

A Class defines properties and operations that are
common to a collection of objects. It can also be viewed as a
program structure or module that it contains data/variables
and operations. Classes are templates for creating objects
and cannot manipulate at runtime environment. Therefore,

an “object” is an instance of classes of runtime entities in the
object-oriented software. Since classes only define what are
common to all of their instances. Every instance (object) has
it own identity and a lifetime within the execution of the
program.

Data/variables in a class are known as instance variables
or fields. Individual attributes of an object can be described
by instance variables within that particular object. The
values of those instance variables can be viewed as the state
of an object. When updating the values of these instance
variables, the state of a particular object is changed. Instance
variables of and object can be visible or invisible from other
objects. The details of the visibility will be described in the
following section.

Another component of an object is method. Methods are
procedures or functions used to describe the behaviors
associated with an object. They represent the actions that
can be performed by an object or on an object. Since
executing a method can change the value of the attributes or
the object, the state of the object can also be changed.
Therefore it can also act as a state transformer. Each method
has a name and body that performs the action associated with
the method name. When a caller object invokes a method of
another object, that particular method will be performed and
the result will be passed back to the caller object. This is a
process of method invocation.

B. Slot Model and Encapsulation
In [3], the definition of class contains the definition of

slots. There are two types of slots: one is used to hold the
data and the other is used to hold the procedural code that
implement the operations defined for the class. When the
object creates, the space of each slot is allocated by the
definition of the class. Each object has it own slots to hold
the data and operations. The class definition of slot model is
shown in Figure 1.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0483

 class

method

method

data slots

Figure 1. Class definition of slots model

Data slot can be a constant or defined as instance variable
that can be changed by the program in runtime. Therefore,
data slot can be read-only or read-write. When the data slot is
intended to be read-only, only read operation can be
performed to that data slot. Then, it is a constant in the
object. When the data slot intended to be read-write, it can
be modified and the state of the object is changed.

Method slot contains methods are usually considered to
be read-only [4]. The meaning of read-only is just called a
method or to pass it as a parameter. Therefore, method slot
can be considered to be execute-only.

When the program wants to access a data slot in the
direct fashion, the statement can be wrote:

i.s

i is referred to an instance of a class and s is referred to a
particular slot. If the program wants to modify a data slot s
for instance i by a value newvalue, the statement can be
wrote:

i.s = newvalue

A direct modification can be performed with the above
statement. This approach is a simple method to access slot in
an instance, but the internal structure of the instance is
directly accessed or modified. A class should remain
encapsulated and hide the internal structure and
implementation from outside. The process of hiding the
internal details of a class is called encapsulation.

Encapsulation ensures object cannot affect the internal
implementation of another. Once a class is defined, the data
slot of the class should be accessed though its external
interfaces only. The external interface of a class is
represented by a group of operations and it defines the
visible parts for other objects and which operations can be
performed of that class. The internal details of a class may
consist of data slots and methods. The internal data slots and
methods are hidden from outside. Other objects are unable
to understand what the class represents and how it operates.
An encapsulated class is shown in Figure 2.

For example, when building a stack type, the external
interface is the operation of push, pop and test the stack is
empty or not. In the class of the stack type, we can use
different internal data structure to hold the stack elements
such as vector or link list. Elements and the implementation
of the stack are hidden from the external view. Other objects

can only access the stack though the interfaces that are
methods for push and pop. If the implementation of the
stack type is changed, programmer is required to rewrite the
external interfaces for the new implementation. Since the
external interface is the same, changing internal
implementation will not affect the external caller. It can
reduce the interdependencies between objects, so that the
reliability of the software system is improved.

Class

methodInterface

Internal implementation

method

method

data slots

Figure 2. An encapsulated class

III. VON NEUMANN HARDWARE VS. OBJECT-ORIENTED

HARDWARE

Von Neumann hardware [2] is designed for procedural
programming while Object-Oriented hardware [4,5,6] is
designed for object-oriented programming. The concept of
procedural programming is based on module and scope.
Module is a collection of procedures. On the other hand, the
concept of object-oriented programming is based on self-
contained objects. Objects are key elements to model the
system.

