
Self-Adapting Acquisition of Sensor Data in

Mobile Environment

Chao Wang, Chunhong Zhang, Yang Ji
Beijing University of Posts and Telecommunications, Beijing, China

Email: cclcwangchao@gmail.com

Abstract—A mobile application meets the highly real-time
requirement for data in sensor networks. However mobile
applications have to handle many difficulties that do not exist
in non-mobile environment. For example, the wireless network
provided for mobile is slow, expensive and bandwidth-limited.
So mobile application cannot acquire sensor data like a
common application does, which will consume a large share of
bandwidth, CPU and memory. To address this issue, we
propose our design that will limit the concurrently acquisition
of the sensor data with a self-adapting mechanism. It can
lower the overhead of the system significantly and what’s more,
it hardly reduces the user experience even in the situation that
the total acquisition frequency is limited.

Keywords-sensor network; mobile; self-adapting.

I. INTRODUCTION

With the development of sensor network, sensing
devices become more and more ubiquitous. One can have
easy access to the sensor data through the APIs provided by
some platforms. Cosm [1] is a typical example, which allows
people to connect sensors to their platform. For developers,
an application can be easily built with the restful [2] APIs.
Meanwhile, the powerfulness of a smart mobile with the
advantages of mobility and portability makes it more
attractive, so a big boom of mobile applications offering
sensor services can be seen in the near future.

 However, the development of sensor applications in
mobile environment meets many challenges. Hardware is
limited in mobile devices such as CPU, memory or wireless
network, so Applications that cost too many system
resources are not tolerable.

In an application monitoring large amounts of sensors,
the system overhead can be enormous. Considering the real-
time requirement of sensor data and improving the users’
experiences, sensor data should be acquired frequently.
Considering a building with hundreds of sensor deployed,
acquiring those data at the same time with hundreds of
connections will definitely use up the resources of a mobile
system.

To address this issue we propose our design to lower the
system overhead by reducing the total acquisition for sensor
data. It is self-adaptable, which means it can intelligently
adapt to the acquisition frequency without outside help. It
can be integrated seamlessly to kinds of platforms without
the modification of server side. Moreover, users can hardly
feel the potential loss of user experience brought in..

The next chapter presents the related work of our design.
Chapter III proposes techniques to reduce the overhead of

the system facing enormous sensors. In chapter IV, we
describe the system architecture of design and evaluate its
performance. Chapter V concludes the paper.

II. RELATED WORKS

In the sensor network, there are two methods, pulling and
pushing, that can be provided for sensor data acquisition.
Pulling data from the platform means a client should request
the sensor data proactively such as HTTP protocol. On the
contrary, the pushing way means the client should establish a
long connection that can usually be a TCP connection with
the platform, and when the data updates, client will be
notified by the platform.

In a push-based system, it is widely discussed how to
ensure the consistency of cache. For example, research [3]
presents a notification protocol that satisfies to various
consistency requirements.

However, in a sensor network environment, the situation
is more complex. Recently, the Web of Things [4] concept is
becoming more and more popular, and most sensor services
are web services (like Cosm) using HTTP [5] protocol.
HTTP protocol is a pull-base protocol. It can’t retain a long
connection so a push-based notification mechanism cannot
be used in those platforms. The pull-based data acquisitions
are more common in sensor network but how to ensure the
real-time of sensor data in this environment should be more
adequately studied.

The key to address this issue is the different real-time
requirements of different sensor data. In mobile applications,
we can see that only a small part of sensors need a high real-
time requirement. Properly dividing sensors into several
parts and different updating time interval can significantly
reduce the system overhead.

To avoid the modification in existing platforms
providing sensor data services, ‘self-adapting’ is required for
mobile terminals. So the mobile terminal must be able to
analyze the sensor information and environment to classify
real-time requirement of sensors into different levels.

Semantic analysis of sensor description [6] for mobile
phone is fully discussed. Taking advantages of these
researches, we can extract important information for sensor
classifying. In the next chapter, we will present in detail how
our self-adaptive acquisition design works using the above
techniques.

