
A Middleware-Based Network Architecture for the Web of Things

Jing Sha, Yang Ji
Beijing University of Posts and Telecommunications

Beijing, China
Email: wondersha2008@gmail.com

Abstract—Web of Things has been proposed to facilitate the
integration and composition of everyday device like sensors
and actuators with existing standards and blueprints. However,
the existing researches do not address all the problems such as
integrating legacy devices with constrained capabilities,
managing the resources with dynamic attributes. In addition,
considering the large-scale deployment of devices in WoT, the
deployment expense is supposed to be controlled. In this paper,
we propose a middleware-based network architecture for the
web of things. Within the architecture, we deal with the
practical challenges in deployment. A SMART HOME system
is developed as the implementation to verify and discuss the
proposed architecture.

Keywords-Web of Things; resource integration; resource life
cycle.

I. INTRODUCTION

The embedded technology and wireless network has
developed so much that computing has become more
ubiquitous. Many applications have been developed for
people to requiring data from devices like sensors and
cameras. This trend has driven the development of Internet
of Things (IoT) which makes things accessible through
internet. In the IoT, different manufactures and operators
develop their own system, which makes the data sharing and
collaboration difficult. As a result the concept of Web of
Things [[1], [2]] has been proposed to abstract the things into
web resources.

However, current WoT solutions focus more on the up
layer research by adapting existing web technology to the
WoT scenarios. In fact, in the SmartBUPT [3] system we
implement earlier, we find that there are still some practical
issues when implementing the concept. For example, large
amount of things are legacy devices, which possess
constrained capabilities compared with the traditional web
servers. In addition, it is necessary to manage the status of
running resource after the resource discovery process.

In order to tackle these problems, we propose a
middleware-based network architecture for the web of things
which can be applied to deploy devices in large scale. In
addition, we have realized the practical problems and
consider them in the designation.

The rest of the paper is organized as follows: Chapter II
presents the challenges when implementing the WoT.
Chapter III introduces the architecture and solutions to
practical problems. In chapter IV, we introduce the
implementation of our architecture in a SMART HOME.

Then the concept and architecture are analyzed and discussed
in section V. Finally, conclusion and future work are given in
the last section VI.

II. CHALLENGES

In order to facilitate the deployment and integration of
large amount of things, standard solutions like WSDL [11]
and WADL [12] have been proposed to reduce the cost of
connecting and interoperating. However, such standard
protocols are usually applied to the traditional web resources
that are hosted on servers with strong capabilities. In contrast,
resources are hosted on constrained devices like sensors and
actuators in the web of things. It would be difficult to
implement complex protocol directly on them. Meanwhile,
things in the WoT are highly dynamic and unstable due to
their physical attributes. Consequently, there are several
practical problems when integrating and managing WoT
resources.

A. Device accessibility

In the process to integrate things in the WoT, the primary
task is to make various devices accessible. Many researches
in the Internet of Things ignore a practical problem that
many legacy devices do not process the basic
communication and computing capabilities. It would be
necessary to extend these capabilities for the legacy devices.
In addition, it is also essential to reduce the use expense with
a uniform access interface. This would require the translation
from specified data format to a uniform one. It is fortunate
that solutions like EEML [13] and SensorML [14] have
provided us reference. However, it is still necessary to make
some adaption to meet the WoT requirements.

Besides, the accessible device also have to provide stable
data sources. Influenced by the physical attributes, resources
in the WoT cannot be as stable as traditional web resource.
Such instability include Mobility: the access address of
resources may change when hosting devices move about;
Reachability: the hosting device may be located in a local
network and cannot be reached directly from public network;
Resource constraint: the performance of resources can be
influenced by limited power or bad network condition. In
fact, many solutions like Reverse Http [8], Mobile IP [9] and
dynamic DNS [10] have been proposed to tackle such
problems.

B. Resource exposition

Compared with Internet of Things, the WoT concentrate
more on the explosion of resource. There are several web

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0506

protocols such as SOAP and Restful [4] Web Service that
can be used for exposition, mashup and integration of things.
To support such protocols, the things have to process the
capabilities to deploy embed server on themselves. It is
rather difficult for many legacy devices. Some systems like
cosm [5] propose to collect the data to a central repository
and then expose them. However, such method will increase
the delay of acquiring real-time data. In addition, storing the
data in remote location also results security problems.

Another challenge that the WoT has to deal with is the
resource search. On one hand, a search service should be
provided to the users to filter the resources matching
requirements. On the other hand, the access address of
resources should also be provided. Considering the dynamic
character of WoT resources, it is essential to maintain the
availability of resource.