In traditional von Neumann hardware, data can be
accessed by its address within the same addressing space.
There is no protection for individual data except what is
presented through memory management. The deficiency of
data protection does not affect the performance of procedural
programming, but removes the security nature of object-
oriented programming at architectural level. Data security
support is therefore implemented in hardware. There are
various ways to implement protect through logic, such as
hardware access privilege tables to control access.
Descriptor could be a way to store access modifiers for
individual data. Object-oriented hardware is able to use
information in descriptor to provide access checking.

For control flow, the direct branching to subroutine in
procedural programming is different with the indirect
branching to methods in object-oriented programming. The
indirection in object-oriented programming may lead to a
redesign of pipeline stages. For intra-method branches,
boundary checking is performed to prohibit codes to access
outside method space. Automation of stack management is
used in object-oriented hardware in order to minimize the
chance of programming bugs due to mistaken programming.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0484

IV. COMPILATION APPROACH

In the compilation approach, the system consists of a
traditional processor, a traditional operating system, and
some application process running in different address spaces.
Figure 3 shows the architecture of a traditional computing
system.

Traditional Hardware Architecture

Traditional Operating System

Application
Process

Application
Process

Application
Process

Application
Process

Figure 3. System Architecture of Compilation Approach

Traditional computing system does not support object-
oriented programming. For an application that is written in
object-oriented programming languages like C++, it is
compiled into executable file for execution. An application
process will be created for the execution of the program.
Different applications execute in their own addressing spaces,
and they are invisible from one and other by the use of
virtual memory system [7]. In traditional hardware,
protection mechanism normally implemented with page or
segment table where access right information is maintained,
as shown in Figure 4.

Application
Process 1

0x00000000

0xFFFFFFFF

Application
Process 2

Application
Process 3

Figure 4. Addressing Space of Compilation Approach

 Pros
The compiler takes advantages of the processor

architecture for compiling object-oriented programming
language. With compilation, software is optimized with the
features supported in nowadays hardware.
 Cons
A compiled executable program may not be necessarily

manipulating objects. Objects may be compiled or translated
into subroutines, which is machine readable, for direct
execution. Object-oriented programming features may be
removed during compilation. E.g. compilation removes the
dynamicity behavior of object-oriented programming.
Modification of a single class requires the whole application
to be recompiled. Besides, the overhead of context
switching in multitasking environment increases because of
the need of page table updating.

V. VIRTUAL MACHINE APPROACH

In the virtual machine approach [8], the system consists
of a traditional processor, a traditional operating system,
some native application process, and an object virtual
machine process, as shown in Figure 5. Similar to the
compilation approach just mentioned in above section, native
application process and the object virtual machine process
are running in separated memory spaces.

Figure 5. System Architecture of Virtual Machine Approach

To support object technology in this approach, an object
virtual machine application is built on top of the traditional
operating system. In the view of the operating system, it is
just an application process like others. Protection of
different processes is the same as in compilation approach.
The addressing space of this approach is shown in Figure 6.

Figure 6. Addressing Space of Virtual Machine Approach

Objects are manipulated on the virtual machine. The
virtual machine provides functionalities for newing objects,
object communications, dynamic object linking, class
loading, etc. Objects are allocated inside the heap, which
resides in the same addressing space of the virtual machine
process. The heap contains all the objects in the system.
Protections of objects are managed by the virtual machine
through software emulation. Multitasking of the object
computing system is implemented by threading, where
thread is inherited from object. Threads can be implemented
by software emulation or mapped to system native threads.
It depends on the implementation of the virtual machine.
 Pros
Without the modification of a hardware platform and

current system, object technology can be supported through
software emulation. It provides flexibility to the current
systems for supporting objects instead of compiling objects.
 Cons

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0485

The virtual machine approach is based on software
emulation. Two layers of software, virtual machine and
operating system, introduce much overhead to the object
computing system. Besides, traditional hardware does not
manipulate object. Software emulation routines are required
for the manipulation of objects, which increases the memory
footprint of the system.