III. DESIGN

The key to solve the enormous sensor data problem is to
lower the concurrent acquisitions, and we propose the

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0511

MTUF(the minimum tolerance update frequency) concept of
the sensor.

A. Factors Affecting MTUF

MTUF is the minimum update frequency of sensor data
that can be tolerated in an application. The update frequency
no less-than MTUF can ensure the availability and user
experience of an application. Considering a sensor deployed
in a certain environment, a change of sersor value will not
draws the attention until it is significant enough, when a
notification may be necessary. So we assume Vmin as the
minimum value that can draw the user’s attention and the
value Tvmin is the time interval when the change of the
value is Vmin. So we can make our update time less than
Tvmin to ensure the user’s experience and we can also
assume MTUF = 1/Tvmin.

Not all sensors’ MTUF are the same, and they can be
affected by several factors.

Table I shows the example of factors that can affect
MTUF.

TABLE I. MTUFS FOR SOME FACTORS

Sensor With Factor MTUF(Hz)
Wind speed sensor in outdoor mutf1
Temperature sensor in outdoor mutf2

Temperature sensor in car mutf3
Sensor on display mutf5

Sensor to be on display mutf6

Type and deployment environment are two main factors
affecting MTUF. For example, in the outdoor environment,
the Tvmin of a wind speed sensor is much smaller than that
of temperature sensor because wind speed changes more
quickly and it needs a greater MTUF value. Similarly, the
Tvmins for the same temperature sensors in the outdoor or
in-car environment are also different. Usually the
temperature changes more quickly in a car because of the
airtight space.

The display status also affects its MTUF. Sensors are
acquired at a certain frequency when it is on display.
However when it is not on display, there is no need to
acquire the data at the same frequency because we don’t
need its data at that time. We can lower the MTUF of the
sensor or even stop acquiring it.

B. Obtain MTUF Factors

Now that we have already known the factors affecting
MTUF, another issue is how to obtain them from the sensor
information or application context.

1) Exacting Factors From Sensor Description: For
factors like type and location which can not change in a
short time, they can mostly be collected from a sensor
description. By analyzing the description of a sensor we can
obtain most factors. Mostly, the description of sensor is in
XML Format. By parsing the XML document we can easily
get these parameters. For example, the Sensor Web
Enablement (SWE) [7] framework uses a standard Sensor
Model Language (SensorML) providing information model
for sensor description. The result of the effort is, with
adding SWE to RESTful services, it will be more widely
used in current platforms.

For other services in which sensor information is not
properly structured, we can simply search the key words in
the description if the accuracy is not required.

2) Exacting Factors From Application Run-time: We
can use display-graph to measure the logic distance between
two views. For example, view A is displayed on the screen.
If view B can be directly switched from view A, we can
draw a directed connection from A to B. For all the views
displaying different sensor data, a graph can be drawn.

Figure 1 shows an example of an application’s display-
graph.

With the display-graph, we can determine the minimum
distance, which means the steps from the current display
view to this sensor display view. When it is 0, it means it is
on display and when it is 1, it means the sensor is not on
display but it may be on display after the user’s next action.
Simply, we can only acquire the data of sensors that is on
display or to be on display.

Figure 1. A display graph with four views

C. Making Acquisition Self-adapted

With the factors extracted from the sensor or the
application, we can evaluate the MTUF for each sensor.

A table of factors should be prepared for each sensor like
Table II below.

TABLE II. A SENSOR’S FACTORS TABLE

Factor Value
Type Temperature

Environment In car
Display No

Distance from display 1

Calculating the last MTUF with too many factors is a
little complex, so we only discuss it with the limited factors:
type, environment, alarm and display situation.

We consider the type and environment factors first. A
MTUF1 can be assumed with those factors according to the
common experience. For example, if Vmin is minimum
value that can be tolerate for temperature display and in the
in-car environment it needs Tvmin’s interval to archive this
change the MTUF1 = 1/Tvmin.