C. Life cycle management of resource

In the WoT, maintaining the status of resource is quiet
important. The status can be changed as hosting devices join,
move and leave. Firstly, the process of device joining is
supposed to include device discovery and registration. Some
existing research like UPnP [6], JiNi [6] have focused on this
process. Other propositions like HTTP compression [7] also
provide reference in the WoT context. However, in some
application scenarios, we find that such protocols are too
complex for implementation and a lighter protocol is more
suitable. Secondly, the running status of resource is supposed
to be monitored after devices have joined. Status like normal,
suspended and left should be maintained according to
different situations.

In order to deal with such problems, we propose a
middleware-based network architecture for the web of things.
We also implement the architecture in a SMART HOME
system for demonstration. It is detailed in the following
sections.

III. MIDDLEWARE-BASED NETWORK ARCHITECTURE

The Middleware-Based Service Discovery Architecture
for the Web of Things is shown in Figure 1. There are two
key components which are presented as gateway middleware
and Resource Management Center (RMC). The gateway
middleware is the software that can be deployed on any
computer with qualified operating system. It is used in a
local network to manage all the connecting devices like
sensors or actuators and make them accessible through web
service. RMC manages resources in global context by
synchronizing with gateway middleware. Consequently,
based on the service provided by the RMC gateway
middleware, the WoT applications have access to the
resource matching requirements. In the following
subsections, each key component of the architecture will be
detailed.

Figure 1. Architecture Overview

A. WoT Discovery Enabler

In our implementation scenario, many devices like
sensors and actuators only have their dedicated function like
monitoring the temperature. In order to connect such legacy
devices to the network, as shown in Figure 2, we design the
WoT Discovery Enabler (WDE) as the component which
provides the devices with necessary communication and
storage capabilities. The component communicates with
devices through serial ports, which is commonly supported
by legacy devices according to our research. When it
connects with devices, the WDE can provide following
capabilities:

Figure 2. WoT Discovery Enabler

IP-based communication: the component implements
IP communication protocol and can also support WiFi access.
Storage: the component is designed to possess storage space,
which can be used to store device profile and device
registration information. The content stored can be rewrite or
delete according to requirement. Discovery protocol: the
component can be developed to support light discovery
protocol. For demonstration, we implement a simple
discovery protocol over it.

B. WoT Gateway Middleware

Integrating things on large scale is one of the most
important requirements in the Web of thing. On one hand,
many legacy devices do not possess the capability to support
an embedded server to expose itself to the web. On the other
hand, deploying with dedicated gateway would be of high
cost. To tackle this problem, we propose the WoT gateway
middleware which can be deployed on any computers with
qualified operating system. A typical application scenario is
that the middleware can be deployed on a PC and then the
PC can be considered as a gateway. User can have access to

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0507

the devices (e.g. sensors and lights) connecting to the PC
through web service. We have applied this middleware in
our SMART HOME system. Figure 3 shows the software
building blocks of our gateway middleware.

Figure 3. WoT gateway middleware framwork

Driver Pool provides various device drivers when the
gateway middleware communicate with the connecting
devices. When certain type of device connects, the gateway
middleware can dynamically load the driver if it is available.
Otherwise, the middleware can download new drivers from
the RMC. Thus the devices can be plug in and out in running
time.

Resource Registry is responsible for the management of
resources life cycle. The stages of resource life cycle include
Connected, Online, Suspended and Left. When a new device
joins the local network with a gateway middleware, the first
step to connect to gateway is registration. This process is
shown in Figure 4. The gateway middleware broadcast the
“detect” massage in the local network and the incoming
device responds with the registration information stored in
the WDE. After verifying the information, the gateway
middleware responds with a resource identifier to the WDE.
The WDE can store the identifier and use it every time it
communicates with gateway middleware. Upon the
registration process is completed, the life status of the newly
joining resource is set to Connected.

In the Resource Registry, the profile of resource is
maintained in the Registry Repository. The registration
profile sent by the WDE include resource type, geographic
location, resource description as well as operation list which
clarifies the operation provided by the devices. In order to
facilitate the integration of such resources, we translate the
profile into standard format before storing them. For
example, the operation list is translated into WADL, which
can be compatible in the discovery of restful web service. All
the information in the repository is synchronized with the
RMC periodically.
The Resource Monitor is responsible for both the data
caching and resource status updating. Upon the resource has
registered to the gateway, the data polling component begins
to request the resource for real-time data periodically. The
data is then stored in the embedded DB as cache.
Considering the communication with device may results in
considerable delay due to bad network condition, the cache is
necessary especially in time-sensitive scenarios.