VI. OBJECT-ORIENTED HARDWARE APPROACH

In the object-oriented hardware approach [4,5,6], it
consists of an object-oriented processor and an object-
oriented operating system. Object runs on the object-
oriented operating system and shares the same heap, i.e. the
same addressing space. The operating system manages the
heap and sees only objects in the system. The architecture of
object-oriented hardware is shown in Figure 7.

Figure 7. System Architecture of Object-Oriented Hardware Approach

In the point of view of the object computing system,
operating system sees all the addressing spaces. There are
no processes in an object computing system but tasks.
Multitasking is achieved by threading. Thread objects is
created for each thread in the system to maintain the status of
the thread. In object computing system, protection of objects
is governed by the object-oriented operating system with the
protection features offered by the object-oriented processor.
Different object-oriented processors may offer different
features for object manipulation and protection. Object-
oriented operating systems are designed to use these features
for object computing support. The addressing space of
hardware approach is shown in Figure 8.

Figure 8. Addressing Space of Object-Oriented Hardware Approach

 Pros
This approach provides a pure object-oriented computing

system for which everything is inherited from object. Object
manipulation becomes more direct, with the aid of object-
oriented features provided by the object-oriented processor.
The efficiency of the object computing system is thus
increased. For multitasking support, threading in object

computing system reduces the overhead upon context
switching since it requires no page table updating.
 Cons
This approach requires an object-oriented processor and

operating system. Very few of them use in the market.
Effort to implement such a system is large. Besides,
migration to a new object-oriented operating system removes
the compatibility. Software application developed with
traditional system cannot be executed on the new object
computing system. Extra efforts are required for the
software developer to port their applications to the new
system.

VII. CONCLUSION

Three different approaches for supporting object-oriented
computing system have been discussed and compared. They
are Compilation, Virtual Machine, and Object-oriented
hardware approach. Pros and cons of these three approaches
are discussed. Hardware architecture supports object
manipulation more directly, thus increasing the efficiency of
the object computing. Although the hardware approach is
hardware-consuming, as the rapid development of silicon
technology and billions of transistors can be integrated in a
single chip, hardware request will be easy to meet. Hardware
supporting directly object-oriented programming will
become a promising approach.

ACKNOWLEDGMENT

The work described in this paper was supported by a
fund from Yuexiu District Science, Technology and
Information Bureau, Guangzhou (No. 2011-GX-042). It was
also supported by funds from Guangdong Provincial of
Science and Technology (No. 2011B090400408 and
2011B090400621).

REFERENCES
[1] Weisfeld, Matt. The Object-Oriented Thought Process, Third Edition.

Addison-Wesley. ISBN 0-672-33016-4, 2009

[2] John L. Hennessy, David A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, The Morgan Kaufmann Series in
Computer Architecture and Design, Sep. 2011

[3] Craig, Iain, “The Interpretation of Object-Oriented Programming
Languages”, Springer, 1999, ISBN 1-85233-159-3

[4] Hangal, Sudheendra; O'Connor, J. Michael, "Performance analysis
and validation of the picoJava processor." IEEE Micro, Volume 19,
Issue 3, May 1999

[5] Yijun Liu, Anthony S. Fong, Fangyang Shen: HISC: A computer
architecture using operand descriptor. Computers & Electrical
Engineering 38(3): 746-755, 2012

[6] Schoeberl, M. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture 54 (1–2): 265–286. 2008

[7] B. Furht, V. Milutinovic, “Microprocessor Architectures for Virtual
Memory Management”, Computer Architecture Tutorial, The
Computer Society of The IEEE, 1987, page 191-209, ISBN 0-8186-
0704-1.

[8] Venners, Bill, “Inside the Java 2 Virtual Machine”, Second Edition ,
McGraw Hill, 1999, ISBN 0-07-135093-4.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0486