Second, we should consider the display situation. If the
sensor is on display we can also still use MTUF1. If it is not,
two situations should be discussed. When the sensor’s

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0512

distance from the display view is 1, which means its view
may be switched to later, we can lower the MTUF for not
only cause too much acquisitions but also ensure the
continuation of data display. We assume that MTUF2 =
λMTUF1, which λ< 1. For other situations when sensor’s
distance from display view is bigger than 1, the MTUF2 can
be assigned as 0 for it will not be displayed after the user’
next action.

For some other factors we did not discussed above,
MTUFs can also be specified for their own purpose, and we
assume them as MTUF3, MTUF4 and so on.

The last MTUF will be made according to the above
results. MTUF = max (MTUF2, MTUF3, MTUF4, …). Only
in this way, all the requirements can be satisfied.

All the sensors’ acquisitions are running at a frequency
of MTUF and only a small part of these MTUFs are high.
With this mechanism, system’s overhead will be reduced to
a low level.

IV. ARCHITECTURE AND EVALUATION

The architecture is illustrated in Figure 2. It is divided
into layers that together cover the entire process, from
information collection to information analysis, until sensor
data acquisition. Next, the implementation of these layers is
detailed.

Figure 2. Layered architecture of data acquisition

A. Information collection layer.

The information collection layer provides collectors to
collect information that may affect acquisition frequency of
sensor data. It currently provides two types of collectors.

1) Profile information collector: It is used for collecting
profile information of sensor. Usually, the profile of a
sensor describes the detail of sensor such as type, location
or other parameters. It is in either XML or JSON format.
However the information collector doesn’t make a
distinction and the raw data will be pushed to the up layer.

2) Run-time information collector: It collects the
information of the application run-time. In our design, it
collects two types of information: the display graph of an
application and the current view on display. Some works
should be done before starting collecting. For example,
building the view graph. Each view in the application
should be assigned a tag number and the view graph
consisting those tags should be configured first. As same as
profile information collector, the run-time information will
be sent to the up layer for advanced process.

B. Information analysis layer

The information analysis layer is the core layer of the
architecture. It is composed of two parts. Analysis configure
and MTUF analyzer.

1) Analysis configure: It keeps some values predefined
for different scene. Mostly, it saves the MTUF for some
certain factors. It can be seen as a MTUF table described in
capture III. MUTF analyzer will read configures from this
model and determine the MTUF at last.

2) MTUF analyzer: It is used to determine the MTUF of
each sensor. It also contains three important parts: semantic
engine, run-time analyzer and MTUF calculator.

Semantic engine analysis the sensor’s profile and extract
the proper factors. Usually XML is used in the profile to
organize the data, and it only need to parse the XML file.

However for most profiles, just parsing XML is not
enough. For example, the environment factor can be fetched
from the “location” parameter of the profile and it can be
many values such as: kitchen, bedroom or bathroom. One
fact is that they all stands for the “indoor” environment and
can be handled in the same way. To address this issue, we
can build a semantic base for the words that will appear in
the sensor descriptions. In the semantic base, each word has
a property list attached to it. For example, the word
“kitchen” has an “environment” property and its value is
“indoor”. That means the kitchen has an indoor environment
and the MTUF will be computed as an indoor sensor. The
semantic base can be stored in JSON [8] or XML [9] format
in the mobile terminals or in a remote service, as shown in
Figure 3.

Figure 3. Data format in semantic base

The same way can also be applied to ‘sensor type’ and
other factors. The semantic base can conclude different
words to a same word. And the management for the up layer
of the system will be sample.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0513

Run-time analyzer analyzes the display graph of views
and extract the factors affecting MTUF of run-time. To
determine the distance of each sensor view and the current
view, the view relationship should be loaded into the
memory. Using the method in capture III, we will get the
MTUF of this factor for each sensor.

All the factors extracted by semantic engine or run-time
analyzer will be sent to MTUF calculator where the last
acquisition frequency will be worked out.