Figure 4. New Reource Joining Process

Meanwhile, we acknowledge that the working status of
service provided by the device can be updated depending on
whether there is response to the polling request. If resources
can response to the polling normally, the status of resources
are set to Online. If there is no response from certain
resource, the data polling component notifies the Registry to
update working status of the device. As shown in Figure 5,
the gateway middleware broadcast the “check” massage and
records the resource that does not answer to the “check”
massage. The resource status will be set to Suspended. After
a fixed interval, a second “check” massage is broadcast; the
status of a Suspended resource will be set to Left if there is
still no response. Any normal response before the second
“check” massage will reset the status to Online. Also the
updating resource status is synchronized with the RMC.

Over all the components inside the gateway middleware,
an embedded server is used for resource explosion. We use
restful web service to expose the resources to the web. User
can query the RMC for the URL of each resource and invoke
the resource through URL. The uniform access interface
facilitates the mashup and integration of resources.

Figure 5. Resource Leaving Process

C. Resource Management Center

The RMC is implemented as a server that maintains the
profile of resources. When it communicates with gateway
middleware, RMC acts as a central storing server that stores

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0508

the synchronized profile sent by each gateway periodically.
The profile includes registration information, addressing
information and resource status.

Besides, the RMC provides the discovery service to the
WoT application. In the query process, the RMC works as
the query and addressing server. When receiving a query
request, the RMC will filter the resource profile by the
request and then response with the result list. The result
includes service description and service working status. The
service description is described with WADL and the address
of service is represented as an URL which can be directly
invoked using the HTTP request. As shown in Figure 6, the
RMC consists of several parts:

Figure 6. Resource Management Center Franework

1) Directory Agent
The Directory Agent maintains the access address of

each resource. In our demonstration system, each resource is
exposed through restful web service and thus identified as an
URL which directs to the address of the a gateway. However,
as the devices may move about, the URL may change when
devices connect to different gateways and the invocation
through the old URL may fail. So the Directory Agent is
designed to map the URL to each resource dynamically and
response it to the user to ensure the availability of each URL.

Figure 7. Reource Moving Process

Figure 7 shows the dynamic mapping process. When a
moved device connect to a new gateway, the gateway firstly
queries the RMC that whether the new device has moved.
Then RMC asks the original gateway for acknowledgement.
If the original gateway has detected that the device has left
its local network, it responds to the RMC with

acknowledgement. At last, the RMC map the new URL to
the resource.

2) Resource Search
It is expected that there would be massive amount of

resources in the WoT. So it is necessary to provide the WoT
users with the resource search service. In our demonstration
system, users can search the resource by geographic location,
resource type (e.g. temperature) and access right (e.g. public).

3) Device Management
The information maintained by the device management

component includes Device Topology: it describes the
devices managed by each gateway and is updated as the
devices move. Device status: it describes the running status
of devices and is updated when devices are online or offline.
Device Profile: it describes the attributes like manufacture
information. Heartbeat: it is used to monitor the status of
each gateway. Meanwhile, in case that the gateway is located
in the network that distributes short-term IP address
periodically, the heartbeat information can be used to acquire
the changing IP address.

4) Data Management
There is an option for the gateway middleware to store

history data in the local system. Considering that the storage
space may be limited, the gateway middleware can upload
history data to RMC if necessary. The data management
component can store the data and expose them through web
service.

IV. IMPLEMENTATION

Based on an aging care cooperation project between
China and Finland, we have proved our architecture in a
SMART HOME system.

Figure 8. Overview of our demonstrator

The gateway middleware is deployed on a industrial
personal computer (Figure 8a). It has a Windows operation
system which is common in most home PCs. By deploying
several communication modules on it, the gateway can
connects home devices like sensors and actuators via WiFi,
Zigbee and serial ports. Figure 8b shows the WoT Discovery
Enabler deployed in our system and with them any devices
can connect to the gateway in running time. Besides, we use
the IIS server of the windows as our embedded server to
expose our resource. The restful web service is developed
based on the WCF of .net Framework 4.0. We have
investigated other optional restful frameworks, such as

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0509

RESTlet framework [15] in JAVA, which can be deployed
over JVM either in a Linux or Windows environment.