C. Sensor data acquisition layer

It is the layer that performs actual acquisition of sensor
data. It reads the MTUFs provided by information analysis
layer and according the MTUFs of the different sensor,
different acquisition frequencies will be applied to each
sensor. This layer also keeps a cache to store history data of
sensor. When new data is not arrived, cached data will be
used.

D. Application Layer

The application layer uses data coming from lower layer.
It maintains the application logic, displays sensor data and so
on. It doesn’t care about the acquisition of sensor data and
just use it. Actually with the work of lower layers, developer
can develop mobile applications easier and more efficient.

E. Evaluation

We studied our test scenario benchmarking by evaluating
the network traffic when the application was running. For
benchmarking, we record the network traffic with different
sensor amounts in our design and compared it with the
application ignoring sensor’s differences.

The test scenario is applied for fetching the sensor
information in a house. Firstly it fetches the sensor
information from a platform that provides the sensor’s
description of location, type and so on. Then using the
information, the fetch of sensor data can be started.

Figure 4 shows the result of our test.

Figure 4. Testing results of MTUF design

In our test scenario, two types of design are displayed.
One is our design using MTUF as sensor’s update frequency
in the application. Another one is the common design
ignoring the differences of each sensor and updates them
with a same frequency.

We can see that when the amount of sensors keeps
increasing, the network traffic also increases greatly for a

common design. As for the design using MTUF, the network
traffic keeps in a low level.

V. CONCULSON

This paper depicted a mechanism to limit concurrent
acquisitions of sensor data. It collects the factors affecting
MTUF from a sensor profile or application run-time. With
analysis of those parameters, MTUF can be calculated for
each sensor. Without the support of platforms, our design
can deduce the acquisition frequency itself, and when the
factors are changed, MTUF will be changed too. So this
design is self-adapting.

There are still several extensions that we can consider as
the future work. One issue is that some of the information
should be configured in the application. It is not convenient
for application design. We plan to detect some information
like view graph automatically and we’ll make it more
intelligent in the future work.

ACKNOWLEDGMENT

This work was supported by project on the Architecture,
Key technology research and Demonstration of Web-based
wireless ubiquitous business environment (No.
2012ZX03005008-001) , China-Finland Cooperation
Project on the Development and Demonstration of
Intelligent Design Platform Driven by Living Lab
Methodology (No. 2010DFA12780) and project on
platform, Key technology research of multi-terminal
cooperative control network in wireless ubiquitous
environment (No. 2011ZX03005-004-04).

REFERENCES
[1] Cosm, ”Internet of Things Platform Connecting Devices and Apps

for Real-Time Control and Data Storage,” 2012; cosm.com

[2] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” doctoral dissertation, Dept. Information and
Computer Science, Univ. California, 2000.

[3] Guohong Cao, “A Scalable Low-Latency Cache Invalidation Strategy
for Mobile Environments,” Knowledge and Data Engineering, vol.
15, pp. 1251-1265, Sept.-Oct. 2003.

[4] D. Guinard and T. Vlad, “Towards the web of things: web mashups
for embedded devices,” Proceedings of the International World Wide
Web Conferences, Apr. 2009.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, IETF
RFC 2616, June 1999; www.ietf.org/rfc/rfc2616.txt.

[6] V. Loia, G. Fenza, D. Furno and C. De Maio, “Swarm-based
Approach to Evaluate Fuzzy Classification of Semantic Sensor
Data,” Pervasive Computing and Communications Workshops, IEEE
CS, 2012, pp. 308-313.

[7] M. Botts, G. Percivall, C. Reed and J. Davidson, “OGC® Sensor
Web Enablement: Overview And High Level Architecture”,
Proceedings of the 5th International ISCRAM Conference, 2008, pp.
713-723.

[8] D. Crockford, The application/json Media Type for JavaScript Object
Notation (JSON), IETF RFC 4627, July 2006;
www.ietf.org/rfc/rfc4627.txt.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau, Extensible Markup Language (XML) 1.0, World Wide
Web Consortium (W3C) note, Novemember 2008;
www.w3.org/TR/REC-xml/.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0514