As an example of implementation of RMC, we use cloud
service to deploy our framework, it opens service such as
query, discovery and data synchronization.

As proof of concept, we develop aging care application
based on our architecture. The applications include both web
application (Figure 8c) and smart terminal (e.g. iPad, android
devices) application (Figure 8d). All of them use the restful
API from the home gateway to invoke resources.

V. ANALYSIS

Based on the SMART HOME system, we validate the
technical feasibility and responsibility of the middleware-
based architecture for the web of things. It also tackles the
problems we proposed earlier when implement the concept
of web of things.

Integration of heterogeneous devices
In the SMART HOME system, we use a middleware,

which can turn the hosting devices into a gateway, to manage
the heterogeneous devices inside the local network. Using
the WoT Discovery Enabler, the legacy devices can plug in
and out in running time. The deployment of devices can be
on large scale with extension of middleware. Besides, the
resources are exposed by restful web service that could be
invoked by users. Such light and uniform interface reduces
the use expense of resources.

Adaption to the mobility of resource
Based on the implementation of discovery protocol in the

system, we have tested the process when a device switches to
another access gateway. According to the log information,
the switch process includes synchronization among the
related gateways and RMC. After this process, the moved
resource can be invoked through a new access address.

Management of resource life cycle
In our system, the life cycle is divided into 4 stages

indicating different running status of resource. To some
extent this designation has deal with all the situations in our
application scenarios. The designation can be extended to
more complex situation if necessary. With management of
resource life cycle, the status of resources is timely updated
and users can know about it. Such information makes it
possible that user or application can make their own adaption
dynamically according to the status of resources used.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a middleware-based
network architecture for the web of things. Compared with
existing research in the web of things, the main purposes of
the proposed architecture include integration the
heterogeneous devices with constrained capability and
dealing with the problem brought by the dynamic attributes
of resources. With the cooperation between of the gateway
middleware and resource management center, the WoT can
be extended on large scale.

In future work, we will concentrate more on the
extension of resource management considering a more
complex application scenario. In addition, along with the
deployment of devices in the WoT, more distributed

technology will be surveyed and applied to manage massive
amount resource in the future.

ACKNOWLEDGMENTS

This work was supported by the Wireless Ubiquitous
Business Environment Architecture, Key Technology
Research and Demonstration based on Web (No.
2012ZX03005008)，China-Finland Cooperation Project on
the Development and Demonstration of Intelligent Design
Platform Driven by Living Lab Methodology (No.
2010DFA12780) and project on platform, Key technology
research of multi-terminal cooperative control network in
wireless ubiquitous environment (No. 2011ZX03005-004-
04).

REFERENCES
[1] D. Guinard, V. Trifa, and E. Wilde: A resource oriented architecture

for the web of things. In Proc. of IEEE International Conference on
the Internet of Things, Nov. 2010

[2] D. Guinard and V. Trifa: Towards the Web of Things: Web Mashups
for Embedded Devices. In 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009),
Madrid, Spain, April 2009.

[3] Xuang Jiang, Chunhong Zhang, "A Web-based IT Framework for
Campus Innovation," etcs, vol. 2, pp.90-93, 2011 Third International
Workshop on Education Technology and Computer Science, 2011

[4] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” doctoral dissertation, Dept. Information and
Computer Science, Univ. California, 2000.

[5] Cosm, “Internet of Things Platform Connecting Devices and Apps for
Real-Time Control and Data Storage,” 2012; cosm.com

[6] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba. Resource
and service discovery in large-scale multi-domain networks.IEEE
Communications Surveys&Tutorials, 9(4), 2007.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, IETF
RFC 2616, June 1999; www.ietf.org/rfc/rfc2616.txt.

[8] M. Lentczner and D. Preston. Reverse HTTP.
“http://tools.ietf.org/html/draft-lentczner-rhttp-00”.

[9] C. Perkins. IP mobility support for IPv4.
“http://tools.ietf.org/html/rfc59443”.

[10] P. Vixie, S. Thomson, J. Bound, and Y. Rekhter. Dynamic updates in
the Domain Name System. “http://tools.ietf.org/html/rfc2136”.

[11] WSDL. “http://www.w3.org/TR/wsdl”.

[12] WADL. “http://www.w3.org/Submission/wadl/”.

[13] EEML. “http://www.eeml.org/”.

[14] SensorML. “http://www.opengeospatial.org/standards/sensorml”.

[15] RESTlet. “http://www.restlet.org”. Accessed 20 Nov 2011.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0510

